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Chapter 1
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Over the last century Component Analysis (CA) methods such as Principal Component
Analysis (PCA), Linear Discriminant Analysis (LDA), Canonical Correlation Analysis
(CCA), k-means and Spectral Clustering (SC) have been extensively used as a feature
extraction step for modeling, classification, visualization and clustering. CA techniques
are appealing because many can be formulated as eigen-problems, offering great potential
for learning linear and non-linear representations of data without local minima. However,
the eigen-formulation often conceals important analytic and computational drawbacks of
CA techniques, such as solving generalized eigen-problems with rank deficient matrices,
lacking intuitive interpretation of normalization factors, and understanding relationships
between CA methods.

This chapter proposes a unified framework to formulate many CA methods as a least-
squares estimation problem. We show how PCA, LDA, CCA, k-means, spectral graph
methods and kernel extensions correspond to a particular instance of a least squares
weighted kernel reduced rank regression (LS-KRRR). The least-squares formulation al-
lows better understanding of normalization factors, provides a clean framework to under-
stand the communalities and differences between many CA methods, yields efficient opti-
mization algorithms for many CA algorithms, suggest easy derivation for on-line learning
methods, and provides an easier generalization of CA techniques. In particular, we derive
the matrix expressions for weighted generalizations of PCA, LDA, SC and CCA (including
kernel extensions).

1.1. Introduction

Over the last century, Component Analysis (CA) methods1 such as Kernel Principal Com-
ponent Analysis (KPCA),2 Linear Discriminant Analysis (LDA),3 Canonical Correlation
Analysis,4 and Spectral Clustering (SC)5 have been extensively used as a feature extrac-
tion step in modeling, clustering, classification and visualization problems. The aim of
CA techniques is to decompose a signal into relevant components that are optimal for a
given task (e.g. classification, visualization). These components, explicitly or implicitly
(e.g. kernel methods), define the representation of the signal. CA techniques are appealing
for two main reasons. Firstly, CA models typically have a small number of parameters,
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and therefore can be estimated using relatively few samples. CA techniques are especially
useful to handle high-dimensional data due to the curse-of-dimensionality, that usually re-
quires a large number of samples to build accurate models. Secondly, many CA techniques
can be formulated as eigen-problems, offering great potential for efficient learning of linear
and non-linear models without local minima. The use of eigen-solvers to address statistical
problems dates back to the 1930s, and since then many numerically stable and efficient
packages have been developed to solve eigen-problems. For these reasons, during the last
century many computer vision, computer graphics, signal processing, and statistical prob-
lems were posed as problems of learning a low dimensional CA model.

Although CA methods have been widely used in many scientific disciplines, there is
still a need for a better mathematical framework than the eigen-formulation to analyze
and extend CA techniques. The least-squares unified framework proposed in this chapter
provides a tool for analyzing, generalizing, and developing efficient algorithms to solve
many CA methods. This chapter shows how Kernel PCA, Kernel LDA, Kernel CCA, k-
means, and Normalized Cuts correspond to a particular instance of a least-squares weighted
kernel reduced rank regression (LS-WKRRR) problem. This framework should provide
researchers with a thorough understanding of a large number of existing CA techniques,
and it may serve as a tool for dealing with novel least-squares (LS) problems as they arise.
Preliminary versions of this work were published in a technical report.6

This paper recovers the spirit of three previous published papers seeking unified frame-
works. Borga7 showed how PCA, Partial Least Squares (PLS), Canonical Correlation Anal-
ysis (CCA) and Multiple Linear Regression (MLR) can be formulated as a generalized
eigen-value problems (GEPs). He proposed a gradient-descent algorithm on the Rayleigh
quotient to efficiently solve the GEP. Roweis and Ghahramani8 showed how a Linear Dy-
namical System (LDS) is the generative model for Hidden Markov Models, Kalman Fil-
ter, vector quantization, Factor Analysis, and mixture of Gaussians. By introducing non-
linearities in the model,8 showed how Independent Component Analysis (ICA) can also
be cast as an extension of a LDS. Yan et al.9 have recently proposed a unifying view of
PCA, LDA, LPP, Isomap, and LDA using a graph theoretical formulation. Additionally, the
authors propose Marginal Fisher Analysis, a variant of non-parametric LDA.10 This work
differs from previous works in that we unified PCA, CCA, LDA, SC, and kernel general-
izations with a LS-WKRRR. In addition, we propose new weighted extensions for PCA,
CCA, LDA, and SC.

The rest of the chapter is organized as follows: Section 1.2 introduces the notation and
formulates the typical covariance matrices of CA methods using a compact matrix formula-
tion. Section 1.3 introduces the LS-WKRRR problem and derives the coupled generalized
eigenvalue system resulting from solving it. Section 1.4 relates PCA, KPCA and weighted
extensions to the LS-WKRRR. Section 1.5 shows how LDA, KLDA, CCA, KCCA and
weighted extensions are a particular instance of LS-WKRRR. Section 1.6 shows the rela-
tionship between LS-WKRRR, k-means and spectral clustering. Section 1.7 finalizes the
chapter presenting the conclusions.
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1.2. Covariance matrices in component analysis

Many CA methods can be formulated as generalized eigenvalue problems (GEPs). This
section derives a compact matrix expression for most common covariance matrices used to
solve CA methods through GEPs.

