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ABSTRACT
We propose a new model for simultaneously localizing

different classes in the same media, casting it as an integer
optimization problem. Our model subsumes into a single for-
mulation previous single and multi-class localization meth-
ods, as well as allows us to exploit optimal relaxations to the
linear domain.

We apply our model to the problem of multi-label multiple
instance learning for tagging video collections. Given weakly
labeled training samples, where tags for actions in video and
objects in images are known but not their locations, our aim is
to train classifiers for both detection and localization of said
classes on new data. Experimental results demonstrate our ap-
proach obtains similar performances when compared to fully
supervised methods.

Index Terms— optimization, computer vision, totally
unimodular, time series, permutation matrices

1. INTRODUCTION

Object and action recognition have been both a long dream
and an outstanding challenge for the computer vision commu-
nity since its earliest days. These are of utmost importance
in enabling applications such as autonomous driving, aug-
mented reality, manufacturing and security. Images arising in
these promising scenarios, however, are the main contributors
to its complexity: both background clutter as well as extreme
viewpoint and scale variations lead to significant intra-class
variabilities. Most successful approaches have relied on su-
pervised methods, where the object or action location is pro-
vided in training. In the detection phase, a sliding window
searches for positive score regions, and a non-maxima sup-
pression step avoids overlapping detections. Sliding window
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approaches are designed such that the prohibitive space of
possible boxes is cleverly searched. Existing approaches em-
ploy branch and bound techniques [1], classifier cascades [2]
or global context [3]. With many state-of-the-art techniques
for recognition following this guideline, significative efforts
have been taken to build databases [4] of increasing size to
support the training of such methods. We argue, however,
that relying on a priori localization annotations is not an ideal
paradigm towards generalized object and action recognition:
as we increase the number of possible categories, manual an-
notation becomes cumbersome and time consuming.

It has already been shown that classification and local-
ization tasks can benefit from the information of each other.
Therefore, we lessen the burden on the labeling process by
exploiting weak labels, denoting the presence of a class but
not its particular location. Our method looks for associa-
tions between regions in both images and video to classes
denoting objects or actions. While this topic has been ex-
plored in a mutually exclusive single class setting [5], sev-
eral unaddressed issues surface when performing localization
on multiple classes simultaneously. Zha et al. [6] formu-
late a multi-label multiple instance learning framework but
explicitly enumerate instances as the result of applying a seg-
mentation algorithm in the images. Vezhnevets and Buhmann
[7] instead extend Semantic Texton Learning to a Multitask
Multiple Instance Learning framework that performs pixel-
wise classification, while regularized by the task of learning
geometric context. Similar to previous approaches, we cast
the problem in the Multiple Instance Learning (MIL) frame-
work, but we learn the classifiers and temporal locations al-
together, notwithstanding the massive search space of the lat-
ter. We propose a new model for simultaneously localizing
different classes in the same video instance, casting it as an
integer optimization problem which can be optimally relaxed
to a convex optimization problem. Our model’s advantage is
twofold: first, we subsume into a single formulation previous
single and multi-class localization methods [1, 8, 5, 9] and
uncover problems not studied before; second, this model en-
ables us to leverage the vast optimization literature to provide
off-the-shelf solutions such as LP relaxations or Branch and
Cut algorithms.



2. PREVIOUS WORK

2.1. Efficient Subwindow Search (ESS)

In order to mitigate the complexity of searching the entire
space of bounding boxes in an image to find the one that
maximizes a classifier score, Lampert et al. [1] propose this
search is done via a branch and bound technique. By inspect-
ing the dual of an Support Vector Machine (SVM) classifier,
they note the resulting weight vector is a linear combination
of some training examples. When the feature spaces are his-
tograms to which each pixel or frame contributes toward the
count of a single bin, we are able to calculate the score for
each element in a picture or movie by replacing it with the
respective bin weight. Therefore, we are able to bound the
score of all boxes ranging from a maximum and minimum
window by summing positive scores of the former and sub-
tracting only the negative ones in the latter. With this in mind,
they propose a simple branch and bound search to search the
entire space by continuously splitting the space of maximum
and minimum boxes in half. Using a priority queue, they first
evaluate cases where the upper bound is more promising until
the minimum and maximum boxes coincide in a single box
with optimal score.

