
A. Marcus (Ed.): DUXU 2014, Part III, LNCS 8519, pp. 103–114, 2014. 
© Springer International Publishing Switzerland 2014 

SPARK: Personalized Parkinson Disease Interventions 
through Synergy between a Smartphone  

and a Smartwatch 

Vinod Sharma1, Kunal Mankodiya3, Fernando De La Torre4, Ada Zhang4,  
Neal Ryan1, Thanh G.N. Ton5, Rajeev Gandhi3, and Samay Jain2 

1 Dept. of Psychiatry, University of Pittsburgh, Pittsburgh, USA 
2 Dept. of Neurology, University of Pittsburgh, Pittsburgh, USA 

3 Dept. of Electrical & Computer Engineering, Carnegie Mellon University, Pittsburgh, USA 
4 Robotics Institute, Carnegie Mellon University, Pittsburgh, USA 

5 Dept. of Neurology, University of Washington, Seattle, Washington, USA 
vks3@pitt.edu, kunalm@cmu.edu, jains@upmc.edu   

Abstract. Parkinson disease (PD) is a neurodegenerative disorder afflicting 
more than 1 million aging Americans, incurring $23 billion in annual medical 
costs in the U.S. alone. Approximately 90% Parkinson patients undergoing 
treatment have mobility related problems related to medication which prevent 
them doing their activities of daily living. Efficient management of PD requires 
complex medication regimens specifically titrated to individuals’ needs. These 
personalized regimens are difficult to maintain for the patient and difficult to 
prescribe for a physician in the few minutes available during office visits. 
Diverging from current form of laboratory-ridden wearable sensor technologies, 
we have developed SPARK, a framework that leverages a synergistic 
combination of Smartphone and Smartwatch in monitoring multidimensional 
symptoms – such as facial tremors, dysfunctional speech, limb dyskinesia, and 
gait abnormalities. In addition, SPARK allows physicians to conduct effective 
tele-interventions on PD patients when they are in non-clinical settings (e.g., at 
home or work). Initial case series that use SPARK framework show promising 
results of monitoring multidimensional PD symptoms and provide a glimpse of 
its potential use in real-world, personalized PD interventions.   

Keywords: mHealth, Smartphone, Parkinson Disease, Pervasive Healthcare, 
Personalized Health, Telemedicine.   

1 Introduction 

Parkinson disease (PD) is the second most common neurodegenerative disorder, 
affecting 4 million people worldwide with over 9 million PD cases being projected by 
2030 [1]. Incurring $23 billion in annual medical costs in the U.S. alone and with 
projected increases as our population ages, there is an urgent need to improve lives 
and reduce costs for those afflicted with PD [2]. Currently, two major issues- complex 
and medication regimens and incapability of patients for frequent clinic visits hinder 
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making substantial progress in improving treatments for patients with PD. A primary 
challenge of PD treatment is that PD progresses uniquely in each individual. A 
reliable, unobtrusive, quantitative tool for evaluating multidimensional disease 
progression such as dyskinesia, freezing of gait, disability with activities of daily life 
(ADL) in individuals with PD holds a great value both for clinical assessments and 
personalized treatments. We have designed SPARK, a Smartphone/Smartwatch 
system for Parkinson disease. Overarching goals of SPARK are to: 

• Personalize PD management through intelligent sensing elements;  
• Tele-monitor disease progression in PD patients in their day-to-day environments; 
• Collect clinically relevant data to understand ADL affected by PD 

In this paper we present the modular framework of the SPARK that is built on the 
advances in clinical practice, wearable technologies, mobile computing, machine 
learning, and pervasive healthcare. We present the advantages of the SPARK in 
comparison to research by other groups working on similar problems. We present 
three layers of SPARK architecture, enabling personalized patient-centered care for 
PD. We also provide initial results of in-lab pilot studies that used the SPARK 
framework to monitor multidimensional symptoms of control subjects. We conclude 
this paper with a summary of the presented work and a brief discussion on some 
challenges that are present in applicability of the SPARK framework.  

