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Abstract

People are inherently social. Social interaction plays

an important and natural role in human behavior. Most

computational methods focus on individuals alone rather

than in social context. They also require labelled training

data. We present an unsupervised approach to discover

interpersonal synchrony, referred as to two or more persons

preforming common actions in overlapping video frames

or segments. For computational efficiency, we develop a

branch-and-bound (B&B) approach that affords exhaustive

search while guaranteeing a globally optimal solution. The

proposed method is entirely general. It takes from two or

more videos any multi-dimensional signal that can be rep-

resented as a histogram. We derive three novel bounding

functions and provide efficient extensions, including multi-

synchrony detection and accelerated search, using a warm-

start strategy and parallelism. We evaluate the effectiveness

of our approach in multiple databases, including human

actions using the CMU Mocap dataset [1], spontaneous

facial behaviors using group-formation task dataset [37]

and parent-infant interaction dataset [28].

1. Introduction

Humans are inherently social. Accessing human social
interaction, especially synchrony, provides a better under-
standing of human behavior. Synchrony refers to the tem-
poral structure of behaviors among interactive partners [13].
The close connection between synchrony and interaction
provides researchers promising perspectives to build social
interfaces [34], robots [6] or conversational agents [18].
However, a lack of automatic tools for synchrony discovery
limits the exploration in interactive abilities.

Most prior art emphasizes on learning individual behav-
iors, and thus requires adequate labeled training data. Suc-
cessful instances encompass a number of applications, such
as action recognition [15, 21, 35], facial expression anal-
ysis [12, 14, 24, 26, 40] and sign language interpretation
[10]. However, these methods focus on single individuals
without considering social behaviors that can be triggered
by the perception of actions in others. E.g., during face-
to-face interaction between mothers and their infants, they
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Figure 1. An illustration of unsupervised synchrony discovery in

mother-infant interaction. Our method automatically discovers

dyadic synchronies from multi-dimensional signals. Red bold

boxes indicate the engagement in mutual smiles between the infant

and the mother. The gray thin box indicate a randomly picked

moment, showing an event without synchrony.

tend to match each other’s affective states within lags of
seconds. This synchrony improves the infant’s experience
of social connection during early development. Studying
human interaction is crucial, but currently, to the best of our
knowledge, no commonly accepted method exists for dis-
covering synchrony among interactive partners.

This paper presents an unsupervised approach to dis-
cover interpersonal synchrony that requires no training data.
We term it unsupervised synchrony discovery (USD). Fig. 1
illustrates our main idea in a scenario of mother-infant inter-
action: Given a two synchronized videos represented as
multi-dimensional signals, we aim to find their synchrony
within a temporal window. For each behavior produced by
one partner, the synchrony is defined as overlapped video
frames or segments for the other partner(s) to produce a
common behavior. As can be seen, two synchronies were
discovered by our approach, where the mother and infant
exhibits mutual engagement of smiles.

In specific, USD models the coordination among indi-
viduals as a global optimization problem. Unlike a naive
approach that exhaustively evaluates temporal regions with



different lengths and locations, USD exploits a branch and
bound (B&B) algorithm that allows an efficient search of a
large collection of temporal windows. Along with two ways
to accelerate the B&B search, USD guarantees to converge
to a globally optimal solution with potentially fewer eval-
uations than exhaustive search. We showed the effective-
ness of USD in discovering synchronies of human actions,
group-formation tasks, and mother infant interaction.

In summary, our contributions are two-fold: (1) We
present a new unsupervised technique for discovering syn-
chrony in human interaction. To the best of our knowledge,
our work is the first to match activity among individuals,
providing an automatic tool to discover mutual engage-
ment. (2) The proposed algorithm is general in two ways:
it takes any signals represented as histograms, which can
be bounded with standard metrics or three newly derived
ones in this paper; it naturally generalizes to discover syn-
chrony among more than two sequences. The algorithm is
optimized to find an exact global solution, and can be fur-
ther accelerated using a warm-start strategy and parallelism,
showing an ability to handle large videos that are computa-
tionally prohibitive in exhaustive approaches.

2. Related Work

Synchrony discovery closely relates to human behavior
analysis. Below we categorize prior art into supervised and
unsupervised approaches, and discuss each in turn.

