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Abstract

Object detection has been a long standing problem in
computer vision, and state-of-the-art approaches rely on
the use of sophisticated features and/or classifiers. How-
ever, these learning-based approaches heavily depend on
the quality and quantity of labeled data, and do not gener-
alize well to extreme poses or textureless objects.

In this work, we explore the use of 3D shape models to
detect objects in videos in an unsupervised manner. We call
this problem Motion from Structure (MfS): given a set of
point trajectories and a 3D model of the object of interest,
find a subset of trajectories that correspond to the 3D model
and estimate its alignment (i.e., compute the motion matrix).
MfS is related to Structure from Motion (SfM) and motion
segmentation problems: unlike SfM, the structure of the ob-
ject is known but the correspondence between the trajecto-
ries and the object is unknown; unlike motion segmentation,
the MfS problem incorporates 3D structure, providing ro-
bustness to tracking mismatches and outliers. Experiments
illustrate how our MfS algorithm outperforms alternative
approaches in both synthetic data and real videos extracted
from YouTube.

1. Introduction
Object detection is one of the most common tasks that

humans perform. We are constantly looking and detecting
people, roads, chairs or automobiles. Yet, much of how we
perceive objects so accurately and with so little apparent ef-
fort remains a mystery. Although much progress has been
done in the last few years, we are still far away from devel-
oping algorithms that can match human performance. Most
previous efforts in the area of object detection have empha-
sized 2D approaches on different types of features and clas-
sifiers. Features have included shape (e.g. contours) and/or
appearance descriptors (e.g., SIFT, deep learning features).
Classifiers have included Support Vector Machines (SVM),

Figure 1. Motion from Structure (MfS) problem: Given a set of
point trajectories (a) and a 3D model of an object (b), find a subset
of trajectories that are aligned with the model. Our approach splits
this combinatorial problem in two parts. First, we reduce potential
candidate matching points by finding trajectories that compose the
convex hull of objects (red squares in (c)). Second, a subset of the
remaining trajectories are aligned with the 3D model (d).

Boosting or Gaussian Processes. While 2D approaches are
fast and have been shown to scale well to a large number
of objects, they typically depend heavily on texture regions,
lack robustness to viewpoints and incorporate video infor-
mation in a heuristic manner. Surprisingly, little attention
has been paid to the problem of 3D object detection, es-
pecially since acquiring 3D models has become more ac-
cessible due to the ubiquity of RGBD cameras and crowd-
sourced repositories such as 3D Warehouse [21, 29].

To address the limitations of 2D approaches for detec-
tion, this paper proposes a new problem that we call Motion
from Structure (MfS). Given a set of point trajectories con-
taining multiple objects and a 3D model of an object (i.e., a
point cloud), MfS finds a subset of trajectories that are well-
aligned (i.e., via motion matrix) with the 3D model. Con-
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sider Fig. 1; Fig. 1a shows the point trajectories and Fig. 1b
plots several 3D views of the object of interest to detect.
The goal of MfS is to solve the alignment between the 3D
model and its trajectories (see Fig. 1d). MfS differs from
2D approaches to object detection in several aspects. First,
MfS provides a natural framework to incorporate geometry
into object detection in video. It computes the motion using
a 3D model, which makes it more robust to strong view-
point changes. Second, the MfS problem is unsupervised
and there is no need for expensive and error-prone label-
ing process. Finally, in contrast to image-based approaches
which rely on similar appearance, MfS allows 3D models to
be aligned to objects with the same shape while having no
similarity in textures.

The main challenge of MfS lies in the lack of discrimina-
tive features (i.e., it is an unsupervised method without any
appearance features) to solve for correspondence between
trajectories and the queried model. Recall that most detec-
tion problems [7, 36] use supervised detectors for parts of
the objects. Since the number of trajectories can be signif-
icantly larger than the number of vertices representing the
object, the problem is NP-hard in general. To alleviate the
combinatorial problem, we proposed a two-step approach to
the MfS problem: (1) Reducing the number of trajectories
by considering only the tracked points in the convex hull of
an object (see red squares in Fig. 1c). This provides a com-
pact representation of objects in the scene. (2) Aligning the
remaining tracks with the 3D model via a guided sampling
approach (see Fig. 1d).