Let D ∈ <d×n (see notation a) be a matrix, where each column is a vectorized data
sample from one of c classes. d denotes the number of features and n number of samples.
Some of the most common CA covariance matrices can be conveniently expressed in matrix
form as:11

St =
1

n− 1

n∑
j=1

(dj −m)(dj −m)T =
1

n− 1
DPtDT

Sw =
1

n− 1

c∑
i=1

∑
dj∈Ci

(dj −mi)(dj −mi)T =
1

n− 1
DPwDT

Sb =
1

n− 1

c∑
i=1

ni(mi −m)(mi −m)T =
1

n− 1
DPbDT

where m = 1
nD1n is the mean vector, mi is the mean vector for class i, ni denotes the

number of samples for class i, and Pi are projection matrices (i.e. PT
i = Pi and P2

i = Pi)
with the following expressions:

Pt = In −
1
n

1n1T
n Pw = In −G(GT G)−1GT Pb = G(GT G)−1GT − 1

n
1n1T

n

G ∈ <n×c is an indicator matrix such that
∑

j gij = 1, gij ∈ {0, 1}, and gij is 1 if
di belongs to class j, and 0 otherwise. Sb is the between-class covariance matrix and
represents the average distance between the means of the classes. Sw is the within-class
covariance matrix that contains information about the average compactness of each class.
St is the total covariance matrix. Using the previous matrix expressions, it is straightfor-
ward to show that St = Sw + Sb. The upper bounds on the ranks of the matrices are
min(c− 1, d),min(n− c, d),min(n− 1, d) for Sb,Sw, and St respectively.

1.3. A Generative Model for Component Analysis

This section introduces the formulation for the Least-Squares weighted kernel reduced rank
regression (LS-WKRRR) problem. In the following sections, we will show how the LS-
WKRRR is the generative model for many CA methods, including kernel PCA, kernel
LDA, kernel CCA, k-means, and normalized cuts.
aBold capital letters denote a matrix D, bold lower-case letters a column vector d. dj represents the jth column
of the matrix D. All non-bold letters denote scalar variables. dj is a column vector that represents the j-th row
of the matrix D. dij denotes the scalar in the row i and column j of the matrix D. 1k ∈ <k×1 is a vector of
ones. Ik ∈ <k×k denotes the identity matrix. ||d||22 denotes the norm of the vector d. tr(A) =

P
i aii is

the trace of the matrix A and |A| denotes the determinant. vec(A) is a linear operator which converts a matrix
A ∈ <m×n into a column vector a ∈ <mn×1. ||A||2F = tr(AT A) = tr(AAT ) designates the Frobenius
norm of a matrix. ◦ denotes the Hadamard or point-wise product, and ⊗ the Kronecker product.
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1.3.1. Least-Squares Weighted Kernel Reduced Rank Regression (LS-WKRRR)

Since its introduction in the early 1950s by Anderson12,13 , the reduced-rank regression
(RRR) model has inspired a wealth of diverse applications in several fields such as sig-
nal processing14,15 (also known as reduced rank Wiener filtering), neural networks16 (also
known as asymmetric PCA), time series analysis12 , and computer vision17 . This section,
extends previous work on RRR by introducing kernels and weights within a least-squares
formulation, and it derives the system of GEPs resulting from solving it.

Given two data sets X ∈ <x×n and D ∈ <d×n, the RRR model12,15,16 finds a linear
mapping, T ∈ <x×d, that minimizes the LS error subject to rank constraints on T. The
RRR model minimizes ||D − TX||2F subject to rank(T) = k. The rank constrain is
typically needed when X is high dimensional and the dimension of the features is larger
than the samples (x > n).

The LS-WKRRR extends previous work on RRR on three aspects: (1) it explicitly
parameterizes T as the outer product of two matrices of rank k, that is T = ABT , where
A ∈ <x×k and B ∈ <d×k, as has previously proposed15–17 ; (2) allows for non-linear
regression. LS-WKRRR maps the input space of D and X to a feature space using kernel
methods. That is, Γ = φ(D) = [ φ(d1) φ(d2) · · · φ(dn) ] ∈ <dd×n represents a
mapping of D. φ denotes a mapping from the d dimensional space to the feature space
(dd dimension). Similarly, Υ = ϕ(X) = [ ϕ(x1) ϕ(x2) · · · ϕ(xn) ] ∈ <dx×n denotes
the mapping for X. φ, ϕ map the data to a (usually) higher dimensional space, where the
data is more likely to behave linearly (if the right mapping is found). (3) The LS-WKRRR
introduces weights for the features Wr ∈ <dd×dd and samples Wc ∈ <n×n.

The LS-WKRRR problem minimizes the following expression:

E0(A,B) = ||Wr(Γ−BAT Υ)Wc||2F (1.1)

with respect to the regression matrices, A ∈ <dx×k and B ∈ <dd×k. Typically A corre-
sponds to the projection matrix (e.g. LDA), and B is a generative matrix for the column
space of Γ. Wr ∈ <dd×dd is a matrix that weights the contributions of features (e.g. PCA)
or classes (e.g. LDA). Similarly, Wc ∈ <n×n weights the importance of each sample. In
the following, we will assume that the weighting matrices are symmetric. The mappings
φ and ϕ do not need to be explicitly computed and only the kernel between two samples
needs to be defined. Kernel methods18,19 make use of the kernel trick to implicitly define
the mapping by means of a kernel function. A given function is a kernel if, and only if, the
value it produces for two vectors corresponds to a dot product in some Hilbert feature space.
This is the well-known Representer Theorem: ”Every positive definite, symmetric function
is a kernel. For every kernel k, there is a function φ(x) : k(d1,d2) = 〈φ(d1),φ(d2)〉.”,
where 〈〉 denotes dot product.