Supervised behavior analysis: Many techniques in
computer vision for individual behavior analysis can be
found in the literature, including facial expression recogni-
tion [14, 24, 26, 36, 40], surveillance system [16], activity
recognition [15, 21, 35], and sign language interpretation
[10]. Other works concern about the recognition of behav-
iors that involve more than one subject interacting in the
scene. Brand et al. [5] introduced coupled hidden Markov
models (CHMMs) to model dynamic interaction between
multiple processes. Following up, Oliver and Pentland [33]
proposed to recognize interaction between two people using
HMMs and CHMMs, and concluded that CHMMs perform
better in this task. Hongeng and Nevatia [20] proposed a
hierarchical activity representation along with a temporal
logic network for modeling and recognizing interaction.
More recently, Liu et al. [25] proposed to recognize group
behavior in AAL environment (nursing homes). A switch
control module was performed to alternate between two
HMM-based approaches according to the number of indi-
vidual present in the scene. Messinger et al. [27] focused
on specific annotated social signals, i.e., smiling and gaze,
and characterized the transition between behavior states by
a maximum likelihood approach. Interested readers are
referred to [7] for a review. These techniques, however,
require adequate labeled training data, which can be time-
consuming to collect and not applicable to our scenario.

Unsupervised behavior analysis: The closest to our
study is unsupervised approaches that require no training
data. Zheng et al. [43] presented a coordinated motion
model to detect motion synchrony in a group of individ-
uals such as fish schools and bird flocks. Zhou et al. [44]
proposed Aligned Cluster Analysis that extends spectral
clustering to cluster time series. [44] applied the technique
to discover facial events in unsupervised manner. Chu
et al. [9] proposed a B&B approach to find time bound-
aries of common events happening in two videos. On the
other hand, time series motifs, defined as the closest pair
of subsequences in one time series stream, can be discov-
ered with a tractable exact algorithm [29], or an approx-
imated algorithm that is capable of tackling never-ending
streams [4]. Some attempts on measuring interactional syn-
chrony include using face tracking and expressions [42],
and rater-coding and pixel changes between adjacent frames
[38]. Nayak et al. [32] presented iterated conditional modes
(ICM) to find most recurrent sign in all occurrences of sign
language sentences. Recall that a synchrony is defined
within a temporal window; it can contain subsequences
from different videos that involve a temporal offset and
sequence lengths different from each other. Given this
structure, it remains unclear how a synchrony can be effi-
ciently discovered using the above approaches.

3. Unsupervised Synchrony Discovery (USD)

3.1. USD for dyadic synchrony

Segment-level feature mapping: To describe the static
and dynamic information of a video segment, we extract
two types of features as the segment-level feature map-
ping [8, 19]: observation features extracted from a single
frame, and interaction features extracted from two consecu-
tive frames. Suppose the jth frame is described as a feature
vector xj . We perform k-means to find k centroids {ck}Kk=1
as the hidden states. The observation feature φobs(xj)
describes the pseudo-probability of xj belonging to a state,
and the interaction feature φint(xj) describes transition
probability of states between two consecutive frames. As
a result, we represent a video segment Xi = {xbi , ...,xei}
between the bthi and the ethi frames by normalizing the sum
of the concatenation of the two features, resulting in a fea-
ture vector φXi

=
∑ei

j=bi
[φobs(xj);φint(xj)]. See [8,19] for

details about the feature mapping.

Problem formulation: To establish notion, we begin
with two synchronized videos S1 and S2 with n frames
each. The problem of Unsupervised Synchrony Discovery
(USD) consists on searching over all possible subsequence
pairs and find the one that shows similar patterns of change
or movement. These pairwise patterns are known as dyadic

synchrony. We formulate USD as an integer programming



over two intervals [b1, e1]⊆ [1, n] and [b2, e2]⊆ [1, n]:

max
{b1,e1,b2,e2}

f(φS1[b1,e1],φS2[b2,e2]), (1)

subject to ℓ ≤ ei − bi, ∀i ∈ {1, 2},

|b1 − b2| ≤ T,

where f(·, ·) is a similarity measure between two feature
vectors (see details in Sec. 3.2), and ℓ controls the minimal
length for each subsequence to avoid a trivial solution. T is
a synchrony offset that allows USD to discover commonal-
ities within a T -frame temporal distance, e.g., in mother-
infant interaction, the infant could start smiling after the
mother smiles for a few seconds. Problem (1) is non-convex
and non-differentiable, and thus standard convex optimiza-
tion methods can not be applied. A naive solution is an
exhaustive search with complexity O(n4), which is compu-
tationally prohibitive for regular videos of several minutes.