The MfS problem is related to two well-known problems
in computer vision: Structure from Motion (SfM) and mo-
tion segmentation (MSeg). Similar to SfM, the MfS prob-
lem starts from point trajectories, but, unlike SfM, in MfS
a 3D model of the object of interest is given. However, in
the MfS problem the point trajectories that correspond to
the 3D object are unknown. MfS is able to find not only
the subset of trajectories corresponding to the object, but
also its alignment (i.e., the motion matrix). MfS also relates
to the MSeg problem that performs grouping of trajectories
corresponding to the same rigid object. MSeg may seem
to be an intuitive approach to solve the MfS problem: we
could use MSeg methods to group trajectories into objects,
and then fit the 3D model to each set of points, and select the
one with less error. However, each of these steps is prone
to errors by itself, and as we will show in experimental vali-
dation, MSeg-based algorithms may lead to worse solutions
for MfS than our approach. Moreover, in MSeg the number
of clusters needs to be known a priori and they are suscepto-
ble to outliers which are typically present due to background
motion, camera blur, and noise. On the other hand, our ap-
proach does not perform clustering or 3D reconstruction.

2. Related Work
Our work has a direct connection to Structure from Mo-

tion (SfM) and Motion Segmentation (MSeg). In this sec-
tion, we briefly review these two problems and other works
that perform partial matching and pose estimation.

Structure from Motion (SfM) Let W ∈ R2F×n (see
notation1) be a matrix containing n feature tracks of an ob-
ject in F image frames. Tomasi and Kanade [25] showed
that under an orthographic camera model W lies in a four
dimensional subspace, leading to the factorization

W = MS, (1)

where M ∈ R2F×4 is the F -frame motion matrix and
S ∈ R4×n contains 3D homogeneous coordinates of the
vertices. This factorization relates feature tracks in a se-
quence of 2D images to its 3D reconstruction. Since this
factorization was first proposed, it has been extended to
handle different camera models, articulated and non-rigid
objects, outlier handling, missing data, and other feature
types [1, 12, 13, 20, 28].

Motion Segmentation (MSeg) Given a matrix W con-
taining tracks of multiple objects, the goal of MSeg is to
group the tracks of different objects. Since the tracks of
each object lie in a low dimensional subspace [25], sub-
space clustering techniques have been proposed as a so-
lution to MSeg. Previous works in this direction include
the use of shape interaction matrix [4], generalized prin-
cipal component analysis [30], and principal subspace an-
gles [31], with extensions to handle articulated and non-
rigid objects, and also segmentation of dense trajecto-
ries [33]. Recent approaches such as sparse subspace clus-
tering [6] and low rank representation [15] impose sparsity
or low rank priors to recover the affinity matrix in a con-
vex formulation. However, MSeg only clusters tracks into
groups with low dimensional subspaces, and it is not clear
how to incorporate 3D models of objects as additional in-
formation.

Track-based information processing Beyond recon-
struction and MSeg, feature tracks have also been used for
other higher level computer vision tasks, such as foreground
object segmentation [24], action recognition [17], object de-
tection [35], and object recognition [19]. However, most
of the approaches to detection and recognition still require
classifiers to be learned from training data, which have to
be manually labeled and can be laborous to obtain.