The necessary conditions on A and B for the critical points of eq. (1.1) are:

∂E0

∂B
= W2

rBAT ΥW2
cΥ

T A−W2
rΓW2

cΥ
T A = 0 (1.2)

∂E0

∂A
= ΥW2

cΓ
T W2

rB−ΥW2
cΥ

T ABT W2
rB = 0 (1.3)
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Eq. (1.2) and eq. (1.3) form a set of coupled equations that have solutions in terms of
a GEP in either A or B. Substituting the optimal B = ΓW2

cΥ
T A(AT ΥW2

cΥ
T A)−1

derived from eq. (1.2) into eq. (1.1) leads to the following expression:

E0(A) ∝ tr
(
(AT ΥW2

cΥ
T A)−1(AT ΥW2

cΓ
T W2

rΓW2
cΥ

T A)
)

(1.4)

Similarly, substituting the optimal value of
A = (ΥW2

cΥ
T )−1ΥW2

cΓ
T W2

rB(BT W2
rB)−1 from eq. (1.3) into eq. (1.1) leads to

the following expression:

E0(B) ∝ tr
(
(BT W2

rB)−1(BT W2
rΓW2

cΥ
T (ΥW2

cΥ
T )−1ΥW2

cΓ
T W2

rB)
)

(1.5)

Eq. (1.4) and eq. (1.5) are the fundamental equations of CA methods. In the rest of the
manuscript, we will show how to relate many CA methods to these two equations. Eq. (1.4)
and eq. (1.5) are standard Rayleigh quotients (i.e. J(B) = tr

(
(BT S1B)−1BT S2B)

)
, and

the solution is given by the following GEP, S2B = S1BΛ.10 The solution of eq. (1.4) is
unique up to an invertible transformation R, that is, Eo(AR) = Eo(A). Similarly for eq.
(1.5).

Recasting CA eigenvalue problems as a LS-WKRRR problem (E0), eq (1.1), has a
number of desirable benefits that will be illustrated throughout the chapter:

(1) E0 provides a unifying expression for many CA methods. The commonalities and
differences between the methods, as well as the intrinsic relationship, can be easily
understood from eq. E0.

(2) The Least-Squares (LS) formulation provides an alternative and simple framework to
understand normalization factors in CA methods. For instance, normalization terms in
spectral graph, or weighting factors in PCA/LDA.

(3) The surface of E0, eq (1.1), has a unique local minimum20 , so most of the
optimization-based algorithms will exhibit almost global convergence properties. In
general, optimization theory provides a solid framework for convergence analysis, and
many optimization methods are suitable (section 1.3.2).

(4) Many numerical optimization methods (e.g. gradient descent, alternated least-squares)
can be applied to solve E0. Directly optimizing E0 solves the small sample size
(SSS) problem of standard GEPs when dealing with high dimensional data. Moreover,
optimization-based algorithms are more efficient for large-scale problems, especially
if matrices are sparse. In addition, using the least-squares formulation one can easily
derive extensions for online component analysis methods.

(5) The least-squares formulation allows many straight-forward extensions of CA meth-
ods. It is unclear how to formulate these new extensions using an eigenvalue frame-
work.

1.3.2. Computational Aspects of LS-WKRRR

This section proposes three optimization strategies to optimize the LS-WKRRR problem
E0, eq (1.1).
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1.3.2.1. Subspace Iteration

Standard numerical packages to solve GEP (i.e. S1B = S2BΛ) are not well suited to
solve eq. (1.4) or eq. (1.5) for high-dimensional data, especially when the number of
samples is less than the number of features (small size sample problem). In this case,
methods that use iterative schemes for minimizing the Rayleigh quotient xT S1x

xT S2x
7,21 to ob-

tain the biggest/smallest eigenvalue, rely on deflation procedures in order to obtain several
eigenvectors. Such a deflation process often breaks down numerically (especially when in-
creasing the number of eigenvectors)22 . This section proposes a stable subspace iteration.

Given two covariance matrices, S1 ∈ <d×d and S2 ∈ <d×d, and an initial random
matrix V0 ∈ <d×q, the subspace iteration method22 alternates the following steps:

S1V̂t+1 = S2Vt (1.6)

S = V̂T
t+1S1V̂t+1 T = V̂T

t+1S2V̂t+1 (1.7)

SW = TW∆ (1.8)

Vt+1 = V̂t+1W V̂t+1 = V̂t+1/||V̂t+1||2F
The first step, eq. (1.6), of the subspace iteration algorithm solves a linear system of equa-
tions to find V̂t+1. In the second step, the data is projected onto the estimated subspace, eq.
(1.7). In order to impose the constraints that VT

t+1S1Vt+1 = Λ and VT
t+1S2Vt+1 = Iq,

a normalization is done by solving the following q × q generalized eigenvalue problem,
SW = TW∆, eq. (1.8). It can be shown22 that as t increases, Vt+1 will converge to the
eigenvectors of S1B = S2BΛ and ∆ to the eigenvalues Λ. The convergence is achieved

when |δk+1
i −δk

i |
δk+1

i

< ε ∀i, where δk
i denotes the k-largest generalized eigenvalue. The sub-

space iteration algorithm converges linearly and the convergence rate is proportional to
|δq|
|δq+1| . It is not critical that V0 does not have a projection onto the first q generalized
eigenvectors, because numerical errors will provide such a projection.

The computationally expensive part of the subspace iteration algorithm is to solve
the linear system of equations (especially for high-dimensional data), i.e. eq. (1.6).
To regularize the solution and improve efficiency, we approximate the covariance as
S1 ≈ UΛUT + σ2Id, where U ∈ <d×k. The parameters σ2, U and Λ can be estimated
by minimizing:

E(U,Λ, σ2) = ||S1 −UΛUT − σ2Id||2F . (1.9)

The optimal parameters correspond to: σ2 = tr(S1 − UΛ̂UT )/d − k, Λ = Λ̂ − σ2Id,
where Λ̂ are the eigenvalues of the S1 and U ∈ <d×k the first k eigenvectors.

