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ABSTRACT

Estimation of accurate head-related transfer functions (HRTFs) is
crucial to achieve realistic binaural acoustic experiences. HRTFs
depend on source/listener locations and are therefore expensive and
cumbersome to measure; traditional approaches require listener-
dependent measurements of HRTFs at thousands of distinct spatial
directions in an anechoic chamber. In this work, we present a data-
driven approach to learn HRTFs implicitly with a neural network that
achieves state of the art results compared to traditional approaches
but relies on a much simpler data capture that can be performed
in arbitrary, non-anechoic rooms. Despite that simpler and less
acoustically ideal data capture, our deep learning based approach
learns HRTF of high quality. We show in a perceptual study that
the produced binaural audio is ranked on par with traditional DSP
approaches by humans and illustrate that interaural time differences
(ITDs), interaural level differences (ILDs) and spectral clues are
accurately estimated.

Index Terms— binaural synthesis, auralization, head-related
transfer function, deep learning, spatial audio

1. INTRODUCTION

In many immersive multimedia applications, such as virtual real-
ity, gaming, spatial music, etc., the head related transfer functions
(HRTFs) are required to accurately render binaural audio. HRTFs
are functions which parameterize the acoustic transfer from a sound
source to the ears of a listener. More specifically, they characterize
the listener induced changes on the sound field and incorporate cues
for sound localization such as interaural time and level differences
(ITD, ILD) and spectral cues that arise due to the interaction of pin-
nae, head and torso with the sound field [1–3]. When a sound signal
is filtered with a pair of HRTFs, one corresponding to the path from
source to the left ear and the other to the right, and presented through
headphones; it gives the listener the impression that the sound source
is located in the 3D space [4] (see Figure 1a).

HRTFs can be obtained by means of numerical calculations [5,
6]. To date, however, anechoic measurement is still a common and
the most accurate approach, in particular for individual HRTFs of
human subjects. Clean, high-quality HRTFs are traditionally mea-
sured in an anechoic chamber and require listener-specific record-
ings at thousands of spatial positions [7, 8]. While these require-
ments are crucial to enable traditional binaural modeling, data cap-
tures are expensive and require highly specialized equipment and
capture stages. In this work, we propose a data-driven deep learn-
ing approach that circumvents the need for such expensive captures
and proves to generate realistic binaural audio with acoustically less
treated yet easier to capture data. Moreover, the proposed approach
can cope with smoothly changing source/listener positions and does
not require physically inaccurate interpolation techniques that are
commonly used in traditional approaches.

(a) Traditional synthesis system (b) Proposed system

Fig. 1: Binaural synthesis systems. (a) Traditional binaural syn-
thesis system: input mono signal x(t) is filtered by directional fil-
ters hleft(t) and hright(t) to produce the binaural signals yleft(t) and
yright(t), (b) our proposed binaural system using a neural network
(NN): takes the mono signal and the source-listener spatial configu-
ration as inputs and outputs binaural signals. Rs and Rl refers the
source and the listener’s head 3D orientations, respectively.

While the proposed approach is fully data-driven, traditional
methods require to deal explicitly with problems due to limited
spatial directions. These can be alleviated by forming a continuous,
functional representation from sparsely sampled measurements, i.e.,
expressing the HRTFs mathematically as a continuous function of
direction [9]. Methods based on (bi)linear interpolation or cubic
spline interpolation [10] that use neighboring HRTFs measurements
do not provide sufficiently accurate or high quality HRTFs from
sparse measurements, due to the high spatial complexity of the
HRTF, especially at high frequencies [11]. Recently more sophis-
ticated methods based on the analysis and decomposition of the
entire set of measured HRTFs have been suggested for efficient
representation of HRTFs, e.g., using spectral domain [12] and spher-
ical harmonics decomposition [9, 13]. However, these methods are
highly constrained on the number and distribution of measurement
directions. Moreover, they involve an ill-posed matrix inversion
problem that lacks stable solution with respect to data perturbations,
and often require arduous regularization [14].

