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Abstract. Activity recognition in video has become increasingly important due
to its many applications ranging from in-home elder care, surveillance, human
computer interaction to automatic sports commentary. To date, most approaches
to video rely on fully supervised settings that require time consuming and er-
ror prone manual labeling. Moreover, existing supervised approaches are typi-
cally tailored for classification, not detection problems (the spatial and temporal
support of the action has to be detected). Recently, weakly-supervised learning
(WSL) approaches were able to learn discriminative classifiers while localizing
the action in space and/or time using weak labels. However, existing approaches
for WSL provide coarse localization in terms of spatial regions or spatio-temporal
volumes. Moreover, it is unclear how to extend current approaches to the multi-
label case that is common in practical applications. This paper proposes a matrix
completion approach to the problem of WSL for multi-label learning for video.
Our approach localizes non-rectangular spatio-temporal discriminative regions
that are inferred by clustering regions of common texture and motion features.
We illustrate how our approach improves existing WSL and supervised learning
techniques in three standard databases: Hollywood, UCF sports, and MSR-II.

1 Introduction

The idea of recognizing actions automatically from videos brims with potential. Solv-
ing it enables many tasks, including surveillance, human-computer interaction, patient
monitoring, and automatic sports analysis. However, understanding actions in a video
sequence remains a challenging problem due to several reasons: (1) there is a large vari-
ability in imaging conditions, as well as in how different people perform an action; (2)
background clutter and motion blur are common; (3) data arising from video is of high
dimensionality; (4) obtaining ground truth labels for every individual action in every
frame of a video is cumbersome. Previous works have addressed these issues by intro-
ducing different features [1, 2], interest region detectors such as space-time volumes [3]
or trajectories [4, 5], and using different classifiers [2, 6–10]. While these methods have
improved recognition results, they may find correlations from background context and
non-activity related regions, which result in a lack of interpretability of what is being
learned. This motivates us to explore learning techniques that rely less on error-prone
human annotations, and learn instead from captions describing the entire video.

In this paper, we propose a multi-label WSL approach to efficiently recognize activ-
ities and pinpoint their spatio-temporal location on unseen videos. Fig. 1 shows exam-
ples of our results on different datasets. We first extract spatio-temporal activity parts
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Fig. 1: Our multi-label weakly-supervised approach recognizes activities and pinpoints
their spatio-temporal location on unseen videos. This figure shows results on UCF
Sports, HOHA and MSR-II datasets. Top: A sample frame and the extracted spatio-
temporal activity parts. Bottom: Activities recognized and localized by our method.

throughout the video. Then, we recognize the activity/activities present in the video,
along with selecting the activity parts associated with each recognized activity.

Weakly-supervised learning (WSL) approaches such as multiple instance learning
(MIL) ([7–10]) have eased the problems in labeling by localizing discriminative regions
while learning the classifier. Instead of class labels, MIL defines labels for positive
and negative bags, each containing several instances. All instances in negative bags are
negative, but there is at least one positive instance in each positive bag, and the goal
is to localize the positive instances (see Fig. 2(a)). Unfortunately, the MIL paradigm
has two major drawbacks: first, it is non-trivial to extend it to multi-label settings [11];
second, it typically leads to multi-pass algorithms that alternate between classification
and localization. This is especially cumbersome on videos, due to the high number
of degrees of freedom in voxel/cuboid search. The MIL problem gets even harder if
several instances have to occur together in a bag to form a positive sample. This is the
case of action recognition, since activities are typically defined by a collection of spatio-
temporal parts extracted from a video [5, 7, 12, 13]. Thus, in order to provide accurate
spatio-temporal localization, activity parts cannot be labeled individually, but rather be
selected coherently throughout the entire dataset.

We explore the fact that instances from the same class usually organize themselves
into clusters [14–17] and that low-rank matrix completion [38] can exploit low-rank
subspaces to find relations between labels and features. Thus, we jointly cluster in-
stances into subspaces (Fig. 2(b)) and label unknown instances consistently with the
clustering, while keeping negative bag instances as negative (Fig. 2(c)). We demon-
strate the effectiveness of our joint subspace clustering and classification in weakly-
supervised multi-label learning for video activity recognition.