Correspondence and pose estimation Instead of using
labeled data, 3D models provide compact representations of

1Bold capital letters denote a matrix X, bold lower-case letters a col-
umn vector x. xi represents the ith column of the matrix X. xij denotes
the scalar in the ith row and jth column of the matrix X. All non-bold
letters represent scalars. 1m×n, 0m×n ∈ Rm×n are matrices of ones
and zeros. In ∈ Rn×n is an identity matrix. diag(X) and tr(X) denotes
the vector of diagonal entries and the trace of matrix X, respectively.



an object’s shapes. To incorporate 3D models for object de-
tection or recognition, pose estimation must be performed
to align the models to the images. In the case of single im-
ages, several works utilize both appearance features (e.g.
SIFT) and 3D shape as input [3, 21, 22, 37]. These ap-
proaches require the correspondence between appearance
features of 3D models and the images to be established prior
to estimating pose. However, without appearance features,
there is much less cue for obtaining the correspondence, and
hence both correspondence and pose must be solved simul-
taneously [5, 18].

In the case of videos, motion can be used to provide in-
formation to solve for pose and correspondence. Toshev
et al. [27] proposed to synthesize different views from 3D
models and match their silhouettes to a moving object seg-
mented from a video. On the other hand, we aim to directly
align 3D point clouds to feature tracks from videos using the
subspace relation as in (1). When the number of tracks is the
same as that of the model vertices, the correspondence can
be obtained by permuting the nullspace of the shape matrix
to match with the track matrix [11, 16]. However, there is no
obvious way to extend these approaches to deal with extra
tracks from videos. To deal with such cases, [34] included
texture features as input and sought the correspondence that
minimizes the nuclear norm of the selected tracks and fea-
tures.

Recently, Zhou and De la Torre [36] proposed a method
to select a subset of trajectories that aligns body configura-
tions with a motion capture data. However, the selection of
trajectories uses supervised information. Our work tackles
MfS by reducing the candidate for matching to the convex
hull of objects. Although the idea of using convex hulls has
been used in image registration [8, 32], their focus was on
registering two sets of 2D point clouds whereas we register
the 3D structure by observing 2D tracks from videos.

Despite the name resemblance, we note that our prob-
lem is different from [14], which proposed a large-scale 3D
reconstruction approach for rolling-shutter cameras, while
our goal is to register 3D models onto 2D tracks.

3. The Motion from Structure Problem
The motion from structure (MfS) problem can be stated

as follows. Given a measurement matrix

W =


x1
1 x1

2 · · · x1
n

x2
1 x2

2 · · · x2
n

...
...

. . .
...

xF
1 xF

2 · · · xF
n

 ∈ R2F×n, (2)

where xf
i ∈ R2 is the 2D coordinate of the ith feature

track in frame f , and a shape matrix S ∈ R4×m contain-
ing m 3D vertices of an object of interest, find the subset
of tracks in W that belongs to the object. MfS is different

from MSeg as it does not require tracks to be clustered into
groups beforehand, but rather finds a partial permutation
matrix P ∈ {0, 1}n×m and a motion matrix M ∈ R2F×4

that aligns a given 3D object to a subset of tracks. Assum-
ing no noise and no missing data, the relationship between
W, P, and S is given by

WP = MS. (3)

Assuming that the motion is scaled orthographic, we can
expand M as:

M =


α1M

1
b1

...
...

αFM
F

bF

 , (4)

where M
f ∈ R2×3, bf ∈ R2, and αf ∈ R are rotation,

translation, and scaling components in frame f .

3.1. Problem Analysis

In this section, we analyze the challenges of the MfS
problem.

Complexity due to large number of tracks: The ob-
jects in general videos typically contain complex texture
resulting in large number of additional tracks (besides the
tracks belonging to the 3D object of interest). Since we only
use the shape of the object, MfS problem is formulated as
a combinatorial problem, with increasing complexity with
the number of trajectories.

Lack of appearance features: The lack of appearance
features (e.g. SIFT) causes each track to be indistinct from
others, and prevents us from obtaining putative matches be-
tween them and the 3D model. This difference sets MfS
apart from general pose estimation problems where distinc-
tive appearance features play a significant role as an ini-
tialization to obtain pose. Without these putative matching,
pose estimation is in general an ill-posed problem as it is
not clear how to obtain the alignment.