Once the factorization is done, inverting S1 can be done efficiently using the matrix
inversion lemma23 (UΛUT + σ2Id)−1 = 1

σ2 (Id − 1
σ2 U(Λ−1 + Ik

σ2 )−1UT ).

1.3.2.2. Alternated Least Squares (ALS)

Solving the GEP resulting from the LS-WKRRR with a subspace iteration method or stan-
dard eigen-packages might be computationally intensive if the weighted covariance matri-
ces do not have any special structure (e.g. sparse). For large amounts of high dimensional
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data previous approaches might not be efficient in either space nor time, and Alternated
Least-Squares (ALS) approaches might be more convenient.

ALS approaches alternate between solving for A with B fixed, and solving for B with
A fixed. Each step can be computed in closed form as:

A = (ΥW2
cΥ

T )−1ΥW2
cΓ

T W2
rB(BT W2

rB)−1 (1.10)

B = ΓW2
cΥ

T A(AT ΥW2
cΥ

T A)−1 (1.11)

After a few iterations, ALS strategies have shown slower convergence than gradient
descent strategies.24,25 In the case of kernel methods, the ALS procedure needs to re-
parameterize B, see section 1.4.2 for more details.

1.3.2.3. Gradient descent

For large amounts of high dimensional data, gradient descent approaches can provide a
less computationally demanding alternative24,25 . Eq. (1.2) and eq. (1.3) suggests a simple
gradient descent scheme:

At+1 = At − ηa
∂E0(At)

∂A
Bt+1 = Bt − ηb

∂E0(Bt)
∂B

(1.12)

A major problem with the update of eq. (1.12) is determining the optimal η. η can be
found with a line search strategy,24,26 or as an estimate on upper bound on the diagonal
of the Hessian matrix.25,27 Recently, Buchanan and Fitzgibbon24 showed how a damped
Newton algorithm on the joint pair A,B (i.e. vec([A; B])) is more efficient than alternated
least-squares algorithms to solve for A,B. Moreover, in the case of having missing data,
the joint damped Newton algorithm is able to avoid local minima more often.

Finally, it is important to notice that both the ALS algorithm and the gradient descent
algorithm will effectively solve the SSS problem of many common CA methods. This is
another advantage of using optimization techniques on a LS formulation rather than solving
the resulting eigen-problem. Moreover, the computational cost of the algorithms will be
less than standard eigen-decompositions, O(n3) or O(d3) for A and B, respectively.

1.4. PCA, KPCA, and weighted extensions

This section derives PCA, KPCA and weighted extensions as a particular case of the fun-
damental equation of CA methods (E0), eq. (1.1).

1.4.1. Principal Component Analysis (PCA)

PCA is one of the most popular dimensionality reduction techniques1,16,28,29 . The basic
ideas behind PCA date back to Pearson in 1901,28 and a more general procedure was de-
scribed by Hotelling29 in 1933. PCA finds an orthogonal subspace (B) that best preserves
the covariance (St) of the data D. PCA maximizes:

J1(B) = tr(BT StB) s.t. BT B = Ik (1.13)
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where B ∈ <d×k, being d the number of features, n number of samples, and k the dimen-
sion of the subspace. Typically k 6 min(n, d). The columns of B form an orthonormal
basis that spans the principal subspace of D. PCA can be computed in closed-form by
calculating the leading eigenvectors of the covariance matrix St

1,16 . The PCA projections,
C = BT D(In − 1

n1n1T
n ) ∈ Rk×n, are decorrelated, that is CCT = Λ, where Λ ∈ <k×k

is a diagonal matrix containing the eigenvalues of St.
For large data sets of high dimensional data (d and n are large), minimizing a least-

squares error function30,31 is an efficient procedure (in both space and time) to compute
the principal subspace of D. There exist several least-squares error functions such that the
stationary points are solutions of PCA. Consider the fundamental equation of CA, eq. (1.1),
where Υ = Id,Wr = Id,Wc = In,Γ = D, and D1 = 0 (zero mean data):

E1(B,A) = ||D−BAT ||2F (1.14)

In this case, eq. (1.4) and eq. (1.5) transform to:

E1(A) ∝ tr
(
(AT A)−1(AT DT DA)

)
(1.15)

E1(B) ∝ tr
(
(BT B)−1(BT DDT B)

)
(1.16)

The B that maximizes eq. (1.16) is given by the leading eigenvectors of covariance matrix
(DDT ). Similarly, the optimal A corresponds to the eigenvectors of the Gram matrix
(DT D). Observe that the primal and dual formulation of PCA lead to a clean and direct
connection with the estimates of the regression matrices A and B.

Alternated least-squares (ALS) approaches to solve eq. (1.14), alternate between solv-
ing for A while B is fixed and vice versa20,25,32,33 . In the case of PCA, the ALS equation
(eq. (1.10) and eq. (1.11)) reduce to solve the following systems of linear equations:

DT B = ABT B (1.17)

DA = BAT A (1.18)

This optimization is equivalent to the Expectation Maximization (EM) algorithm in proba-
bilistic PCA (PPCA)31,34 when the noise becomes infinitesimal and equal in all directions.
Once A and B are found, the unique PCA solution (B̂) can be obtained by finding an invert-
ible transformation R ∈ <k×k that jointly diagonalizes B̂T B̂ and ÂT Â, where B̂ = BR
and Â = A(R−1)T . R has to satify the following simultaneous diagonalization:

RT BT BR = I RT (AT A)−1R = Λ−1

where Λ ∈ <k×k is a diagonal matrix containing the eigenvalues of St. R can be computed
by solving the following k × k GEP (AT A)−1R = BT BRΛ−1.