2 Related Work

Many researchers have addressed the problem of activity recognition in video sequences
by using space-time interest points [1, 20], dense trajectories [5] and discriminative
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Fig. 2: (a) Multiple instance learning has positive and negative bags, and the goal is
to identify positive instances in positive bags. Instead, our approach (b) clusters the
instances and (c) forces the labels to agree with the clustering output and bag labels.

space-time neighborhood features [21]. Some previous works have also targeted the
problem of spatio-temporal action segmentation and recognition. Hoai et al. [22] rec-
ognized activities using a multi-class support vector machine (SVM) and infer the tem-
poral segments with dynamic programming. Lan et al. [8] trained a latent SVM with
a number of labeled and fully annotated videos, but each video is assigned a single
label. In [23], the authors propose a weakly supervised video action classification us-
ing a similarity constrained latent SVM. Tang et al. [24] use a variable-duration hidden
Markov model to build a model for each video. Chen et al. [25] construct a space-
time video graph and find the subgraph that maximizes an activity classifier’s score.
Siva et al. [10] extract potential action cuboids and use genetic algorithms to select the
best potential cuboids to learn a SVM for recognition. In related work, [12] introduced
spatio-temporal deformable part models for activity recognition and localization.

Action localization is usually performed in the context of action detection, sepa-
rate from the recognition phase (e.g., [26–30]). Raptis et al. [7] extract spatio-temporal
structures by forming clusters of trajectories. A graphical model is used to recognize
a collection of these clusters as a particular action. We share with [7] the use of ac-
tion parts, but they use graph search to correspond action parts and incorporate fully
supervised data, while we perform subspace clustering in a weakly-supervised setting.
Ma et al. [31] use a two level hierarchical model for activity localization, where each
body part is associated with a rectangular box. They first perform a video frame hierar-
chical segmentation and prune a candidate segment tree. Then they extract hierarchical
space-time segments for activity recognition via separate codebooks for root and parts.

Multiple-instance learning was initially proposed in [32] for the WSL problem
of predicting which configurations of a pharmaceutical drug are effective. Andrews
et al. [33] formulated a maximum margin MIL based on Support Vector Machines,
where sample labels are unobserved integer variables and the margin between these is
maximized directly. These MIL methods result in non-convex optimization processes
and thus are heavily dependent on initialization. WSL in computer vision has been
extensively studied, by generating spatio-temporal masks for objects in images and
videos [34] from partially tagged Internet and YouTube videos [35]. Since labeling
video by annotating every single frame is a cumbersome task, several WSL models



4 E. Adeli Mosabbeb, R. Cabral, F. De la Torre, M. Fathy

have been developed for activity recognition and event detection in videos (e.g., [8, 31]).
Tang et al. [17] propose a spatio-temporal transductive and inductive object segment an-
notation from weakly-tagged videos. Recently, several works have formulated the MIL
and WSL problems as convex problems (e.g., [36, 37]). In [36] the authors have pro-
posed a model based on calculating likelihood ratios of instances using Support Vector
Regression and classifying the bags into positive and negative with a binary SVM.

Our work is most similar to [14] and [38]. [14] is a low-rank subspace segmentation
algorithm and [38] a low-rank matrix completion (MC) framework for classification.
We propose a method that intertwines these two to perform simultaneous recognition
and localization in videos. In [38] each image is represented as a single column in
the matrix, localization is performed in the image plane by a bounding-box exhaustive
search. However, in our method each video is composed of several parts and supervision
is weak and only labels entire videos. Transduction and clustering alone do not suffice,
but together provide a selection coherent for all parts in the dataset. This global context
means selecting parts yields space-time locations and activity labels.

3 Video Representation

In our method, each video in the dataset is treated as a collection of motion parts [5,
7, 12, 13]. Following [5, 7], videos are represented by features extracted from parts
with dense motion trajectories. We perform a spatio-temporal segmentation to obtain
volumetric regions that have similar visual and motion characteristics. Then, we extract
trajectories using an optical flow tracker, and discard regions with little or no movement.
Finally, we group trajectories with similar behavior into parts. Fig. 3 illustrates this
process in a sample video from the HOHA dataset. Since trajectories are asynchronous
and have different lengths, we define a distance to incorporate motion similarity and
spatial closeness. For two trajectoriesA andB with points xA[t] and xB[t], we calculate
their similarity on a temporal overlap t ∈ [τ1, τ2] as1

d(A,B) =

(
max

t∈[τ1,τ2]
‖xA[t]− xB[t]‖2

)
×

(∑τ2
t=τ1
‖ẋA[t]− ẋB[t]‖2

(τ2 − τ1)σ[τ1,τ2]