Algorithm: We adapt a Branch and Bound (B&B)
approach that guarantees a globally optimal solution in
Problem (1). B&B has shown success in many computer
vision problems, e.g., object detection [22, 23], temporal
commonality analysis [9], pose estimation [39] and optimal
landmark detection [2]. For an event to be considered
synchronous, they have to occur within a temporal neigh-
borhood between two videos. For this reason, we only
need to search within close regions in the temporal search
space. Specifically, we constrain the space before the search
begins, instead of exhaustively pruning the search space to
a unique discovery (e.g., [9, 22]).

Let r = [b1, e1, b2, e2] represent a rectangle in the 2-D
search space. A rectangle set R = B1×E1×B2×E2

in the search space indicates a set of parameter intervals,
where Bi = [bloi , b

hi
i ] and Ei = [eloi , e

hi
i ], i ∈ {1, 2} are

tuples of parameters ranging from frame lo to frame hi. We
denote |R| as the number of possible rectangles in R. See
Fig. 2(f) for an illustration of the notation. Let L=T + ℓ be
the largest possible period to search, we initialize a priority
queue Q with rectangle sets {[t, t+T ]×[t+ℓ−1, t+T+L−
1]×[t−T, t+T ]×[t−T+ℓ−1, t+T+L−1]}n−T−L+1

t=1 and
their associated bounds (see details in Sec. 3.2). These rect-
angle sets lie sparsely along the diagonal in the 2-D search
space, and thus prune a large portion during the search.
Once all rectangle sets are settled, we adapt the Branch-and-
Bound (B&B) strategy [9, 22] to find the exact optimum.
Algo. 1 summarizes the proposed USD algorithm.

3.2. Measures with bounds

For the sake of using the B&B framework, we need a
proper measure for similarity (or distance) between two
sequences. This section constructs novel bounding func-
tions for three measures: cosine similarity, symmetrized KL
divergence and symmetrized cross entropy. Note that any
measure with proper bounds (e.g., ℓ1, intersection, and χ2

in [9]) can be directly applied.

Algorithm 1: Unsupervised Synchrony Discovery

input : A synchronized video pair A,B; minimal
discovery length ℓ; commonality period T

output: Optimal intervals r⋆=[b1, e1, b2, e2]

1 L← T + ℓ; // The largest possible searching period
2 Q← empty priority queue; // Initialize Q
3 for t← 1 to (n−T−L+1) do
4 R← [t, t+T ]×[t+ℓ−1, t+T+L−1]×[t−T, t+

T ]×[t−T+ℓ−1, t+T+L−1];
5 Q.push(bound(R), R); // Fill in Q

6 end
7 R← Q.pop(); // Initialize R
8 while |R| ≠ 1 do
9 R→ R1∪R2; // Split into 2 disjoint sets

10 Q.push(bound(R1), R1); // Push R1 and its bound
11 Q.push(bound(R2), R2); // Push R2 and its bound
12 R← Q.pop(); // Pop top state from Q

13 end
14 r⋆ ← rect(R); // Retrieve the optimal rectangle

Let Si denote the i-th sequence and can be represented
as an unnormalized histogram hi or a normalized histogram

ĥi. Let hi
k and ĥi

k be the k-th bin of hi and ĥi, respectively.

The normalized histogram is defined as ĥi
k=hi

k/|S
i|, where

|Si| =
∑

k h
i
k. ∥Si∥=

√∑
k(h

i
k)

2 is the Euclidean norm
of histogram of Si. S[b, e] denotes the subsequence of S that
starts from the b-th frame and ends in the e-th frame. Given
a rectangle set R=B1×E1×B2×E2, we denote the longest
(shortest) possible subsequence as Si+(Si−), as illustrated
in Fig. 2(f). Let r= [b1, e1, b2, e2]∈ R be a rectangle, hi

k =
hi−
k

|Si+| and hi
k=

hi+
k

|Si−| , we observe the facts similar to [9]:

(a) 0 ≤ hi−
k ≤ hi

k ≤ hi+
k

(b) ∥Si−∥ ≤ ∥Si[bi, ei]∥ ≤ ∥S
i+∥,

(c) 0≤hi
k ≤ ĥi

k ≤ hi
k.