2.2. Multiple Instance Learning (MIL)

Popularized in [10], this class of learning problems extends
the typical classification setting to the case where labels are
no longer applied individually, but in multi-sets or “bags”: a
bag is labeled positive if at least one of its instances is positive
and negative if none of its constituents are. Nguyen et al. [5]
cast classification and localization in a SVM MIL formulation
where one seeks the sub-window ϕ(x) of x that maximizes
the margin between a positive d+

i and negative set d−i . The
problem is cast as

minimize 1
2‖w‖

2 + C
∑

i αi,
subject to maxx∈d+

i

{
w>ϕ(x) + b

}
≥ 1− αi,∀i

maxx∈d−
i

{
w>ϕ(x) + b

}
≤ −1 + αi,∀i

αi ≥ 0,
(1)

where we want the maximum scoring instance in a negative
bag d−i to belong to the negative class and the maximum
scoring instance in a positive bag d+

i to be on the positive
class. Minimization of (1) is therefore an iteration between
two steps. First, it fixes the window location and finds classi-
fier parameters w, α. Then, with fixed classifiers, it optimizes
over the bounding boxes space ϕ(·) using ESS [1].

Although the SVM in (1) is easily extendable to a multi-
class approach, this alone is insufficient when multiple classes
co-occur in an image or time series. This Multiple-label MIL
problem has only itself recently been studied. Zhou and
Zhang [11] map it onto either a multiple class MIL or a stan-
dard multi-label problem. The latter and Zhu et al. [6] rely

on an explicit enumeration of the instances, intractable with
our goal of searching the entire space ϕ(·). We argue that
although classes are not mutually exclusive in the bag, at
an instance-level their co-existence should be penalized. As
such, we follow [11] and formulate the multi-label problem
by extending (1) to a one-vs-all multi-class MIL approach,
transferring the multi-label constraints from the classifier to
the localization process.

3. MULTI-LABEL LOCALIZATION FOR VIDEO

While translating (1) into a multi-class problem is adequate
under the assumption that each pixel is occupied by a single
object, it raises the problem of finding the best assignment of
segments to all classes simultaneously. This selection model
should obey several constraints: 1) select at leastNb segments
per labeled class, 2) they should not intersect, 3) segments
may have a minimum size s. We consider the time series
case with N frames and K classes. Let X ∈ RK×N be such
that Xk,n contains the k-th class SVM score in frame n and
B ∈ RN×K a binary matrix whose columns encode frame
attributions to a class. Finding the selection that maximizes
the joint score can be cast as

maximize trace(XB) (2a)

subject to 1>NB ≥ s, (2b)
B1K ≤ 1, (2c)
B ∈ B, (2d)
card(Bk) ≥ Nb, (2e)
B ∈ {0, 1}, (2f)

where minimum size, no intersection and number of bound-
ing boxes constraints are respectively handled in (2b), (2c)
and (2e). We note it is not trivial to codify constraints (2d)
through (2f), so we introduce a change to the integral do-
main X̂k,n =

∑n
i=1Xk,i, where the definition of a bounding

box becomes a subtraction of two points. We can obtain X̂
from X by right multiplying it with an upper triangular ma-
trix of ones G. This allows a natural parameterization of B
using linear constraints, by adding to (2) a constraint impos-
ing causality, i.e., the end of a bounding box comes after its
beginning. Problem (2) becomes finding binary matrices Pe,
Ps ∈ RN×K , whose nonzero indexes in column k respec-
tively denote ends and starts of Nb boxes for class k ∈ K.
We provide a visualization of this change of domain in Fig. 1.



Fig. 1. Visual interpretation of the domain change in (2).

Thus, we rewrite (2) as

maximize trace(XG [Pe | Ps] [I | −I]>) (3a)

subject to 1>NG [Pe | Ps] [I | −I]> ≥ s, (3b)

G [Pe | Ps] [I | −I]> 1K ≤ 1, (3c)

G [Pe | Ps] [I | −I]> ≥ 0, (3d)

1>P ≥ Nb, (3e)
Pe,Ps ∈ {0, 1}. (3f)

In formulating our problem as (3), several benefits arise.
First, we subsume several works in the same formulation as
different combinations of constraints: single class Maximum
Subarray Problem algorithms [1, 8] are the solution for (3d)
and (3e) as an equality withNb = 1; the MaximumC-disjoint
subarray problem [8] generalizes the previous algorithms with
Nb = C; Nguyen et al. [5] assumeK = 1 and use constraints
(3d) and (3e); [9] is the solution for constraints (3d), (3b) (as
well as a maximum size) and by forcing a selection of every
frame to a class as an equality in (3c) (thus requiring a null
class). Additionally, we can use integer programming solvers
to tackle the full blown model, as well as exploit optimal lin-
ear relaxations of some subproblems.