Self-occlusion of 3D model: Generally, a 3D object in
a real scene is subject to self-occlusion. This means not all
vertices of S in (3) should be matched to the tracks. Since
spurious matches can easily lead to a bad alignments, how
to handle self-occlusion is an important issue that needs to
be addressed.

Coherent motion trajectories: Although the tracks are
indistinct, coherent motion of tracks from the same ob-
jects allows their tracks to be clustered into groups (e.g. by
MSeg). In addition, they also encode information about the
shape of each object (e.g. as in (1)). These two properties
provide enough structure for us to solve the MfS problem.

4. Solving MfS
In order to tackle MfS, we make two assumptions: (1)

the target objects have independent motion from other ob-



jects in the scene, and (2) the camera model is scaled ortho-
graphic. These assumptions can well approximate typical
scenes and are generally adopted in solving MSeg [6, 15].
However, MfS is different as it does not require all tracks to
be clustered into groups, but rather selecting tracks belong-
ing to a given shape. To this end, we propose a two-step
approach. In the first step, we solve a convex optimization
problem to select a subset of special tracks constituting the
convex hulls of moving objects. We call these tracks Sup-
port Tracks (STs). Since STs constitute convex hull of ob-
jects, they are more likely to be matched to the target shape.
Selecting STs before matching results in the reduction of
both false matches and complexity of the problem. In the
second step, we align the 3D model to STs using a guided
sampling procedure, where the selected STs are more likely
to come from the same object. The following section pro-
vides details on the cost function and the algorithms.

4.1. What is a good alignment?

Defining a good metric for alignment is critical for MfS,
especially since the vertices in the given 3D model may not
exactly match the tracks of the target object. Rather than
solving for both P and M in (3), we say that an alignment
is good when there exists a matrix M such that the convex
hulls2 of back-projection of S and all tracks that undergo
the same motion3 are similar (see Fig. 2):

πf (WM) ∼ πf (MS), (5)

where πf (·) returns the convex hull in frame f of the input
track matrix, and WM is a matrix containing columns of W
that lie in span(M). Specifically, we use the intersection-
over-union (IoU) between πf (WM) and πf (MS) to mea-
sure alignment. This leads to the following optimization
problem:

max
M

F∑
f=1

Area(πf (WM) ∩ πf (MS))

Area(conv(πf (WM) ∪ πf (MS)))
, (6)

subject to M
f
M

f>
= I2, f = 1, . . . , F,

where the relation between M
f

and M is given in (4),
conv(·) returns convex hull of the input set, and Area(·) re-
turns the area of the input convex hull. The cost function in
(6) possesses many desirable properties, namely it (1) uses
motion and shape to measure alignment, (2) is insensitive
to self-occlusion of the 3D model since alignment is mea-
sured based on regions, and (3) takes into account coherent
motion of tracks. Note that P is not included in (6), but it
can be recovered after obtaining M.

2In general, other types of region can be used. However, since we are
given point clouds without any relation between the vertices, convex hull
provides the most detailed description of the region.

3We say a group of tracks undergoes the same motion when there is a
motion matrix M that can well explain them (see (1)).

Bad alignment Good alignment

 πf(MS)

 πf(WM)

 πf(WM) ∩ πf(MS)

 conv(πf(WM) ∪ πf(MS))

Figure 2. Example of good and bad alignments from a frame f .
The yellow dots are coherent tracks. The convex hulls shown are
of WM (yellow), MS (green), their intersection (red), and union
(blue). An alignment is good when the ratio between intersection
and union is high. (Best viewed in color.)