Given these facts, below we construct the bounds for sim-
ilarity (or distance) measures with normalized histograms

(ĥi, ĥj), whereas those for unnormalized histograms can
be likewise obtained.

Cosine similarity: Treating two normalized histograms

ĥi and ĥj as two vectors in the inner product space, we can
measure the similarity as their included cosine angle:

C(ĥi, ĥj) =
ĥi · ĥj

∥ĥi∥∥ĥj∥
=

∑
k

hi
kh

j
k

|Si||Sj |
√∑

k(
hi
k

|Si| )
2

√
∑

k(
hj
k

|Sj | )
2

=

∑
k h

i
kh

j
k

√∑
k(h

i
k)

2

√∑
k(h

j
k)

2
=

hi · hj

∥hi∥∥hj∥
. (2)
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Figure 2. An example of USD on two 1-D time series using ℓ= 13 and T = 5: (a) Top 3 discovered synchronies at different iterations;

exhaustive search takes 39151 iterations. (b) The convergence curve w.r.t. bounding value and #iter. (c)∼(e) Discovered synchronies and

their histograms, where blue and green bars indicate the segment features φobs and φint, respectively. φint is 10X magnified for display

purpose. The ℓ1 distances between the three histogram pairs are 6.3e-8, 1.5e-7, and 5.8e-2, respectively. (f) An illustration of notation.

Using facts (a) and (b), we obtain the bounds:

lC(R)=

∑
k h

i−
k hj−

k

∥Si+∥∥Sj+∥
≤C(hi,hj)≤

∑
k h

i+
k hj+

k

∥Si−∥∥Sj−∥
=uC(R).

Symmetrized KL Divergence: As ĥi and ĥj are non-
negative and sum to one, they can be interpreted as two dis-
crete probability distributions and measured using the sym-
metrized KL divergence:

D(ĥi, ĥj) = DKL(ĥ
i||ĥj) +DKL(ĥ

j ||ĥi)

=
∑

k

(ĥi
k − ĥj

k)(ln ĥ
i
k − ln ĥj

k), (3)

where DKL(ĥi||ĥj) is the KL divergence of ĥj from ĥi.

From fact (c) and that hi
k−h

j
k ≤ ĥi

k−ĥ
j
k ≤ hi

k−h
j
k, we have

lnhi
k − lnhj

k ≤ ln ĥi
k − ln ĥj

k ≤ lnhi
k − lnhj

k. Then, we
obtain the bounds for (3):

lD(R)=
∑

k

(hi
k−h

j
k)+(lnh

i
k−lnh

j
k)+

≤D(ĥi, ĥj) ≤
∑

k

(hi
k−h

j
k)(lnh

i
k−lnh

j
k)=uD(R),

where (·)+ = max(0, ·) is a non-negative operator to avoid
both terms in (3) being negative.

Symmetrized cross Entropy: The symmetrized cross
entropy [30] measures the average number of bins needed
to identify an event by treating each other as the true distri-

bution. Similar to KL divergence that treats ĥi and ĥj as
two discrete probability distributions, the entropy function
is written as:

E(ĥi, ĥj) =
∑

k

ĥi
k log

1

ĥj
k

+
∑

k

ĥj
k log

1

ĥi
k

. (4)

Recall the fact (c) and that 0≤ ĥi
b≤1, 0≤ ĥj

b≤1, we obtain
the bounds:

lE(R) =
∑

b

(
−hi

k log h
j
k−h

j
k log h

i
k

)

≤ E(ĥi, ĥj) ≤
∑

k

(
−hi

k log h
j
k−h

j
k log h

i
k

)
= uE(R).