)
, (1)

where ẋ[t] = x[t]−x[t− 1] denote velocities of the trajectory points and σ[τ1,τ2] is the
local optical flow variance in the interval [τ1, τ2]. In (1), the first term is a measure of
spatial distance while the second estimates distance in motion and velocity. To group
trajectories, we follow [7] and calculate the affinities between all pairs of trajectories
in a video, forming an affinity matrix, calculated as ω(A,B) = exp(−ηd(A,B)). A
normalized-cut clustering is then used to group the trajectories, where a Cattell’s scree
test is used to determine the appropriate number of clusters.

Each trajectory group forms a part that may or may not be associated to the activities
of interest. For instance, 23 parts appear in the video frame shown in Fig. 3. Each part

1 Bold capital letters denote matrices (e.g., D). All non-bold letters denote scalar variables. dij
denotes the scalar in the row i and column j of D. 〈d1,d2〉 denotes the inner product between
two vectors d1 and d2. ||d||22 = 〈d,d〉 =

∑
i d

2
i denotes the squared Euclidean Norm of d.

||A||∗ designates the nuclear norm (sum of singular values) of A.
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Fig. 3: Left to right: Points tracked on a frame, extracted trajectories, trajectory groups.

is represented by a histogram of oriented gradients (HoG), optical flow (HoF) [1] and
oriented edges in the motion boundaries (HoMB) [5]. These histograms are computed
on a regular grid at three different scales. Each descriptor (HoG, HoF, HoMB) uses an
independent dictionary, obtained by performing K-means on all the parts, and quantiz-
ing all descriptors to its closest `2 distance dictionary element. The concatenation of all
three histograms forms the group (part) descriptor, hk ∈ Rn. A video Vi is described
by concatenating its activity parts, as Vi = [h1i h2i . . . hki].

4 Activity Recognition and Localization

In this section, we present our weakly-supervised learning algorithm for action recog-
nition and localization in video sequences. In our problem, we have several training
videos, each of which is labeled with one or more activities. However, no spatio-
temporal information exists on where the activities occur. Our task is to classify whether
unknown test videos contain those activities or not, and simultaneously localize them
throughout the video. Our approach merges the advantages of two recently proposed
low-rank models: subspace segmentation [14] clusters similar activity parts from all
videos in the dataset, and a matrix completion classifier [38] determines the activity
labels they belong to, such that the labeling is consistent throughout the entire dataset.

Let m be the number of different activity classes, n the dimensionality of the fea-
ture space, and Ntr, Ntst the number of training and testing parts, respectively. For the
classification task, we can define a matrix D0 as

D0 =

DY

DX

D1

 =

Ytr Ytst

Xtr Xtst

1>

 , (2)

where Ytr ∈ Rm×Ntr and Ytst ∈ Rm×Ntst are the training and test labels and Xtr ∈
Rn×Ntr and Xtst ∈ Rn×Ntst are the training and test feature vectors, respectively.
Hence, DY, DX and D1 denote the label, feature and last rows of D, respectively. As
noted by Cabral et al. [38], if a linear classification model holds, D0 is rank deficient.
Therefore, classification can be posed as a matrix completion problem of filling the
missing entries in Ytst such that the nuclear norm of D0 (a convex approximation of
its rank) is minimized. To deal with noise and outliers in the data, we can incorporate
an error term Emc in the known feature and training label entries,

D = D0 + Emc =

Ytr Ytst

Xtr Xtst

1>

+

EYtr 0
EX

0>

 (3)
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and the classification process can be posed as finding the best Ytst and the error matrix
Emc such that the rank of D is minimized.

As discussed in Section 3, each video Vi is represented by the histograms of its
activity parts. If labels were provided for each part in training, we could construct D0 by
setting each column to the features corresponding to one activity part and its respective
{0, 1}m label vector. However, in our case supervision is weak and labels are only
provided for entire videos. Thus, simply labeling parts with all class labels present in the
video they originate from is insufficient for obtaining correct part level classifications.