Solving (6) requires estimating motion M, which in-
volves sampling 4 matches between tracks from W and ver-
tices of S. However, the total number of candidate pairs is
in the order of O(n4k4), while the number of correct pairs
can be significantly smaller. In the next section, we propose
an approach to identify special tracks constituting visible
part of objects’ convex hull by using convex optimization.
We refer to these tracks as support tracks (STs). Selecting
STs as candidates for matching helps reduce problem com-
plexity, while also retain useful tracks that are more likely
to match to a given shape.

4.2. Identifying support tracks (STs)

To identify STs in W, we exploit the idea that such
tracks cannot be represented by convex combinations of
tracks of the same object. Inspired by sparse subspace clus-
tering (SSC) [6], we formulate the identification of STs and
non-STs as

min
C,E

tr (C) + µf(E) (7)

subject to E = W −WC,

1>nC = 1n,

C ≥ 0n×n,

where C ∈ Rn×n is the matrix containing coefficients for
representing each track as a convex combination of others,
and E ∈ R2F×n allows for errors. The error function f(·)
can be `1 norm, `2,1 norm, or squared Frobenius norm. The
intuition of (7) is akin to the self-expressiveness property
in [6], which states that each vector in a subspace can be
represented as a linear combination of others in the same
subspace. By using convex combination rather than linear,
STs can be identified as tracks that cannot be represented
by other tracks in the same subspace. Fig. 3 illustrates the
idea behind (7).

There are three subtle but non-trivial differences between
(7) and SSC, in both the tasks they try to accomplish and the
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Figure 3. (Left) Since tracks (yellow circles) of independently
moving objects lie in independent subspaces, any tracks that can-
not be expressed as a convex combination of other tracks are con-
sidered STs (red squares) that constitute the convex hull of objects
(see Fig. 1c). (Right) By solving (7), these STs induce 1’s in the
diagonal of C.

variables involved. First, SSC was proposed to perform sub-
space clustering, where spectral clustering is performed on
C to obtain the clusters. On the contrary, our formulation
focuses on both C and E, which encode the information for
distinguishing STs from non-STs. Second, C is nonnega-
tive and its columns sum to 1, which makes them convex
combination coefficients instead of linear ones. As C is
nonnegative, ‖C‖1 in SSC’s objective function becomes a
constant value n, and thus can removed. Lastly, we penal-
ize tr(C) as opposed to restricting diag(C) = 0n. We show
in Theorem 1 that at the global optimum diag(C) can be
evaluated as a binary vector and provides information on
whether a track is a ST or not.

Theorem 1. Let C∗ and E∗ be the optimal solutions of
(7), and Ê be the optimal solution of variable E of (7) with
diag(C) = 0n as an additional constraint. The relation
between c∗ii, µ, and f(êi) for any i can be stated as follows:

c∗ii ∈


{0} f(êi) < µ−1,

[0, 1] f(êi) = µ−1,

{1} otherwise.
(8)

Proof. It can be seen that (7) can be column-wise sepa-
rated. For each column i, the objective is a tradeoff be-
tween cii and µf(êi). If µf(êi) > 1 then it would cost
less to set c∗ii = 1 with e∗i = 02F . On the other hand,
if µf(êi) < 1 then setting c∗ii = 0 and e∗i = êi would
cost less. Finally, if µf(êi) = 1, then the cost can be
kept constant at 1 by letting c∗ii be any values in [0, 1] while
f(ei) = (1− c∗ii)f(êi).

Corollary 2. For any µ, there exists an optimal solution of
(7) where diag(C∗) is a binary vector.

In Theorem 1, êi is the error of representing wi with
a convex combination of strictly other columns than wi.
We can see that µ acts as a threshold for determining the
value of c∗ii. Specifically, if the error f(êi) is larger than
µ−1, it would cost less to represent wi by itself, resulting in

c∗ii = 1. On the other hand, if the error is smaller than µ−1,
then it costs less for wi to be represented by other columns,
resulting in c∗ii = 0. For our problem, this implies that wi

with c∗ii = 1 is a ST, while wi with c∗ii = 0 is not.
By noting that µ is simply a threshold value, we can

solve (7) for all values of µ in a single optimization run.
This is done by solving (7) with diag(C) = 0n as an addi-
tional constraint to obtain Ê. Since c∗ii = 1 and e∗i = 02F

for all i with f(êi) > µ−1, determining the order of tracks
that gradually become STs as µ increases is equivalent to
sorting f(êi) in a descending order. Thus, instead of setting
the value µ, we can specify the number of desired STs p by
selecting p tracks with highest f(êi).