To compute the bounds, we used an implementation of inte-
gral image [41] that takes an O(1) operation per evaluation.
We refer interested readers to the supplementary material
for detailed derivation of the above bounds. Fig. 2 shows
a synthetic example of 1-D sequences with two pairwise
synchronies, denoted as red dotted and green triangle seg-
ments, where one is a random permutation of another. USD
discovered 3 dyads with the convergence curve in (b), and
histograms of each dyad in (c)∼(e). Note that the interac-
tion feature distinguishes the temporal consistency for the
first and second discovery, maintaining a much smaller dis-
tance than the third discovery.

3.3. USD for triadic synchrony and more

We have described above how USD can discover dyadic
synchrony with several bounding functions. In this section,
we show that the main USD algorithm can be directly gen-
eralized and extended to capture mutual attention among
a group (i.e., multiple sequences). Specifically, we formu-
late the discovery among N sequences {Si}Ni=1 by rewriting
Eq. (1) as:

max
{bi,ei}N

i=1

F
(
{φSi[bi,ei]}

N
i=1

)
(5)

subject to ℓ ≤ ei − bi, ∀i ∈ {1, ..., N},

max(|bi − bj |) ≤ T, ∀i ̸= j,

where F (·) is a similarity measure for a set of sequences
and defined as the sum of pairwise similarities:

F
(
{φSi[bi,ei]}

N
i=1

)
=

∑

i ̸=j

f(φSi[bi,ei],φSj [bj ,ej ]). (6)

Given a particular rectangle set R and sequence pair (Si, Sj),
we rewrite their pairwise bounds in Sec. 3.2 as lijf (R) and

uij
f (R). The bounds for F (·, ·) can be defined as:

lF (R) =
∑

i ̸=j

lijf (R) ≤ F
(
{φSi[bi,ei]}

N
i=1

)

≤
∑

i ̸=j

uij
f (R) = uF (R). (7)



Given this bound, Algorithm 1 can be directly applied to
discover multiple synchronies.

Comparison with TCD [9]: Although Temporal Com-
monality Discovery (TCD) also performs unsupervised
temporal discovery, this paper bears several technical dif-
ferences. (1) New bounding functions: we introduce new
bounds for cosine similarity, symmetrized KL divergence,
and symmetrized cross entropy. These bounds enable appli-
cations of the B&B framework to domains where any of the
metrics could be applicable. (2) Speed-up strategies: owing
to the nature of the proposed problem, this paper introduces
a warm-start and a parallelism approach for acceleration.
TCD is sequential and thus can be very slow in practice. (3)
Discover among >2 sequences: We offer a natural exten-
sion of USD for multiple sequences, whose effectiveness
is shown in experiments. (4) TCD does not perform syn-
chrony discovery.

4. Extensions of USD

Given the USD algorithm described above, this sec-
tion describes its extensions to discover multiple syn-
chronies and two accelerate approaches with with warm
start (USD∆) and parallelism (USD#).

Discover multiple synchronies: Multiple synchronies
often occur in realistic videos, while the USD algorithm
only outputs one synchrony at a time. To discover multiple
synchronies, a trivial approach is to repeat USD many times
by passing the priority queue Q from the previous USD to
the next. However, each branching step splits a rectangle set
R into two, resulting in an exponentially growing Q and inef-
ficient search. Here we adapt a pruning strategy to safely
discard undesired branches before starting the next USD.
Given a previously discovered rectangle r and Q from the
previous USD, we update every R using pruning rules that
avoids overlapping detection with r. Without loss of gen-
erality, Fig. 3(a) illustrates the pruning rules for updating
E1 when overlapped with r, while the same rule applies for
updating B1. For axes of both S1 and S2, all R overlapped
with r is updated according to the illustrated cases, and oth-
erwise discarded. The updated rectangle sets, along with
their bounds, are then pushed back to Q for the next USD.

This strategy is simple yet very effective. The bounds
remain valid because each updated set is a subset of R. In
practice, it dramatically reduces the number of states for
searching the next synchrony. For example, in the example
of Fig. 2, the size of Q is reduced 19% for the second USD,
and 25% for the third USD.