Alternatively, PCA can also be derived from a least-squares optimization problem by
considering E0, eq. (1.1), with the following values30 : Γ = D,Wr = Id,Wc = In,A =
B:

E2(B) = ||D−B(BT D)||2F s.t. BT B = Ik (1.19)
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However, eq. (1.19) is more challenging to optimize because it is quartic in B. Moreover,
this formulation of PCA does not allow to incorporate robustness to intra-sample outliers25

.

1.4.2. Kernel Principal Component Analysis (KPCA)

Similar to PCA, KPCA can be derived from E0, eq. (1.1), by lifting the original data
samples, D, to a feature space, that is, Γ = φ(D). The kernelized version of eq. (1.14)
can be written as:

E3(B,A) = ||Γ−BAT ||2F (1.20)

The optimal A can be obtained from one of the fundamental equations of CA, eq. (1.4):

E3(A) ∝ tr((AT A)−1AT KA) (1.21)

where K = ΓT Γ ∈ <n×n is the standard kernel matrix. Each element kij = k(di,dj) of
K represents the similarity between two samples by means of a kernel function. Observe
that in the case of kernel methods, it is (in general) not possible to directly solve eq. (1.5),
because the covariance in the input space, ΓΓT , can be infinite dimensional.

The computational cost of the eigen-decomposition of K is O(n3) (no sparsity is as-
sumed), where n is the number of samples. For large amounts of data (large n) an ALS or
gradient-descent approach to computing KPCA is computationally more convenient (see
Section 1.3.2.2). To apply the ALS method in the case of KPCA, a re-parameterization of
B is needed. Recall that for KPCA, B can be expressed as a linear combination of the data
in feature space Γ18 ; that is, B = Γα, where α ∈ <n×k . Substituting this expression into
eq. (1.20) results in:

E3(α,A) = ||Γ(In −αAT )||2F (1.22)

Assuming that K is invertible, similarly to the ALS-PCA, we can alternate between com-
puting α and A ∈ <k×n as:

α = AT (AAT )−1 A = (αT Kα)−1αT K (1.23)

The computational cost of each iteration is O(n2k).

1.4.3. Weighted Extensions

In many situations, it is convenient to weight the features and/or samples. For instance,
when modeling faces from images, it is likely that some pixels have more variance than
others (e.g. pixels in the eye regions have more variance than pixels in the cheeks) and they
could be weighted less in the model. It could also be the case that some face images are
outliers, and we would like to reduce their influence in the subspace.

Eq. (1.4) and eq. (1.5) provide a partial solution to the weighting problem. For instance,
consider the weighted PCA case, with a matrix that weights rows (Wr) and a matrix that
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weights columns (Wc) in E0, eq. (1.1). The closed-form solutions for the weighted PCA
is given by the fundamental equations of CA, eq. (1.4) and eq. (1.5):

E0(A) ∝ tr
(
(AT W2

cA)−1(AT W2
cD

T W2
rDW2

cA)
)

(1.24)

E0(B) ∝ tr
(
(BT W2

rB)−1(BT W2
rDW2

cD
T W2

rB)
)

(1.25)

Previous equations have a closed-form solution as a GEP. For A, the GEP is
DT W2

rDW2
cA = AΛa and for the dual problem in B, the GEP is W2

rDW2
cD

T W2
rB

= W2
rBΛb. The Generalized Singular Valued Decomposition (GSVD) provides35,36 an

alternative approach to solve the weighted PCA problem.
It is also possible to find a weighted KPCA solution for features and samples. Weight-

ing the samples (i.e. Wc) directly translates to weighting the kernel matrix KW2
cA =

AΛa. If the weighting is in the feature space (e.g. Mahalanobis in feature space), the
weighting can still be taken into account using the kernel trick.37

In general, for an arbitrary set of weights, the weighted PCA minimizes:

E4(A,B) = ||W ◦ (D−BAT )||2F (1.26)

◦ denotes the Hadamard or pointwise product. Observe that there is no closed-form solu-
tion in terms of GEP for the solution of eq. (1.26)32,36 . Moreover, the problem of data
factorization with arbitrary weights has several local minima depending on the structure of
the weights24,38 . Minimization of E4, eq. (1.26), has been typically used to solve PCA
with missing data24,32,38 or outliers in PCA25,39 or LDA.40 Recently, Aguiar et al.41 have
proposed a closed-form solution to the data factorization problem, when the missing data
has a special structure.

1.5. LDA, KLDA, CCA, KCCA and Weighted extensions

This section relates LDA, KLDA, CCA and KCCA to the LS-WKRRR problem of E0, eq.
(1.1), and derives weighted generalizations.

1.5.1. Linear Discriminant Analysis (LDA)

Let D ∈ <d×n be a matrix, where each column is a vectorized data sample from one of
c classes. d denotes the number of features and n number of samples. G ∈ <n×c is an
indicator matrix such that

∑
j gij = 1, gij ∈ {0, 1}, and gij is 1 if di belongs to class

j, and 0 otherwise. LDA, originally proposed by Fisher3 for the two-class case and later
extended to the multi-class case,10 computes a linear transformation (A ∈ <d×k) of D that
maximizes the Euclidian distance between the means of the classes (Sb) while minimizing
the within-class variance (Sw). Rayleigh-like quotients are among the most popular LDA
optimization criteria10 . For instance, LDA can be obtained by maximizing:

J2(A) = tr((AT S1A)−1AT S2A) (1.27)

where several combinations of S1 and S2 matrices lead to the same LDA solution (e.g.
S1 ∈ {Sw,St,Sw} and S2 ∈ {Sb,Sb,St}). The Rayleigh quotient of eq. (1.27) has a
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closed-form solution in terms of a GEP, S2A = S1AΛa,10 where Λa are the eigenvalues.
In the case of high-dimensional data (e.g. images), the covariance matrices are likely to
be rank-defficient due to lack of training samples, and standard eigen-solutions for LDA
can be ill-conditioned. This is the well-known small sample size (SSS) problem. In re-
cent years, many algorithms have been proposed to deal with the SSS problem, including
PCA+LDA42,43 , regularized LDA44–46 , and many other methods that explore several com-
binations of the Null and Range spaces of the matrices S1 and S2

47 . See48 for a unifying
review of the optimal solution of eq. (1.27) based on the analysis of the four fundamental
spaces of S1 and S2.