Instead, to identify the parts that comprise each activity class, we can also exploit
the fact that activity parts from the same class likely cluster together. This can be formu-
lated as a segmentation of feature vectors into low-rank subspaces, using a Low-Rank
Representation (LRR) [14]. Since DX contains the feature vectors for all videos in the
dataset, we can cluster activity parts by computing a low-rank similarity matrix Z, as

min
Z,Elrr

‖Z‖∗ + λ‖Elrr‖2,1,

subject to DX = DXZ + Elrr,
(4)

where Elrr is the LRR [14] error matrix and λ is a balancing parameter between low-
rank and error fit. Z is indicative of the similarity between each activity part in DX and
thus can be used as an additional cue to weak supervision for classifying which parts
constitute which activities. Using the similarity matrix Z, we can apply a clustering
method such as Normalized Cuts to group similar activity parts in all train/test videos.
The output of this clustering method is a nc × N binary matrix Q, where nc is the
number of clusters. Each row of Q corresponds to one cluster, with qij = 1 if the jth

activity part belongs to the ithcluster, and 0 otherwise.
Below, we show that these matrix completion classification and subspace clustering

steps can be done jointly, so that labels are consistent within clusters and vice-versa.

4.1 Joint Classification and Clustering

With the matrix completion and subspace segmentation defined as above, we can simul-
taneously obtain a low-rank representation of the feature vector matrix DX, and correct
and complete the labels in DY = [Ytr,Ytst]. Our activity classification problem can
be defined as minimizing the rank of D for determining the part labels, while at the
same time ensuring the labels are consistent with the clustering Q obtained from the
low-rank representation Z of the parts DX. If we define ΩY as the set of known label
entries in D0, this objective can be written as

min ‖D‖∗ + γ‖Z‖∗ + λ‖Elrr‖2,1
+ ρ1

∑
i,j∈DY

cy(dij , qkj) + ρ2
∑

i,j∈ΩY

cy(dij , d0ij)

subject to D = D0 + Emc,D1 = 1>,DX = DXZ + EX,

(5)

where cy(a, b) = log (1 + exp (−(2b− 1)(a− b))) is a logistic loss function that pe-
nalizes entries of different classes. γ, λ, ρ1, ρ2 are positive trade-off parameters. k is
the most similar cluster to label i, calculated as k = argmin nc

k=1

∑
j cy(dij , qkj).
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With the objective in (5), the first term seeks a low-rank D matrix so that labels
can be expressed as a linear combination of features. The second establishes a low-rank
representation Z for subspace clustering. The third term controls the level of noise in
the clustering. The fourth term nudges the labels in DY the direction suggested by the
clustering Q and the fifth term regularizes changes on known training labels Ytr in
the matrix completion. Therefore, we are seeking to achieve a consensus between the
clustering and classification outputs. The intersection of these two tasks is incorporated
by the fourth term, where inconsistent clustering outputs and labels are penalized. The
minimization process will aim towards unanimity between the two and the least label
changing in Ytr. Also, notice that in the process of joint minimization, both classifica-
tion and clustering tasks share the feature error matrix, resulting in less variables than
used when optimizing both objectives separately.

The objective in (5) can be optimized using an Alternating Direction Method of
multipliers (ADMM) [39]. When it converges, the labels in Ytst corresponding to each
activity part indicate its action label(s) and the columns with that label are the parts
associated to that specific activity. The highest computational complexity step in solv-
ing (5) with an ADMM is a SVD of D, but scalable SVD/ADMM methods are currently
being researched heavily [40].

As in DY, each instance is assigned a set of labels, each of which belongs to an
independent activity class. This enables us to model multi-label MIL problems. Many
previous works have exploring the dependence among the labels [41, 42]. But when
the labels are incomplete (weakly-supervised) the task is harder. As also explored in
previous works [18, 38], the low rank assumption of the matrix D resembles a lin-
ear dependence among the labels and the feature vectors. We evaluate our multi-label
setting in a weakly-supervised video activity recognition and localization.

5 Experiments

To evaluate the proposed technique, we set up several experiments on various synthetic
and real datasets. Since our approach performs clustering and classification simultane-
ously, one might conceive that we could first run clustering and then use matrix com-
pletion for obtaining the labels. Thus, as a baseline, we derive a low-rank representa-
tion [14] of matrix DX and then run matrix completion while incorporating the feature
error term in the matrix completion formulation (LRRMC).We also compare the per-
formance of our method to using just matrix completion (MC) of [38] for classification
as described in Sec.4 to show that solely relying on a weakly supervised labeling for
part classification does not work, and the well-known MI-SVM [33], with RBF kernel.