USD with warm start (USD∆): Due to the B&B nature,
USD exhibits poor worst-case behavior, leading to a com-
plexity as high as that of exhaustive search [31]. On the
other hand, B&B search can quickly identify the exact solu-
tion when a local neighborhood contains a clear optimum
[22]. Given this motivation, we explore a “warm start”
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Figure 3. Illustration of USD extensions: (a) pruning rules applied

to multi-synchrony discovery, (b) USD with warm start (USD∆),

and (c) parallelized USD (USD#).

strategy that estimates an initial solution with high quality,
and then initializes USD around the solution. Estimating
an initial solution costs only few percentage of total itera-
tions, and thus can effectively prune branches in the main
USD algorithm. Fig. 3(b) illustrates the idea. Specifically,
we run a sampled sliding window with stepsize=10, sort the
visited windows according their distances, and then deter-
mine a warm start region around the windows within the
lowest one percentile. Then the main USD algorithm is per-
formed only within an expanded neighborhood around the
warm start region.

Parallelized USD (USD#): The use of parallelism to
speed up B&B algorithms has emerged as a way to solve
larger problems [17]. Based on the block-diagonal structure
in the search space, this section describes an parallelized
approach USD# to scale up USD for larger sequences. Note
that the parallelism was not shown possible in previous
sequential method [9]. In specific, we divide USD into
subproblems, and perform the USD algorithm solve each
in parallel. Because each subproblem is smaller than the
original one, the number of required iterations can be poten-
tially reduced. As illustrated in Fig. 3(c), the original search
space is divided into overlapping regions, where each can be
solved using independent jobs on a cluster. The results are
obtained as the top k rectangles collected from each sub-
problem. Due to the diagonal nature of USD in the search
space, the final result is guaranteed to be a global solution.
The proposed structure enables static overload distribution,
leading to an easily programmable and efficient algorithm.

5. Experiments

We evaluated our method on discovering synchronies
in a variety of video sources: human actions from CMU
motion capture (Mocap) dataset [1], social group interaction
from GFT dataset [37] and parent-infant interaction [28].

5.1. Comparison and evaluation metric

To our best knowledge, there is no commonly accepted
method that explicitly tackle the USD problem. Instead,
we compare USD with a baseline sliding window (SW)
approach, i.e., evaluate subsequently rectangles in the
search space and take the maximal similarity (or minimal
distance) as indicators for the existence of a synchrony. In
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particular, we implemented SW with an initialization of an
ℓ × ℓ window, and gradually increment the window size
along each dimension using a fixed step size s, i.e., multiple
window scales were allowed. The window was moved every
s frames among the same search region as USD. We com-
pared SW and USD by their discovery speed and quality.

Evaluation of speed was computed by the number of
function evaluations, to exclude factors in different hard-
ware and implementation. For datasets for which labels
are available (i.e., CMU Mocap [1] and GFT [37]), eval-
uation of quality was carried out using the recurrence anal-
ysis [13], which was originally designed to analyze a cou-
pled dynamical system based on signal consistency. Let
{Si}Ni=1 be a collection of sequences with n frames each,
A = {(i, j)|i, j∈{1, ..., N}, i ̸= j} be a pairwise index set
of {Si}, r be a discovered synchrony with ni frames along
sequence Si, and Yi ∈RC×n be the ground truth labels of
Si, where each column represents labels of C classes. Yc

i [p]
denote the c-th class labels corresponding to the p-th frame
in Si. For a given r, we define the recurrent consistency:

Q(r) =
1

C
∏

i ni

∑

c

∑

(i,j)∈A

∑

p,q

I(Yc
i [p]=Y

c
j [q]), (8)

where I(X) is an indicator function returning 1 if the state-
ment X is true and 0 otherwise. The quality measures the
mutual agreement between each pair of the discovered sub-

Table 1. Distance and quality analysis on CMU Mocap dataset:

(top) χ2 distance using 1e-3 as unit, (bottom) recurrent consis-

tency. SW⋆
s indicates the optimal window found by SWs with step

size s = 5, 10; SWµ
s and SWσ

s indicate average and standard devi-

ation among all windows. The best discovery are marked in bold.

Pair (1,11) (2,4) (3,13) (5,7) (6,8) (9,10) (12,14) Avg.