After obtaining STs, we proceed to estimate motion ma-
trix. To do so, we need to sample 4 STs and match them to
4 vertices from S. Although the number of tracks is reduced
from n to p, the total number of matches can still be very
large. To increase the likelihood of selecting good matches,
it would be beneficial to sample 4 STs that are more likely
to come from the same object instead of uniform sampling.

4.3. Guided Sampling

We propose to sequentially sample STs using random
walk strategy, where the transition probability of sampling
ST i after ST j depends on how likely they are from the
same object. In this work, we measure this value by repre-
senting each non-ST as a convex combination of only STs4,
and counting the number of non-STs that each pair of STs
mutually represent.

To represent all non-STs by only STs, we leverage on
the structure of C∗ obtained from previous section; the con-
straints of (7) enforces C∗ to be a stochastic matrix with p
ones in its diagonal. In essence, C∗ is a transition matrix of
an absorbing Markov chain with p absorbing nodes corre-
sponding to the p STs. From the Markov chain theory [9],
the limiting matrix of C∗:

Ĉ = lim
t→∞

(C∗)t, (9)

can be interpreted as convex coefficients of representing
non-STs by only STs. Let dik = I(ĉi′k > 0) where i′ is
the index of ST i in the original W, and I(·) is the indicator
function which returns 1 if the argument is true and 0 other-
wise. We calculate transition probability of sampling ST j
after ST i using Jaccard similarity:

Pr(i→ j) =

{
1
zi

∑n
k=1 min(dik,djk)∑n
k=1 max(dik,djk)

; i 6= j,

0 ; i = j,
(10)

where zi is a normalization factor. Note that Pr(i → j) is
not equal to Pr(j → i). For the 3D model, 4 vertices are

4By independent motion assumption, STs should represent only non-
STs in the same subspace.



uniformly sampled to match the 4 sampled STs without any
special procedure.

Given 4 matches between tracks and 3D vertices, we first
estimate affine transformation between them, then project
the rotation part of each frame to the Stiefel manifold (see
supplementary material for more detail). The M that maxi-
mizes (6) can be used to recover P in (3) by selecting closest
tracks in W to MS.

The algorithm for MfS is summarized in Alg. (1).

Algorithm 1 Motion from Structure

Input: W,S, λ0, µ, nIter
Output: P,M

Step 1: Identifying STs
1: Compute C and E with (7)
2: Select columns of W indicated by diag(C) = 1 as STs

Step 2: Guided Sampling
3: Compute Ĉ with (9)
4: Compute transition matrix with (10)
5: for i = 1 to nIter do
6: Uniformly sample a ST
7: Use guided sampling to obtain another 3 STs
8: Uniformly sample 4 vertices from S
9: Estimate motion matrix M

10: Keep M if it has highest value in (6)
11: end for
12: Compute P by selecting tracks closest to MS

4.4. Implementation details

This section provides the implementation details for each
step of our algorithm.

Identifying STs: We use `1 norm as the error function
f(·) in (7). The optimization problem is solved using
Gurobi optimizer [10].

Guided sampling: In (9), rather than using eigendecom-
position to compute Ĉ, we perform 1000 rounds of power
iterations on C∗, which results in a similar Ĉ while be-
ing faster than eigendecomposition. To calculate di,k, it
is likely that most ĉi′k will not be zero. Instead, we set
the threshold in I(·) to 2/p, where p is the number of STs.
During the sampling, we perform two steps of random walk
before selecting a ST, and allow the walker to restart at any
sampled STs with equal probability [26]. We prevent the
sampled STs from being resampled by setting Pr(i→ j) to
0 for all sampled STs j.