In this paper, we are interested in finding associations be-
tween labels and segments, so we assumeNb is unknown. We
explore an optimal relaxation of (3f) to the linear domain that
requires a Totally Unimodular constraint matrix. Although
(3b) violates this, we note the causality constraint (3d) can
enforce length, if we disallow the first and last s integrals
as valid ends and starts, by deleting their respective columns
from G. The final problem, LP-ESS, becomes

maximize trace(X (G:,s+1:NPe −G:,N−sPs))

subject to (G:,s+1:NPe −G:,N−sPs)1K ≤ 1,

Gs+1:N,s+1:N [Pe | Ps] [IK | −IK ]
> ≥ 0,

0 ≤ Pe,Ps ≤ 1,
(4)

where Ga:b,c:d denotes the subset of G spanning rows and
columns from a to b and c to d and we scaled variables Pe,Ps

to the appropriate dimensions. LP-ESS may provide multiple
segments per class, each with minimum length s. In this for-
mulation, we do not avoid empty solutions for a subset of the
classes. This behavior is beneficial as it increases robustness
to the fact that labels may contain errors. To the best of the
authors knowledge, we are the first to tackle (4) and the full-
blown formulation (3).

Proposition 1 If a matrix A is Totally Unimodular (TUM),
its concatenation with an identity matrix I is also TUM.

Proof Cf. [12], a necessary and sufficient condition is that
for all subsets R containing rows of A and I, an assignment
g(r) = ±1 exists such that all elements of the row weighted
sum x =

∑
r∈R g(r)r ∈ {−1, 0, 1}. Since A is by definition

TUM, we have x̂ =
∑

r∈R\I g(r)r ∈ {−1, 0, 1}. Hence, we
construct the assignment for the rows of I by multiplying by
the symmetric of x̂i, as each row of I only has one positive
element, each in different columns. �

Theorem 2 The constraint matrix of LP-ESS (4) is TUM.

Proof The form of the constraint matrix is obtained by mod-
ifying Pe, Ps in (4) to a vectorized form using Kronecker
products ⊗. We prove this statement for the matrix arising
from s = 0, as all others are a subset of this one: [IK | −IK ]⊗G1:N,s+1:N[

1>K | − 1>K
]
⊗G1:N,1:N

IN×2×K

 (5)

Given Proposition 1, we need only to focus on the first two
blocks. These can also be divided in half column-wise, yield-
ing two symmetrical blocks, of the form ± [IK | − 1K ]

>.
The Kronecker product of two TUM matrices is TUM as
det([IK | − 1K ]

> ⊗G) = (det [IK | − 1K ]
>
)K(detG)N .

Since G is an upper triangular matrix, it follows the consec-
utive ones property and therefore is TUM, therefore we only
need to prove matrix [Ik | − 1K ]

> is TUM, easily achieved
using g(r) = 1 for the vector of ones and Proposition 1. �

4. EXPERIMENTS

In this section, we evaluate the performance of our method
in a multi-label weakly-supervised setting. We use the Weiz-
mann dataset (Fig. 2) that consists in 90 sequences of 9 sub-
jects performing 10 actions. We use as features histograms of
words obtained by extracting an Euclidean Distance Trans-
form in each frame and clustering in 100 words. We com-
pare our LP-ESS approach to using ESS in the presented MIL
framework and to NMSSeg [9], a supervised approach yield-
ing state-of-the-art results on this dataset. To estimate the



Fig. 2. Typical frames from the Weizmann dataset.

information loss caused by not imposing a minimum num-
ber Nb of segments present for the labeled classes, we also
present results obtained when using (3) (NumSeg) for local-
ization. We present average frame accuracy, precision and
recall results in Table 1 for 20 movies built as concatenations
of 10 randomly selected sequences from the dataset. Results
show ESS performs poorly in this setting, expectable as it was
designed to find a single segment per class. Our method is
able to achieve results comparable to state of the art with less
label effort. Also, it’s worth noting that LP-ESS is not far
from the results obtained using the optimal model.

Table 1. 20-test average performance in the Weizmann
dataset.

Accuracy (%)
ESS [1] 16.61± 0.6

LP-ESS (4) 78.38± 8.3
NumSeg (3) 78.69± 8.2
NMSSeg [9] 87.70

5. CONCLUSIONS

We presented a new model for performing simultaneous lo-
calization of various classes in both images and video, with
no intersection constraints, in the form of an integer program.
Experimental results valdate the proposed algorithm as a lo-
calization method for performing weakly supervised learning
of actions. Although we used this method in the context of
visual learning, our theoretical result is potentially applicable
to any situation where multiple classes are to be assigned non-
intersecting slots of specified minimum duration. this is the
case, for instance, of resource allocation in distributed sys-
tems, where programs are assigned computation time accord-
ing to priority scores.
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