χ
2
-d

is
ta

n
ce

USD 6.3 1.2 4.7 2.6 0.1 0.2 11.9 3.9

SW⋆
5 6.5 1.3 6.7 5.4 0.1 0.4 12.0 4.6

SW⋆
10 6.7 2.7 6.7 10.1 0.2 0.7 14.3 5.9

SWµ

5 97.1 76.9 81.4 64.2 89.3 172.0 334.5 130.8

SWσ
5 33.8 74.4 53.8 28.2 79.2 117.7 345.1 104.6

SWµ

10 94.8 77.3 81.8 63.2 87.1 170.2 327.2 128.8

SWσ
10 34.3 74.1 54.2 28.3 79.4 117.8 341.5 104.2

R
ec

.
co

n
si

st
en

cy

USD 0.89 0.85 0.46 0.90 1.00 0.64 0.76 0.79

SW⋆
5 0.95 0.81 0.50 0.84 1.00 0.69 0.73 0.79

SW⋆
10 0.95 0.75 0.50 0.64 1.00 0.55 0.00 0.63

SWµ

5 0.07 0.32 0.09 0.07 0.08 0.13 0.12 0.12

SWσ
5 0.16 0.33 0.25 0.20 0.21 0.29 0.22 0.24

SWµ

10 0.08 0.31 0.09 0.07 0.09 0.13 0.12 0.13

SWσ
10 0.19 0.33 0.26 0.21 0.22 0.29 0.23 0.25

sequences, resulting in a score in [0,1]. The score reaches 1
when the discovered synchrony agrees completely on each
other’s label, and 0 when they completely disagree.

5.2. Synchrony in human actions

This section examines the ability of USD to discover
synchronies in human actions on the CMU Mocap dataset
[1]. Mocap data provides high-degree reliability in mea-
surement and serves as an ideal target for an initial test of
our method. We used the Subject 86 data that contains 14
sequences labeled with action boundaries [3]. To remove
the redundancy in action labels, we merged similar actions
into 24 categories, e.g., {arm rotating, right arm rotation,
raise arms, both arm rotation} were categorized as arm

raise. Each action was represented by root position, orien-
tation and relative joint angles, resulting in a 30-D feature
vector. The segment-level feature was used as described
in Sec. 3.1. To mimic a scenario for USD, we grouped the
sequences into 7 pairs as the ones containing similar number
of actions, and trimmed each action to up to 200 frames.
USD was performed using ℓ = 120 and T = 50.

Table 1 summarizes the USD results compared with the
baseline sliding window (SW). Results are reported using
χ2-distance and the recurrent consistency described in (8).
A threshold of 0.012 was manually set to discard discovery
with large distance. We ran SW with step sizes 5 and
10, and marked the windows with the minimal distance as
SW⋆

5 and SW⋆
10, respectively. Among all, USD discovers

all results found by SW. To understand how well a predic-
tion by chance can be, all windows were collected to report
average µ and standard deviation σ. As can be seen, on
average, a randomly selected synchrony can result in large
distance over 100 and low quality below 0.3. USD main-
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Figure 6. Analysis on top 10 discovered dyadic and triadic syn-

chronies of the GFT dataset. SW denoted with ⋆ indicates the

optimal windows discovered, and without ⋆ indicates the average

and standard deviation over all visited windows.

tained an exact minimal distance with good qualities as the
ones found by exhaustive SW. Note that, because USD is
totally unsupervised, the synchrony with minimal distance
may not necessarily guarantee the highest quality.

Fig. 4 shows the qualitative results on all 7 pairs, anno-
tated with ground truth and the discovered synchronies. As
can be seen, USD allows to discover multiple synchronies
with varying lengths. Although some discovered syn-
chronies contain disagreed action labels, one can observe
that the discoveries share reasonable visual similarity, e.g.,
in pair (9,10), the “look around” action in sequence 9 was
performed when the subject was seated, sharing the simi-
larity with the “sit” action in sequence 10.

Fig. 5 shows the speed up of USD against exhaustive
SW. USD and its extensions demonstrated an improved effi-
ciency over SW. In some cases, USD∆ improved search
speed by a large margin, e.g., in (01,11) with χ2-distance
reached a speed boost over 200 times. Across all met-
rics, the speed up of USD∆ was less obvious with sym-
metrized KL divergence. USD# was implemented on a 4-
core machine; an extension to larger clusters is possible yet
beyond the scope of this study. On average, USD# con-
sistently performed faster across different metrics than the
original USD due to parallelism.