5. Experiments
We evaluated our algorithm on synthetic data and real

videos downloaded from YouTube. Recall that MfS is a

new problem, and there is no existing baseline algorithm.
Hence, we constructed two baselines to compare our algo-
rithm against. (a) All-R: This baseline approach directly
samples 4 tracks and 3D vertices uniformly to form the
matches required for estimating M. (b) ST-R: For this ap-
proach, we use (7) to first identify STs, then uniformly sam-
ple 4 track-vertex pairs. We refer to our ST selection and
guided sampling as STGS-R.

5.1. Synthetic data

In this section, we used synthetic data to quantitatively
evaluate the performance of our approach (see Fig. 4a).
We generated a set of 15-frame tracks with three moving
shapes: a cube (8 corners), a double pyramid (6 corners),
and a cuboid (8 corners). A number of internal vertices
(IVs) were generated randomly inside each shape to imi-
tate non-STs. For each shape, we generated a motion ma-
trix Mgt comprising rotation, translation, and scaling. 200
additional tracks are generated as background tracks. We
added a single random translation to all tracks to simu-
late camera motion, and perturbed each track with Gaus-
sian noise. To model outliers, we set the background tracks
to follow the first shape that comes close to them. This
is to imitate real scenarios when parts of background got
occluded by moving objects, causing background tracks to
follow foreground objects instead.

We evaluated our algorithm in two situations. First,
we tested the robustness of our MfS against the density
of tracks for each object with varying IVs for each object
from 20 to 100 (corners inclusive). Second, we randomly
removed tracks belonging to the corner of each shape with
probability from 0 to 100 percent to imitate the situations
where corner vertices may not be tracked. In the second
case, we set the number of IVs to 100. The simulation was
repeated 100 rounds for each setting. In all experiments,
we selected 10% and 20% of tracks as STs for ST-R and
STGS-R and sampled track-vectex pairs 5 × 104 time on
each set of STs, while we sampled 1× 105 times for All-R.
The sample that yielded the highest cost in (6) was returned
as the result of each algorithm.

We used three metrics to measure performance. The first
metric is IoU between the projections due to M and Mgt,
defined as:

IoU =

F∑
f=1

Area(πf (MgtS) ∩ πf (MS))

Area(conv(πf (MgtS) ∪ πf (MS)))
. (11)

The second metric is segmentation precision, defined as the
number of correctly selected tracks against the total num-
ber of selected tracks (i.e. number of rows of WM). The
last metric is segmentation recall, defined as the number of
correctly selected tracks against the number of tracks of the
correct objects.
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Figure 4. Synthetic experiment. (a) A synthetic scene comprising tracks from a cube (red), a double pyramid (blue), a cuboid (green) and
background (gray). Outlier tracks are shown in dark gray. The performance was measured by varying (b) number of internal vertices, and
(c) probability of having each corner track removed.

Fig. 4 shows the result of the synthetic experiment. The
performance of All-R is very low, implying that randomly
selecting matches is not a good approach to MfS. This is due
to the challenging nature of the MfS that the ratio of good
matches against all matches is very low. Improvements due
to ST selection and guided sampling can be seen by the per-
formance gaps between the three algorithms. STGS-R per-
forms very well regardless of the number of IVs. On the
other hand, since the shapes are similar, removing corners
caused the performance to drop. In real cases, we would
expect at least 50% of corners to be present, in which the
performance is still in the acceptable range.