2 Background and Related Work 

2.1 Unified Parkinson Disease Rating Scale (UPDRS) 

Unified Parkinson's Disease Rating Scale (UPDRS) that was originally introduced in 
1987 [3] is now the most commonly used measure of PD progression [4]. Table 1 
provides a complete list of UPDRS tests; with some of them require observations 
made by patients or caregivers while the rest of them need physicians to evaluate 
patients in clinics. The tests involve measurement of symptoms spanning from motors 
functions to activities of daily life to psychiatric health. Due to lack of longitudinal 
information of PD patients when they are in home settings, it makes it challenging for 
physicians to; 1) understand personalized issues of patients that occur on daily basis 
and; 2) make informed decisions on therapeutic or medication interventions.  

2.2 Survey on the Use of Wearable Technology in PD Interventions 

There are several reports of objectively monitoring movements in PD. Approaches 
include wearable accelerometers, gyroscopes, electromyography, doppler ultrasound, 
magnetic motion trackers, digital drawings, pressure-sensitive foot insoles, and 
passive infrared sensors placed in home [6-8].  Accelerometers (often with 
gyroscopes) have monitored motor aspects of PD including walking, freezing of gait, 
balance, falls, bradykinesia, dyskinesia and tremor [6].  
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Table 1. List of tests involved in evaluating PD patients with UPDRS (adopted from [5]) 

Part Domain Item (“Y” – potential use of SPARK)  Observer 
(Location) 

I 
Mentation, behavior and 

mood 

1. Intellectual impairment 
2. Thought disorder 
3. Depression 
4. Motivational/Initiative 

Patient/ 
Caregiver 
(home) 

II 
Activities of Daily Life 

(ADL) 

5. Speech (Y) 
6. Salivation 
7. Swallowing 
8. Handwriting (Y) 
9. Cutting food and handling utensils 

(Y) 
10. Dressing (Y) 
11. Hygiene 
12. Turning in bed (Y) 
13. Falling (Y) 
14. Freezing when walking (Y) 
15. Walking (Y) 
16. Tremor (Y) 
17. Sensory complaints related to PD 

Patient / 
Caregiver 

(home) 

III Motor examination 

18. Speech (Y) 
19. Facial Expression (Y) 
20. Tremor at rest (Y) 
21. Action or postural tremor of hands 

(Y) 
22. Rigidity 
23. Finger taps (Y) 
24. Hand movements (Y) 
25. Rapid altering movement of hands 

(Y) 
26. Leg agility (Y) 
27. Arising from chair (Y) 
28. Posture (Y) 
29. Gait (Y) 
30. Postural stability (Y) 
31. Body bradykinesia & hypokinesia 

(Y) 

Physician / 
Clinician 
(clinic) 

IV Complications of therapy 

A. Diskinesias 
32. Duration of dyskinesia (Y) 
33. Disability associated with dyskinesia 

(Y) 
34. Painful dyskinesia 
35. Presence of early morning dystonia 

(Y) 
B. Clinical fluctuations 

36. Are “OFF” periods predictable? (Y) 
37. Are “OFF” periods unpredictable? 

(Y) 
38. Do “OFF” periods come on 

suddenly? (Y) 
39. What portion of day is the patient 

“OFF”? (Y) 
C. Other complications 

40. Symptoms such as anorexia, nausea, 
or vomiting 

41. Sleep quality (Y) 
42. Symptomatic orthostasis  

Physician / 
Clinician 
(clinic) 
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Of the studies in Table 2, the six highlighted studies achieved ~90% or higher 
accuracy in detecting movements of interest. Four of these studies demonstrate a 
personalized approach in placing sensors on the most affected side instead of placing 
sensors on the same body parts in all patients. The other two studies [9, 10] 
personalized their approach further by incorporating subject-specific characteristics in 
analyses. Keijsers et al. [9] noted that several variables were better at classifying PD 
movements in patients without tremor compared to those with tremor. Moore [10, 11] 
monitored freezing of gait, a phenomenon when gait is halted and the patient’s feet 
are “stuck to the ground.” Using the same threshold for all patients with a Freeze 
Index (derived from spectral analyses), 75% of gait freezes were detected. This 
improved to 89% when the threshold was calibrated for each subject. Together, these 
studies demonstrate that a personalize approach to monitoring movement performs 
better than a “one size fits all” approach. Our research group (Das et al. [11]) has 
designed machine learning approaches which can build the person specific disease 
progression models and reliably (more than 90% accuracy) predict “ON” and “OFF” 
medication state. 