Departing from the conventional signal processing pipeline,
where the HRTFs are identified using deconvolution or decorrelation
process from anechoic binaural measurement [15] and interpolation
needed during synthesis is performed by using one of the afore-
mentioned methods; this paper explores a new machine learning
approach. Our motivation is based on the fact that machine learning
models can efficiently encode and interpolate data by leveraging
domain-specific appearance of signals, and do not impose implicit
assumptions (e.g., linearity, minimum phase) constraining conven-
tional HRTFs identification and interpolation methods. Thus, we
formulate the problem as a task of estimating masking functions
that transform a mono signal into binaural signals. To solve this
task, we propose a temporal convolutional neural network (TCN),



that depending on the spatial configuration between the source and
the listener, predicts the transformation mask –see Figure 1b and
Figure 2a. We term the masks as implicit HRTFs since they serve
the same purpose as the traditional HRTFs. Application of the mask
to the input signal naturally leads to the generation of binaural audio
output. At training time, we optimize the network to predict binaural
audio such that the HRTFs – for which no ground truth is available
– are learned implicitly.

Note that our approach is the first to address the task of learning
HRTFs implicitly. There has been some initial work [16–20] where
neural networks are used to address mono-to-binaural up-mixing
conditioned on video information. These methods, however, treat
binauralization as an upmixing task, i.e. the input is the mixed bin-
aural signal, and therefore can not model accurate ITDs and ILDs.
By contrast, our model learns to generate binaural sounds depending
on source-listener spatial data. Only recently, a WaveNet-based bin-
aural network has been proposed [21] that outperforms traditional
HRTF-based techniques; however, the model is domain-specific to
speech signals and generally does not provide a solution to estimate
general HRTFs on wide-band signals. Our approach, in contrast,
learns the signal transformation functions by design and is not con-
strained to a specific signal domain like speech, as we illustrate in
the experiments.

2. PROBLEM FORMULATION

Our main goal is to learn the complex transformation that the sound
undergoes as it travels from a position in space and arrives at lis-
tener’s two ears. We formulate it as a binaural synthesis problem
that estimates the transformation of an input mono-source signal
x(t) ∈ RT with T samples in time-domain to binaural signals for
the left and right ears. The transformation is conditioned on the lis-
tener’s head orientation given by a rotation vector Rl and the 3D
position and orientation of the source P s = (x, y, z,Rs) expressed
in listener’s head centered coordinated system – see Figure 1a. We
assume that K number of source/listener’s 3D positions and orien-
tations are available for the duration of x(t), i.e 1 ≤ K ≤ T . The
binaural signals for the left- and right ears are given as:

(ŷleft(t), ŷright(t)) = f(x(t),ω) (1)

where f is a function parameterized by a neural network and ω =
(Rk

l ,P
k
s ,R

k
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K
k=1 are network conditioning inputs, and are referred

to as the direction code. Note that, traditional HRTF representation
ignores the orientation of the source since the sound source is as-
sumed to be an ideal source (i.e. omni-directional or point source).
In this work, we take into account the orientation of the source since
the function f(.), that we are trying to model, is learnt in a super-
vised manner using data collected from real audio sources (e.g., a
human speaker, loudspeaker).

3. PROPOSED MODEL

The block diagram of the proposed neural network model is shown
in Figure 2. The architecture is inspired by traditionally binaural
synthesis with HRTF filtering; that is, direction dependent filters for
the left- and right ears are applied as multiplicative masks onto the
input mono signal in frequency domain to produce the binaural sig-
nals. Our model architecture consists of three processing modules
as shown in Figure 2a: an encoder mapping the input signal into a
learned frequency space, a left-right masking temporal convolutional
network (TCN), and a decoder mapping the transformed signal back
into the wave domain. We describe the details of each module in this
section.

(a) Block diagram of
the proposed network

(b) The Masking TCN
Block

(c) The ResBlock

Fig. 2: An overview of the proposed network architecture.

Encoder. The encoder module in Figure 2a transforms short seg-
ments of the input mono waveform into their corresponding repre-
sentations in an intermediate feature space suitable for binaural syn-
thesis. It also generates a residual connection which facilitates the
reconstruction of binaural signals by the decoder. The encoder is im-
plemented as a one layer 1-D convolutional neural network followed
by a PReLU as a non-linear activation function. We initialized the
kernel weights of the convolutional layer with handcrafted represen-
tation derived from the bases of the discrete Fourier transform. The
weights are further optimized with an end-to-end training paradigm.
The particular initialization scheme we used allows easy signal anal-
ysis and re-synthesis, and helps the model to preserve network ca-
pacity. We found those learned frequency embeddings to yield better
results than a fixed discrete Fourier transform in initial experiments.
The encoder can also be considered as trainable Short-Time Fourier
Transform (STFT) layer [22].