In each iteration of (5), we obtain the clustering Q using nc = 2m clusters to
account for intra-class variability, and use as parameters γ = 0.9, ρ1 = 1.5, ρ2 ∈
{10−3, 10−2, 10−1, 1}. For experiments on activity recognition datasets, to ensure di-
rect comparability with state of the art methods, we follow the setup of [7] for obtain-
ing and describing activity parts, as described in Sec. 3. Each part is represented by
histogram of oriented gradients (HoG), histogram of optical flow (HoF) [1] and his-
togram of the oriented edges in the motion boundaries (HoMB) [5] descriptors, with
500, 500, 300 dimensions respectively.
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Fig. 4: Accuracy comparison according to corruption probability p on synthetic data.
This figure shows the means and standard deviations for three different runs.

5.1 Synthetic Data

First, in order to validate the proposed algorithm, we construct 10 independent sub-
spaces of dimensionality 100 (as described in [14]). The first five subspaces form our
desired positive classes and the second five, negative. We create 100 positive and 100
negative bags, with size 10, and sample instances from the above subspaces. Positive
bags, as in MIL, are composed of uniformly distributed positive and negative instances.
We corrupt each sampled instance x with probability p, by adding Gaussian noise with
zero mean and variance 0.3‖x‖. The performance of the proposed method is compared
with LRRMC, MI-SVM and matrix completion (MC) [38], as illustrated in Fig. 4 for
different probabilities of corruption and noise. The performance of our method is much
better when the noise level increases in the data. As mentioned in Sec. 4, MC yields
worse results since it fully relies on the initial labeling, which is not accurate enough
due to its weakly supervised nature. Our method performs a joint clustering and classifi-
cation of the data and detects noise and outliers in both tasks collaboratively. In LRRMC
these are done separately. Thus, our method deals better with noise in the data.

5.2 Action recognition and localization

Three popular activity recognition datasets are used: MSR-II [6], HOHA [1] and UCF
sports [3] action datasets. MSR-II action dataset 2 contains 54 videos with three ac-
tion categories: boxing, clapping and hand-waving. In this dataset, some of the videos
contain multiple actions and some with actions even occurring at the same time. The
HOHA (Hollywood1 Human Action) dataset contains 430 videos. Each video contains
significant camera motion, rapid scene changes and occasionally significant clutter. Fur-
thermore, actions in this dataset are performed in different conditions, and many actions
are defined by the interactions between the subjects and/or objects. These factors make
this dataset particularly challenging. The UCF sports dataset consists of 150 videos ex-
tracted from sports broadcasts. Video in this dataset contain camera motions and many
different lighting and capturing conditions, as well as large displacements of most of
the actions, cluttered backgrounds, and large intra-class variability.
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Fig. 5: Per-class recognition accuracy for MSR-II dataset.

Table 1: Recognition results on MSR-II dataset. Cross dataset methods are trained on
KTH dataset, which only contains actions with little background motion.

Method Supervision Accuracy
Siva et al. [10] Weak 71.2%
MI-SVM [10] Weak 55.8%
Tian et al. [43] Full (Cross dataset) 78.8%

MC Weak 41.1%
LRRMC Weak 54.9%

Our Method Weak 83.1%

Recognition: Tests on each of the datasets have separate experimental settings to
facilitate comparisons with reference methods. We compare our recognition model with
state-of-the-art models reported in the literature and with the same baselines described
in the synthetic tests of Sec. 5.1. The final classification step in our model is performed
via a thresholding procedure, where labels above a common threshold are selected.

MSR-II dataset - For the experiments on this dataset, a two-to-one random division
of all videos in the dataset creates the training and testing sets. This dataset contains
videos with multiple actions happening in the video and, in some cases, being per-
formed at the same time, which can challenge our multi-label classification framework.
Some of the videos in this dataset contain several instances of all activities. Since we
expect a single instance of each activity class in the video, the videos are split such that
each video contains only one instance of each activity class, but allowing for several
activities from different classes. Fig. 5 shows our per-class accuracy results compared
to the MI-SVM model [33]. Table 1 shows the recognition accuracy results compared
to state-of-the-art methods on this dataset. The supervision column shows the level of
supervision used in the training phase: fully supervised methods know spatio-temporal
bounding boxes of activity locations, whereas weakly-supervised methods use only the
label(s).