LDA has been previously formulated as a regression problem for the two-class case
(Fisher Discriminant),49 and extended to the multi-class case using several approximations
of the covariances44,50 . Recently,51 extended44 by finding the optimal indicator matrix G
that corresponds to LDA. This section provides a simpler proof of the relation between
regression and LDA using a convenient matrix formulation.52 In the following, we will
assume zero mean data (D1 = 0).

Consider E0, eq. (1.1), where Γ = GT , Υ = D, Wr = (GT G)−
1
2 , Wc = In, and

D1 = 0, E0 transforms to:

E5(A,B) = ||(GT G)−
1
2 (GT −BAT D)||2F (1.28)

Considering C = AT D and after eliminating B, eq. (1.28) can be re-written as:

E5(A) = ||(GT G)−
1
2 GT (In −CT (CCT )−1C)||2F ∝ (1.29)

tr((AT DDT︸ ︷︷ ︸
St

A)−1AT DG(GT G)−1GT DT︸ ︷︷ ︸
Sb

A) (1.30)

Eq. (1.30) is one of the standard Rayleigh quotients for LDA. Eq. (1.30) can also be
derived from one of the fundamental equations of CA, eq. (1.4). Recall that LDA is a
supervised learning problem and the binary indicator matrix G ∈ <c×n is given. LDA
can be understood as using RRR from the data samples (D) to the labels (G), weighted by
GT G to compensate for unequal number of samples in each class. Observe, that directly
optimizing eq. (1.30) (e.g. gradient descent) with respect to A and B in eq. 1.28 avoids the
small sample size (SSS) problem and can be a numerically convenient algorithm for large
amounts of high dimensional data.

1.5.2. Kernel Linear Discriminant Analysis (KLDA)

Kernel Linear Discriminant Analysis (KLDA)53 can also be derived from E0, eq. (1.1).
Consider E0, eq. (1.1), where Γ = GT , Υ = ϕ(D), Wr = (GT G)−

1
2 , Wc = In :

E6(A,B) = ||(GT G)−
1
2 (GT −BAT ϕ(D))||2F (1.31)

In this case, eq. (1.4) translates to the following expression:

E6(A) ∝ tr((AT ΥΥT A)−1AT ΥG(GT G)−1GT ΥT A) (1.32)
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Using the Mercer theorem,18,19 and assuming that the dimension of the feature space is
larger than the number of samples, it can be shown that the solution to the KLDA problem
can be expressed as A = Υα.53 Using this fact, the KLDA can be found as the solution of
the following GEP, KG(GT G)−1GT KT α = K2αΛα, where K = ΥT Υ is the kernel
matrix and α the eigenvectors of the GEP.

1.5.3. Canonical Correlation Analysis (CCA) and Kernel CCA

Canonical correlation analysis (CCA) is a technique to extract common features from a pair
of multivariate data. CCA, first proposed by Hotelling in 1936,4 identifies relationships
between two sets of variables by finding the linear combinations of the variables in the
first set (D ∈ <dd×n) that are most highly correlated with the linear combinations of
the variables in the second set (X ∈ <dx×n). CCA has been used for matching sets of
images in problems such as activity recognition from video,54 robot navigation,55 and pose
estimation.56

Assuming zero mean data (i.e. D1n = 0, X1n = 0), CCA finds a combination of the
original variables (i.e. B̂T D and ÂT X) that maximize:4

J3(Â, B̂) = tr(B̂T SDXÂ) s.t. B̂T SD
t B̂ = ÂT SX

t Â = I (1.33)

where SX
t = 1

n−1XXT ,SD
t = 1

n−1DDT , and SDX = 1
n−1DXT . The pair of canonical

variates (b̂T
i D, âT

i X) is uncorrelated with other canonical variates of lower order. Each
successive canonical variate pair achieves the maximum relationship orthogonal to the pre-
ceding pair. Observe that canonical correlations are invariant with respect to a full-rank
affine transformation of X and D. Eq. (1.33) has a closed-form solution as two symmetric
GEPs:4,57

(SX
t )−1SXD(SD

t )−1SDXÂ = ÂΛâ (1.34)

(SD
t )−1SDX(SX

t )−1SXDB̂ = B̂Λb̂ (1.35)

The number of solutions (canonical variates) is given by min (dx, dd).
Borga7 proposed a unified eigen-framework for PCA, CCA, and Partial Least-Squares

(PLS).7 showed that the canonical factors can be obtained as the critical points of the fol-
lowing Rayleigh quotient:7

J4(U) = tr
(
(UT

(
0 SXD

SDX 0

)
U)−1(UT

(
SX

t 0
0 SD

t

)
U)

)
s.t. U =

[
A
B

]
(1.36)

Previous eigen-formulation of CCA, eq. (1.34), eq. (1.35) and eq. (1.36), is appeal-
ing from an analytical viewpoint; however, solving the eigen-system is not a numerically
convenient method for large amount of high-dimensional data.7 Alternatively, Â and B̂
can be obtained by performing gradient descent on eq. (1.36),7 or performing SVD on
(SD

t )−
1
2 SDX(SX

t )−
1
2 57,58 .