Left-Right Masking TCN. The left-right masking module, shown
in the middle of Figure 2a, consists of a temporal convolutional net-
work (TCN) block [23]. It takes the encoder output H and the direc-
tion code ω as inputs and generate multiplicative masks M for the
left and right channels:

(Mleft,Mright) = TCN(H,ω). (2)

As shown in Figure 2b, the TCN module begins with a linear 1x1
convolutional layer that serves as a bottleneck. This layer deter-
mines the number of channels in the subsequent blocks. Figure 2c
shows the design of residual blocks. The residual block is com-
posed of a 1x1 convolutional layer for channel mixing, followed by
a hyper-convolutional layer with increasing dilation factors, shown
as HyperDilatedConv in Figure 2c. The dilation factors increase ex-
ponentially to ensure a sufficiently large temporal context window to
model the long-range dependencies. The skip-connection and resid-
ual path designs follows [24,25]. The residual path of a block serves
as the input to the next block, and the skip-connection paths for all
blocks are summed up and used as output masks.

Furthermore, a common way to condition a neural network is
to add or concatenate some representations before feeding them into
its input layers. However, we observed in early experiments that nu-
anced source/listener position dependent signals are not well mod-
eled by such standard techniques. To adapt the output masks based
on the geometric relation between source and listener, we use a
hyper-convolution layer similar to what is proposed in [26]. We
condition the weights of the network on the source/listener positions
and orientations. These direction-dependent weights and biases are
obtained from the adaptor network that takes the direction code ω
as an input and outputs the weights and bias which are then used



in the temporal convolutional layers. Hence the generated weights
and biases contain information about the geometric relation between
source and listener.

Decoder. The decoder module transforms the modified (masked)
learned frequency embeddings back to waveform domain with a 1-
D transposed convolution,

ŷc(t) = TransposedConv(H�Mc) c ∈ {left, right}, (3)

where � denotes element-wise multiplication, and Mc is the esti-
mated mask. Our intuition behind masking is that when the masks
are applied to the encoder output, they cause the input mono signal
to undergo the complex transformations that make up the binaural
signals, e.g., geometric configuration dependent amplitude scaling
and phase shifts. We argue that the masks embed ITDs, ILDs and
spectral cues.

Similar to the encoder, we initialize the kernel weights with
Fourier bases and further finetune them together with the other mod-
ules. Note that, the decoder module is shared between the left and
right channels.

4. DATASET AND IMPLEMENTATION
Dataset. Since there is no publicly available binaural audio dataset
with the 6-DoF data as described in Section 2, we have collected a
novel dataset with binaural audio recordings from a KEMAR man-
nequin and 8 human subjects with 6-DoF tracking information to
train, validate, and test the proposed model. With the setup shown
in Figure 3a, we record binaural audio data as subjects listened to a
pink-noise sound playing on a loudspeaker. Subjects sat on a sad-
dle stool in an acoustically treated room and another person with a
small loudspeaker1 walks around the subjects to cover a sufficient
amount of spatial locations. The subjects wore a B&K 4101B binau-
ral microphone in the ears and a headband with reflective markers for
head-pose tracking. Reflective markers were also placed on the loud-
speaker for tracking. The subjects were allowed to rotate and move
their heads during the recording. The signal recorded on a micro-
phone that was attached to the loudspeaker is used as the input mono
signal for model training. We collected a total of 2.6 hours of au-
dio data (20 minutes from each subject). The audio data is recorded
at 48kHz sampling rate and rigid body tracking data is collected at
120fps via motion capture software, Motive. Linear-Time-Codes
(LTC) are used to synchronize the audio recordings with tracked
source/listener positions. Furthermore, with the setup shown in Fig-
ure 3b, we collected additional speech data on KEMAR mannequin
while a person speaks and walks around for system validation pur-
poses. We collected 2 hours of data from 8 people speaking to KE-
MAR. The signal recorded by a lav microphone attached to the side
of the face and pointing towards the person’s mouth is used as the
input mono sound.

Note that this capture setup is much simpler than traditional bin-
aural data captures as neither an anechoic chamber nor a precisely
placed speaker array are required. While traditional models require
almost ideal HRTF measurements for accurate modeling, our pro-
posed network – as many deep learning, data-driven approaches –
can cope with this simpler yet acoustically less ideal data and still
produce realistic binaural audio.