3 SPARK: Smartphone/Smartwatch System in PD 
Interventions  

Currently no wearable technology is at disposal of neurologists and clinicians to 
effortlessly monitor PD progression when patients are in naturalistic settings. 
Physicians demand deployable technologies that offer longitudinal monitoring for PD 
interventions in non-clinical settings:  

1. Passive monitoring: This is the unobtrusive collection of data without any 
interruption of routine behavior of PD patient. Data collection occurs in the 
background of day-to-day activities. For patients, passive monitoring provides a 
way to be monitored without interrupting routine activities or relying on abilities 
that may be impaired (e.g. cognition, mobility) or thinking about “being sick.”  

2. Active Monitoring: Active monitoring requires patients to interact with mobile 
screen for collecting contextual data – such as speech, facial tremors, medication 
intake, mood, pain, and so forth – that are experiential samples of PD progression. 
In contrast to passive monitoring, active monitoring allows patients to be more 
engaged and proactive in managing their health.  

3.1 Smartwatch/Smartphone System 

Recently, mobile health (mHealth) has emerged as a promising field in treating 
patients with advanced mobile phones (Smartphones) since smartphones come with 
inbuilt sensors and computing and communication resources that allow to track 
individual’s course-grain geo-tagged activity unobtrusively.  
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Table 2. Selected studies leveraging wearable accelerometers to monitor PD movements 

Contribution 

group 

Sensor type and 

placement 

Intervention 

Interest 

Setting     

(task) 
Accuracy results 

Bonato [12] 

ACC(8): two on each 
arm; one on each 
thigh; right shin and 
sternum + 8 EMG’s 

“OFF” state, 
“ON” 

state, 

dyskinesias 

Lab 

3 clusters of data 
corresponding to 
“ON”, “OFF” and 
dyskinesias 

Keijsers [13] 
ACC(6): both upper 
arms, both upper legs, 
wrist at most affected 
side, and sternum. 

Dyskinesias Lab    

simulated 

home 

environment 

> 93% accurate in 
whether or not 
dyskinesia present 

Keijsers [9] 
“OFF” state 

“ON” state 

58-97% sensitivity, 
70-97% specificity 
for detecting 
ON/OFF 

Moore [10] 

 Combined 
ACC+gyro(1): worn 
just above ankle 

Stride length Lab/home 

100% agreement 
between Stride 
length and video 
observation 

Moore [11] Freezing of gait Lab 
78% -89% of 

freezes detected 

Bächlin [15] 
ACC (3): above ankle, 
above knee, waist 

Freezing of gait Lab 
73.1% sensitivity 
81.6% specificity 

Patel [16] 

 
ACC (8): 2 per limb 

Selected tasks 
from UPDRS 

Lab 

(UPDRS) 

2.2-3.4% error in 

UPDRS score 

Patel [17] 
Lab 

(UPDRS) 

Within 0.5 points on 
UPDRS scale of 0-
4. 