In general, it is not clear how E0, eq. (1.1), can recover the canonical variates, because
CCA treats both data sets D and X symmetrically, whereas LS-WKRRR only normalizes
for X. At this point, it is worth observing that if X = G (the indicator matrix), the CCA
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solution of eq. (1.35) is equivalent to the LDA solution, eq. (1.27). Using our matrix
notation, it is straightforward to show that, in this case, eq. (1.35) in CCA reduces to
SD

w B = SD
t BΛ (assuming zero mean data). Using this fact, we can interpret LDA as CCA.

LDA finds the optimal linear subspace that makes D best correlated with the label matrix
G. Similar reasoning can be done for the case of Kernel CCA. Using this observation, it is
simple to relate CCA to the fundamental equation of CA, eq (1.1). In order to treat all the
variables symmetrically, we introduce weights in the predicted variable (D) (as LDA), and
show that the CCA solution can be recovered using the fundamental equation of CA, E0.
Consider E0, eq. (1.1), where Γ = D, Υ = X, Wr = (DDT )−

1
2 , and Wc = In.

E7(A,B) = ||(DT D)−
1
2 (D−BAT X)||2F (1.37)

After substituting these values into one of the fundamental equations of CA, eq. (1.4),
results in:

E7(A) ∝ tr((AT SX
t A)−1AT SXD(SD

t )−1SDXA) (1.38)

which corresponds to the GEP for CCA, eq. (1.34). Similarly, eq. (1.5) derives in:

E7 ∝ tr((BT (DDT )−1B)−1BT (DDT )−1XDT (DDT )−1DXT (DDT )−1B)(1.39)

After a change of variable, U = B(DDT )−1, eq. (1.39) can be re-written as:

E7(U) ∝ tr((UT (SD
t )U)−1UT SDX(SX

t )−1SXDU) (1.40)

which is the same solution provided by CCA, eq. (1.35).
There exist other least-squares formulations of CCA that are worth mentioning. To treat

all the variables symmetrically, a LS function can be obtained by minimizing:

E8(B,A) = ||BT D−AT X||2F s.t. BT SD
t B = Id AT SX

t A = Id (1.41)

Assuming SD
t = DDT is invertible, after optimizing w.r.t. the optimal A =

SD
t
−1DXT B, eq. (1.41) transforms to:

E8(B) = tr(BSD
t B)− tr(BT SDXSX

t

−1
SXDB) s.t. BT DDT B = Id (1.42)

Changing U = SD
1
2 B, and using the cyclic permutation property of traces, it can be shown

that the eigen-problem corresponds with the CCA solution, eq. (1.35), that is:

E8(U) = −tr(UT SD
t

− 1
2 SXDSX

t

−1
SDXSD

t

−1−
1
2
U) s.t. UT U = Id (1.43)

It is interesting to point out that CCA can also be recovered using an unweighted re-
gression. Yohai and Garcia59 and Tso60 have shown that the canonical variates minimize:

E9(B,A) = |D−BAT X| s.t. AT XXT A = Id

where |.| denotes determinant. This is equivalent to minimizing eq, (1.1) if Γ = D, Υ =
X, Wr = I, Wc = I using the determinant instead of the trace as the loss function.
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1.5.4. Weighted extensions

Similarly to PCA and KPCA, for LDA and KLDA there are possible weighted extensions,
consider eq. (1.4) and eq. (1.5) when Γ = GT and Wr = (GT G)−

1
2 :

E0(A) ∝ tr
(
(AT ΥW2

cΥ
T A)−1(AT ΥW2

cG(GT G)−1GT W2
cΥ

T A)
)

E0(B) ∝ tr
(
(BT (GT G)−1B)−1(BT (GT G)−1GT W2

cΥ
T (ΥW2

cΥ
T )−1ΥW2

cG(GT G)−1B
)

Previous equations extend work on weighted LDA approaches by allowing to weight
the samples rather than the classes.61 Similar expressions can be derived for weighted CCA
and KCCA, exchanging GT for X, and we omit them in the interest of space.

1.6. K-means and spectral clustering

This section relates the LS-WKRRR to k-means, spectral clustering and proposes a new
clustering method, Discriminative Cluster Analysis (DCA).

1.6.1. k-means

k-means62,63 is one of the most popular unsupervised learning algorithms to solve the clus-
tering problem. k-means clustering splits a set of n objects into c groups by minimizing
the within-cluster variation. That is, k-means clustering finds the partition of the data that
is a local optimum of the following energy function:52,64–66

J5(b1, ...,bc) =
c∑

i=1

∑
j∈Ci

||dj − bi||22 (1.44)

where dj is a vector representing the jth data point, and bi is the geometric centroid of the
data points for class i. Eq. (1.44) can be rewritten in matrix form52 as:

E10(B,A) = ||D−BAT ||2F = tr(Sw) s.t. A1c = 1n and aij ∈ {0, 1}(1.45)

where A ∈ <n×c is the indicator matrix and B ∈ <d×c is the matrix of centroids. Recall
that the equivalence between the k-means error function eq. (1.44) and eq. (1.45) is only
valid if A strictly satisfies the constraints. Observe that eq. (1.45) can be derived from the
fundamental equation of CA, E0, eq. (1.1), where Υ = Id,Wr = Id,Wc = In,Γ = D.

The k-means algorithm performs coordinate descent in E10(B,A). Given the actual
value of the centroids, B, the first step finds for each data point dj , the aj such that one of
the columns is one and the rest 0, while minimizing eq. (1.45). Recall that aj refers to a
column vector with the jth row of A. The second step optimizes over B = DA(AT A)−1,
which is equivalent to computing the mean of each cluster.