Implementation. We outline the implementation details that dif-
fer from the common implementation and further refer the inter-
ested reader to the code2 for a full account of them. For the en-
coder/decoder modules, we set the kernel size, stride with values 40

1We used MINX MIN 12 speaker for its small size.
2Dataset and code will be publicly available

and 10 respectively. The number of output channels for the encoder
is set to 512. We applied `2-normalization to the filter coefficients
in the encoder and decoder modules before computing the convolu-
tion to avoid the filters learn scaling factor, which is taken care of
by the masking TCN module. Furthermore, we observe that increas-
ing the number of channels, i.e. the number of basis signals, in the
encoder/decoder increases the overcompleteness of the basis signals
and improves the performance. In our experiments, we use a small
number of channels as a trade-off between performance and model
size. The masking TCN module consists of three sequential blocks.
Each block is a stack of eight layers of ResBlock. The first Conv1D
layer reduces the number of channels to 128, and from that we kept
the same number of channels in the subsequent blocks. The kernel
size in the HyperDilatedConv layer is set to 4, and the dilation size is
doubled after each layer. The last Conv1D layer increased the num-
ber of channels to match twice of the encoder output. The adaptor
block is a simple Conv1D layer with a ReLU non-linearity.

(a) Recording setup for training (b) Recording setup for testing

Fig. 3: Dataset recording setups.

Loss Function. To train our model, we minimize the multi-scale
Short-Time Fourier Transform (STFT) loss [27], which has been
commonly used to replace point-wise losses on the raw waveforms.
Let Li define a single STFT complex spectrogram l1 loss with a
given FFT size i. The total loss is then the sum of all the spectral
losses for the left and right channels Ltotal =

∑
i L

(left)
i +

∑
i L

(right)
i .

We use FFT sizes (2048, 1024, 512, 256), and the neighboring
frames in the STFT overlap by 75%.

Training. We train the model using Adam with a batch size of 196.
The initial learning rate is 0.0001 with β1 = 0.9 and β2 = 0.999.
We anneal the learning rate by a factor of two if five epochs have
passed without improvement in the validation set. We train with a
frame size of 8000 audio samples at 48kHz with 50% overlap, 20
samples for direction code.

5. EXPERIMENTS AND DISCUSSIONS

We use our recorded pink-noise binaural dataset for training (2.1
hours of data for training, 0.5 hours for validation). For testing, we
use the speech recordings collected on KEMAR. Moreover, to study
our model performance on non-speech signals, we added generic
sounds such as music, car horn, truck engine, dog barking.

We compare binaural audio synthesized by the proposed model
with the ground-truth binaural recordings (if available), and with a
DSP approach using HRTF measurements from [28]. To analyze our
system, we carry out quantitative and perceptual evaluations. For
the perceptual evaluation, we asked 34 people to listen and rate a
15-seconds long audio clips with a mean opinion score (MOS) from
1 to 5. We consider three aspects: naturalness of the signal, spatial-
ization quality, and similarity of the synthesis binaural audio to the
actual binaural recording. Naturalness aims to measure the amount
of artifacts or distortion that is present in the generated binaural sig-
nals. Spatialization measures how well the path of the virtual sound
source matches the path rendered in the binaural audio. We provide
the participant a video of the sound source path accompanying the



binaural audio. Similarity aims to measure how well the generated
binaural signals resembles the binaural recording during playback.
Three audio clips are presented to participants in the Naturalness
assessment parts (one per system), six audio examples in the spatial-
ization part (two per system), and three recorded/synthesized pairs of
binaural audio for similarity evaluation (one per system). The audio
clips were randomly selected from a pool of 200 audio clips con-
taining speech and generic sounds samples. As objective metrics,
we used the short-time objective intelligibility (STOI) [29] and the
Perceptual evaluation of speech quality (PESQ) [30] metrics. STOI
prvoides a score from 0 to 100 for speech intelligibility; PESQ pro-
vides a voice quality score similar to the mean opinion score given
by a human listener.

In Table 1, we present the quantitative and perceptual evalua-
tion results. Our proposed approach performs comparable to the
traditional DSP model and differences are all within a statistically
insignificant range. Remarkably, our model gets higher scores on
speech signals for spatialization and similarity metrics compared to
the DSP approach. Recall that our model is trained on pink noise
rather than speech signals, so speech spatialization is out-of-domain
data that our deep network still handles well. The performance of our
method is slightly degraded on non-speech signals for naturalness
and spatialization, however, the perceived sound quality and spatial
impression are within a small margin to the DSP baseline. The quan-
titative evaluation (STOI and PESQ) confirms the good performance
of our model. Even if our model applies complex non-linear mod-
ifications, it does not add artifacts that significantly distort the bin-
aural speech signal. The main advantage of our method is that one
can use wide-band signals for training and still accurately synthe-
size binaural audio on other, out-of-domain signals types. Note that
in Table 1, our method proves to spatialize speech particularly well,
compared to other sounds including traffic and music. Also note that
all subjective scores are below a 5 because participants listened to
non-personalized binaural audio on their personal, potentially non-
equalized headphones [31].