Zabaleta[18] Combined ACC+gyro( 

6): 3 on each leg 
Freezing of Gait Lab 

51.1-82.7% of 
freezing episodes 
correctly detected 

Weiss[19] ACC (1): on waist Gait Variability Lab & home 
Gait variability was 

larger in PD 

Griffiths[20] 
ACC (1): on wrist of 

most affected side 

Bradykinesia, 
Dyskinesia Lab 

Modest agreement 

with UPDRS 

Tsipouras [7] 
6 sets of ACC+gyro: 
one on each 
limb+waist 

Dyskinesia Lab ~84% Accuracy 

Mera[22] 
ACC+gyro (1): on 

finger 

Bradykinesia & 
tremor 

Home 

(UPDRS)  

Medication response 

detected 

Zwartjes[23] 

Combined ACC+ 
gyro(4): trunk, wrist, 

thigh and foot of most 

affected side 

Tremor, 
bradykinesia, 
hypokinesia 

Lab 
(UPDRS) 

tasks and 

daily tasks 

Overall 98.9% 

accuracy 

Das[11] 
2 PD patients 

ACC (5): wrists, 
ankles, waist 

Subject specific 
motor signs 

Regular daily 
activities >90% accuracy 
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Framework of SPARK for personalized PD interventions 
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1. Facial tremors: UPDRS test no. 19 involves physicians to score facial tremors 
through visual observation. In this part of SPARK technology, we attempt to 
automate this process through smartphone. PD patients are prompted to watch a 
short slideshow on their smartphones. While they watch the slideshow, the front 
camera of the smartphone records their facial video. The recorded face videos are 
then uploaded to the SPARK cloud for further clinical analysis. We have 
developed computer vision algorithms [27] to clinically score facial tremors in the 
recorded videos. 

2. Speech quality:  UPDRS test no. 18 asks PD patients to read a short paragraph and 
hence, physicians can score their speech functions. Similarly, SPARK adopts this 
step by allowing patients to read a paragraph displayed on their smartphone screens 
while the built-in microphone of the smartphone records their voice.  

3. Motor tremors: There are many UPDRS tests that require physicians to score motor 
tremors of PD patients when they pay in-clinic visits. SPARK offers to collect 
patient’s motor data through active or passive monitoring. In order to personalize 
PD monitoring and treatment, SPARK facilitates physicians to place the Pebble 
smartwatch on most affected limbs of their patients.     

4.3 Personalized Interventions  

SPARK will provide recommendations to physicians for medication changes. As 
shown in Figure 3, we will use an individualized conditioned hidden Markov model 
for predicting ON (when movement is good and medication is working) and OFF 
states (when movement is bad and medication is not working). Predicted OFF states 
will be used to recommend medication adjustments.  

 

Fig. 3. Conditioned Hidden Markov Model for predicting ON/OFF states to generate 
recommendations for medication changes and minimizing OFF. Additional factors may be 
added. 

5 Pilot Trials with the SPARK Framework  

We conducted focus group studies on 5 control subjects. The studies were performed 
in laboratory settings to collect the experimental data through the SPARK framework. 
In the studies, we collected multidimensional data of subjects using the 
smartphone/smartwatch framework.  
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Fig. 5. 20 movements captured on accelerometers of the smartphone while a participant 
strapped the smartphone sequentially on wrists and then ankles (one location at a time) during 
mUPDRS trials 

6 Conclusions and Future Work 

We have presented a novel framework for personalizing the management of PD. 
SPARK uses smartphones and smartwatches to track symptom severity in real world 
situations and assess how medications affect symptoms. SPARK provides ways to 
measure speech and facial expressions/features, which are crucial for the 
understanding of PD severity. We are pilot-testing the current framework with the PD 
patients and evaluating the usefulness of this framework for all the stakeholders 
(patients, clinicians, caregivers, and family members).  

While the SPARK framework is encouraging, there are inherent limitations of the 
usefulness of SPARK in PD interventions. Our project is focused solely on the motor 
features of PD and does not incorporate medication side effects or non-motor features 
(e.g., psychiatric disturbances, sleep problems, autonomic dysfunction, cognitive 
issues). We plan to incorporate non-motor features and side effects into personalized 
predictive models in the future. Despite our effort to maximize compatibility, there 
will be PD patients that will not be able to use SPARK due to their inability to adopt 
new technologies such as smartphones. Further, sensor misplacement, patient log 
errors, device malfunction, loss of data, and limitations of algorithms are challenges 
we may encounter.  
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