Eliminating B, eq. (1.45) can be rewritten as:

E10(A) = ||D−DA(AT A)−1AT ||2F =

tr(DT D)− tr((AT A)−1AT DT DA) ≥
∑min(d,n)

i=c+1 λi (1.46)
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where λi are the eigenvalues of DT D. The continuous solution of A lies in the c − 1
subspace spanned by the first c − 1 eigenvectors with largest eigenvalues of DT D.64,65

In this case, the error E10 is equal to the sum of the residual eigenvalues, i.e. E10 =∑min(d,n)
i=c+1 λi. Observe that tr((AT A)−1AT DT DA) is a Rayleigh quotient optimization

problem with a closed-form eigenvalue solution. This is the spectral relaxation of the k-
means algorithm.

1.6.2. Normalized Cuts

Recently, spectral graph methods for clustering have arisen as a solid approach to data
clustering, and have grown in popularity.65–69 Spectral clustering arises from concepts in
spectral graph theory, where the connection between graphs and matrices provides powerful
tools to tackle graph theoretical and linear algebra problems.

Spectral clustering, similarly to Laplacian Eigenmaps, constructs a weighted graph,
M(W, Q), with n nodes Q = [q1, ..., qn], where node i represents a sample di, and each
weighted edge, wij , measures the similarity between two samples, di and dj . Once the
adjacency or affinity matrix (i.e. W ∈ <n×n) is computed, the clustering problem can
be seen as a graph cut problem,70 where the goal is to find a partition of the graph that
minimizes a particular cost function. A popular cost function is:

cut(M) =
∑

qi∈R,qj∈Q−R

wij (1.47)

where qi denotes the i node of the Graph M , Q represents all the nodes and R is a subset of
the nodes. Finding the optimal cut is an NP complete problem, and spectral graph methods
use relaxations to find an approximate solution. However, minimization of this objective
function, eq. (1.47), favors partitions containing isolated nodes, and better measures such
as normalized cuts67 or ratio-cuts71 have been proposed. Normalized cuts67 finds a low
dimensional embedding better suited for clustering by computing the eigenvector with the
second smallest eigenvalue of the normalized Laplacian, S−

1
2 LS−

1
2 , where L = S−W ∈

<n×n, and S is a diagonal matrix whose elements are the sum of the rows of W, that
is, sii =

∑
j wij . Ratio-cuts71 computes the second eigenvector of L. See69,72–74 for a

comparison of different spectral clustering algorithms.
Recently,66,75 established the connection between kernel k-means and normalized cuts,

by means of kernel methods. In this section, we follow a simpler derivation of the same
idea with our compact matrix notation, and linked to kernel PCA.52 Consider E0, eq. (1.1),
where Γ = φ(D), Υ = In,Wr = Id, Wc = diag(ΓT Γ1n)−

1
2 , the weighted kernelized

version of k-means, eq. (1.45), is:

E11(B,A) = ||(Γ−BAT )Wc||2F (1.48)

Recall that the weight matrix Wc weights each sample (columns of Γ) differently. In this
case, minimizing eq. (1.48) is equivalent to maximizing eq. (1.4), that is:

E11(A) ∝ tr((AT W2
cA)−1AT W2

cΓ
T ΓW2

cA) (1.49)
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where W = ΓT Γ is the standard affinity matrix in spectral graph methods. After a change
of variable Z = AT Wc, eq. (1.49) can be expressed as:

E11(Z) ∝ tr((ZZT )−1ZWcΓT ΓWcZT ) (1.50)

Eq. (1.50) is the same expression used in Normalized Cuts (Ncuts),67,69 considering Wc =
S−

1
2 and W = ΓT Γ ∈ <n×n, where W is the affinity matrix in Ncuts. Once again, with

a LS view of Ncuts, the connection with kernel-PCA becomes evident, and normalization
factors are easier to interpret. Moreover, the LS formulation is more general since it allows
for different kernels and weights. For instance, the weight matrix could be used to reject
the influence of a pair of data points with unknown similarity (i.e. missing data).

Typically, after the embedding is found, there are several multiway cut algorithms (di-
rectly splitting the samples into c clusters) to cluster in the embedded space72,76 . See77

for a review of rounding methods and more advanced rounding strategies. In related work,
Rahimi and Recht78 showed how Normalized Cuts67 , originally presented as a graph-
theoretic algorithm, can be framed as a regression problem, and also point out the prob-
lems of sensitivity to outliers. Zass and Shashua73 showed the importance of normalization
of the affinity matrix in spectral clustering. Important connections have also been made
between clustering and manifold learning. Recently,79 showed the connection between the
continuous formulation of spectral embedding and Kernel PCA through learning eigen-
functions. Finally, similar relations could be derived for other spectral graph methods such
as Ratio-cuts71 or MinMaxCut80 .

1.7. Conclusions

In this chapter, we have shown that the LS-WKRRR is a generative model for several CA
methods. In particular, we have shown how the fundamental equation of CA E0, eq. (1.1),
relates to PCA, LDA, CCA, k-means, spectral methods, and kernel extensions. We have
derived the coupled symmetric system of eigen-equations to solve E0, and showed several
alternatives to solve the resulting GEP. The LS formulation of CA has several advantages:
(1) provides a clean connection between many CA techniques. It allows understanding the
communalities and differences between several CA methods, as well as the intrinsic rela-
tionships, (2) helps to understand normalization factors in CA methods, (3) suggests new
optimization strategies, (4) yields efficient optimization algorithms to solve CA techniques
that avoid typical problems when the covariance matrices are rank deficient (e.g. small size
sample problem); (5) allows many straight-forward extensions of CA methods (e.g online
learning versions). We have derived weighted extensions for PCA, LDA, CCA, and kernel
extensions. Further work must be done to address the equivalence between methods when
covariance matrices are rank-deficient and not invertible, and to relate other extensions of
CA (e.g. Partial Least-Squares, maximum variance unfoldering) to this framework.
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