Fig. 4: ITDs obtained from the tracking data (free-field propa-
gation) compared to estimates from recorded and synthesized sig-
nals. The synthesized signal exhibits smooth IDTs that align closely
with the analytically computed expected IDTs from the tracked
source/listener positions.

Fig. 5: HRTF magnitude on horizontal plane. Left: measured
in anechoic chamber, Middle: estimated from binaural recordings,
Right: estimated from signals synthesized using our model.

Moreover, as a means to validate the binaural cues learned by
our model, we evaluate how well the ITD and ILD in the synthesized
binaural audio match the recorded binaural audio signals. We use the
binaural recordings from KEMAR collected using the setup shown

Table 1: Percpetual scores and quantitative metrics on binaural syn-
thesis. For all measures, higher is better.

Perceptual Study Quantitative Eval

Naturalness Spatialization Similarity STOI (%) PESQSpeech Other

DSP 4.06± 0.95 3.71± 1.02 4.13± 1.13 2.79± 1.17 99.9 3.1
Ours 3.79± 0.88 3.97± 0.88 3.78± 1.12 3.18± 1.10 98.9 3.6

Recordings 4.19± 1.00 4.32± 0.81 - 4.77± 0.37

in Figure 3 for evaluation. Figure 4 shows the results on ITD estima-
tion from a test sequence. Our model is able to produce smooth ITDs
over time that closely match the recorded signal’s IDTs. Note that
the synthsized binaural signals also have IDTs close to the ones that
are expected as the ideal, analytical solution based on the tracked
source/listener positions. Analyzing the ILDs, we extract the HRTF
from the synthesised binaural audio based on the steps describe in
Section 5.1. Figure 5 shows the extracted HRTFs magnitude spec-
tra. It can be seen that our model is able to attenuate certain fre-
quencies and boost others with a pattern that closely match anechoic
HRTF spectra. Also note that some of the notch are missing in the
estimated HRTF spectra, however this is expected since the binaural
recordings are done in non-anechoic/non-quiet environment.

5.1. HRTF Extraction
HRTFs extraction from a continuously moving sound source is a not
a straightforward process. The steps to get the HRTFs shown in
Figure 5 are described here. Let X(n, f) be the STFT of the input
signal x(t) and Y c(n, f) the STFT of the output signals yc(t), c ∈
{left, right}, with n and f denoting, respectively, the time frame and
frequency band. Let φ(n), θ(n), r(n) indicate the tracking data,
i.e. the azimuth, elevation and range of the source with respect to
the listener at the given frame n. The magnitude of the HRTF is
estimated as:

|Hc
eq(φi, θi, f)| =

Gref (f)√
1
M

∑M
j=1 |Hc(φj , θj , f)|2

|Hc(φi, θi, f)| , (4a)

|Hc(φi, θi, f)| =

√√√√ 1

Ni

∑
ni∈Bi

|Y c(ni, f)|2r(ni)
2

|X(ni, f)|2
, (4b)

Bi = {n : |(φ(n)− φi| < ∆φ, |θ(n)− θi| < ∆θ, (4c)

r(n) > rmin, |X(n, f)|2 > Pmin}

where, given the estimation grid (φi, θi)Mi=1, the direction-dependent
spectral modifications (4b) are estimated by deconvolution process
and temporal averaging over all time frames corresponding to the
given grid direction (4c). Then, these estimates are refined by the
diffuse-field equalization (4a), whose purpose is to remove the influ-
ence of the measurement equipment and the environment. Finally,
Gref (f) is an optional direction-independent equalization filter that
for our results is a diffuse-field average of a reference HRTF.

6. CONCLUSIONS
In this work, we explore the use of neural networks to implicitly
learn continuous transfer functions for binaural synthesis. We pro-
posed a temporal convolutional network that estimates the mono-to-
binaural transformation function and generates binaural audio from
input mono audio based on the source/listener’s 6-DoF information.
We assess the performance of the network in quantitative and per-
ceptual evaluations. We also demonstrate that our network is able
to reproduce the HRTFs, as well as capture ITDs and ILDs binaural
cues. Future extensions of this work include personalized implicit
HRTFs, in particular using a person’s head and pinnae photometric
information as additional conditioning parameter.
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