5.3. Synchrony in social group interaction

This section describes the discovery of synchronies in
social group interaction. We used the GFT dataset [37]
that consists of 720 participants recorded during group-
formation tasks. Previously unacquainted participants sat

together in groups of 3 at a round table for 30 minutes while
getting to know each other. We used 2 minutes of videos
from 48 participants, containing 6 groups of two subjects
and 12 groups of three subjects. USD was performed to dis-
cover dyads among groups of two, and triads among groups
of three. Each video was tracked with 49 facial landmarks
using IntraFace [11]. We represented each face by con-
catenating appearance features (SIFT) and shape features
(49 landmarks). For evaluating the discovered results, we
computed the recurrence quality using the action unit (AU)
labels provided in the dataset. In particular, we used AUs
(10,12,14,15,17,23,24) that appear most frequently.

As the minimal length ℓ is an empirical parameter to
determine, we examined USD with ℓ ∈ {30, 60, 120},
resulting in synchronies that last at least 1, 2 and 4 sec-
onds; we set the synchrony offset T = 30 (1 second).
Similar to Sec. 5.2, baseline SW was performed using step
sizes 5 and 10. Symmetrized KL divergence was used
as the distance function. We evaluated the distance and
quality among the optimal window discovered, as well as
the average and standard deviation among all windows to
tell a discovery by chance. Fig. 6 shows the averaged KL
divergence and quality among top 10 discovered dyadic and
triadic synchronies. As can be seen, USD always guaran-
tees the lowest divergence because of its nature to find the
exact optimum. The recurrence quality decreases while ℓ
grows, showing that finding a synchrony with longer period
while maintaining good quality is harder than finding one
with shorter period. Note that, although the discover quality
is not guaranteed in an unsupervised discovery, USD con-
sistently maintained the best discovery quality across var-
ious lengths. This result illustrates the power of our unsu-
pervised method that agrees with that of supervised labels.

5.4. Synchrony in parent-infant interaction

Parent-infant interaction is critical for children in early
development and social connections. This section attempts
to characterize their affective engagement by exploring the
moments where the behavior of both the parent and the
infant are correlated. We performed this experiment on the
mother-infant interaction dataset [28]. Participants were 6
ethnically diverse 6-month-old infants and their parents (5
mothers, 1 father). Infants were positioned in an infant-
seat facing their parent who was seated in front of them.
We used 3 minutes of normal interaction where the parent
plays with the infant as they might do at home. Because
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this dataset does not provide ground truth annotations, we
only evaluate the results quantitatively. Similar to Sec. 5.3,
we tracked and extracted features on each face. Because
the appearance of parents and infants are quite different, we
used only the shape feature in this experiment. Throughout
this experiment, we set ℓ = 80 and T = 40.

Fig. 8 illustrates three discovered synchronies among all
6 parent-infant pairs. As can be seen, many synchronies
were discovered as the moments when both infants and par-
ents exhibit strong smiles, serving as a building block of
early interaction [28]. Besides smiles, a few synchronies
showed strong engagement in their mutual attention, such
as the second synchrony of group 1⃝ where the infant cried
after the mother showed a sad face, and the second syn-
chrony of the second group where the mother stuck her
tongue out after the infant did so. These interactive pat-
terns offered another solid evidence of a positive association
between infants and their parents.

6. Conclusion

We presented unsupervised synchrony discovery (USD),
a relatively unexplored problem that discovers synchrony
in human interaction. We formulated USD as a searching
problem in time series, and proposed an efficient B&B algo-
rithm, optimized to find the global solution with potentially
fewer evaluations than exhaustive search. In addition, we
extended our approach to multi-synchrony detection, and
two accelerated search—a warm-start strategy and paral-
lelism. Our method can be naturally generalized to discover
synchrony among more than two sequences. Our results
in discovering synchronies of human actions and interac-
tion illustrate the power of USD that agrees with supervised
labels. Moving forward, we plan to extend USD to discover
causal-effect synchronies (e.g., question-asking and hand-
raising in teacher-student interaction).
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