5.2. Real videos

In this section, we provide qualitative evaluation of our
approach using videos collected by us and videos down-
loaded from YouTube (see Fig. 5). The videos are 10 to
97 frames long, and are extremely challenging since they
contain multiple moving objects, camera motion, zoom
changes, and perspective effects. These geometric changes
cause the scenes to be very dynamic and difficult to track
features over long periods of time. We detected the fea-
ture points using Shi-Tomasi feature detector [23] and used
Lucas-Kanade tracker [2] to track, resulting in 490 to 1014
tracks for each video (see Col. 3, Fig. 5). Note that there
are multiple outlier tracks caused by features correspond-
ing to the occlusion boundary. We downloaded 3D mod-
els that approximate target objects from [29], and gener-
ated the shape matrix by manually selecting 8 to 18 vertices
that represent well the convex hull of each 3D model (see
Col. 2, Fig. 5). For the algorithm settings, we selected 10%
of tracks as STs, and sampled 1× 106 track-vertex pairs for

all algorithms.
Col. 4 and 5 of Fig. 5, respectively, show the selected

STs and alignment results for the real videos experiment.
We encourage the readers to see the results in the supple-
mentary material to appreciate the difficulty of the data. As
can be seen in Col. 4 of Fig. 5, our ST selection can reliably
select tracks on the convex hull of objects, which signifi-
cantly reduced the complexity of the problem. This strategy
combined with guided sampling and the appropriate cost
function in (6) effectively allows to solve for the correspon-
dence between the 3D models and trajectories. With only a
few vertices representing convex hulls of objects, our MfS
algorithm can correctly find an alignment under self occlu-
sion without knowing which vertices are occluded. It also
can handle different camera motion effects, and imprecise
3D models (Fig. 5, different models of harrier (row 2) and
cars (row 5)). Due to space restriction, we include in the
supplementary document additional results with compari-
son to baselines, and several examples where MSeg-based
approaches cannot solve this problem. It is important to re-
mind the reader that MfS is a different problem from MSeg,
but we use MSeg as baseline since the problems are related.

While the method has worked well in most of the se-
quences that we have tried, the last row of Fig. 5 shows a
failure case of our algorithm. In this case, the camera was
panning from left to right, allowing only a portion of the
background to be fully tracked. Rather than aligning to one
of the cars, the 3D model is aligned to the background tracks
because they coincidentally form a rectangular shape sim-
ilar to the top view of the car’s 3D model. In such cases,
only tracks may not provide enough information to obtain
the correct result. Additional information, such as expected



First frame Tracks3D model Alignment resultSTs

Figure 5. Results from a real video experiment. Column 1: First frame of the videos. Column 2: 3D models with the vertices represented
by S shown in dark green dots. Column 3: Tracks are shown with yellow lines. Recall that we only use tracks and 3D models as input, not
the images. Column 4: Selected STs. Column 5: Results of alignment by backprojecting 3D models to the video. The STs in this frame
are shown in red points. We reduce the image intensity of columns 3 to 5 for visualization purpose. (Best viewed in color.)

orientation (e.g. wheels should point down), can be incor-
porated to reject wrong solutions during estimation of M.

6. Conclusions
This paper proposes a new problem, Motion from Struc-

ture (MfS), where a given 3D model is aligned in an unsu-
pervised manner to tracks in video. A two-step approach
is proposed where convex hulls of objects are discovered in
the first step, then guided sampling is performed for align-
ment in the second step. Our approach does not require the
segmentation and 3D reconstruction of objects, and thus al-
lows for bypassing their drawbacks. We tested our approach
on synthetic data and real videos, and showed that it outper-
formed baseline approaches.

One limitation of using convex hulls for alignment is that
the convex hull of some objects may be symmetric, which
may lead to incorrect alignment due to oversimplification
of shapes. We also notice that some corners were not iden-

tified as STs. This occurs due to (1) close proximity be-
tween tracks allowing them to well represent each other, and
(2) violation of independent subspace assumption. Further
improvements also include incorporating other information
(e.g. orientation), and handling incomplete tracks (i.e. miss-
ing data). We will address these issues in future works.
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