HOHA dataset - In this experiment the test set has 211 videos with 217 labels and
the training set has 219 videos with 231 labels, all manually annotated [7]. Fig. 6 shows
the per-class accuracy results for this dataset. This dataset is very challenging for ac-
tivity recognition, due to the large amount of clutter and motion in the camera. Our ap-
proach is comparable with results from state-of-the-art methods designed specifically
for this dataset, improving them by a slight margin. Table 2 gives the overall accuracy
results compared to some other methods on this dataset.
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Fig. 6: Per-class recognition for HOHA dataset.

Table 2: Recognition results on HOHA dataset.
Method Supervision Accuracy

Klaeser et al. [46] Full 27.3%
Laptev et al. [1] Full 38.4%

Matikainen et al. [45] Full 22.8%
Raptis et al. [7] Full 40.1%
Wu et al. [47] Full 47.6%

MC Weak 22.3%
LRRMC Weak 29.8%

Our Method Weak 48.5%

UCF Sports dataset - We split this dataset into 103 training and 47 test samples,
follwing the setup described in [7, 8]. This separation minimizes the strong correla-
tion of background cues between the testing and training set [7]. Some results on this
dataset report leave-one-out-cross-validation (LOOCV) performance, which may take
into account the similarity of the background instead of the activity itself. In this dataset
the background is very similar for sports of the same kind, which affects the activity
recognition rates. Fig. 7 depicts the per-class classification accuracy for this dataset.
As shown, our method outperforms the BoW+SVM model in almost all classes. As
shown in Table 3, the overall recognition rate of our method is also competitive with
the state-of-the-art. The upper part of the table compares our results with state-of-the-
art methods’ reported results for the same training and testing dataset split. Our method
outperforms all of these works. The lower part of the table shows results from works
that use LOOCV, which generally achieve better results. Our split is much harder and
the difference between the results is expected. Notwithstanding a more difficult test
scenario, our results are still comparable to these works.

Spatio-temporal localization: The second function of our method is the spatio-
temporal localization of the activity in the video sequence. In order to assess spatio-
temporal localization directly against reported state-of-the-art methods, we employ three
metrics for assessing localization performance: 1) intersection-over-union using the
selected positive parts (IOU), 2) average precision (AP) of part classification based
on ground truth spatio-temporal annotations, and 3) the localization score, defined as
in [7]. The latter is defined as the average ratio of the sets of points inside the annotated
ground truth bounding box and the set of points of the selected trajectory group for each
frame. If the detected activity part(s) throughout the video have at least a θ overlap with
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Fig. 7: Per-class recognition results for UCF Sports dataset.

Table 3: Recognition results on UCF Sports. Upper part: Results with 103:47 dataset
split. Lower part: Results with LOOCV.

Method Supervision Accuracy
Lan et al. [8] Full 73.1%

Raptis et al. [7] Full 79.4%
Tian et al. [12] Full 75.2%
Ma et al. [31] Weak 81.7%

MC Weak 59.8%
LRRMC Weak 71.2%

Our Method Weak 86.9%

Le et al. [48] Full 86.5%
Wang et al. [20] Full 85.6%
Wang et al. [5] Full 88.2%

Wang et al. [49] Full 89.1%
Kovashka and Grauman [21] Full 87.3%

Table 4: Action localization AP on the MSR-II dataset. Cross dataset methods are
trained on KTH dataset, which only contains actions with little background motion.

Method Supervision Clapping Boxing Handwaving
Siva et al. [10] Full 0.602 0.694 0.700
Siva et al. [10] Weak 0.326 0.658 0.799
Cao et al. [6] Full (Cross Dataset) 0.125 0.144 0.242

Tian et al. [12] Full (Cross Dataset) 0.239 0.389 0.447
Our Method Weak 0.569 0.724 0.811

the annotated ground truth bounding box (score ≥ θ), the recognition/localization is
considered as correct. The results are compared to the state-of-the-art methods in the
literature, using IOU, AP or localization score, where available. Tables 4, 5 and 6 show
results on MSR-II, HOHA and UCF Sports datasets, respectively. Since [8] only pro-
vides localization results on a subset of frames, we also include results on this subset
for comparison. The average recognition/localization accuracies for the experiments on
the datasets as a function of θ are illustrated in Fig. 8. Some results are shown in Fig. 9.

Experimental results discussion: Our experiments show that the proposed joint
process in (5) significantly improves results, when compared to the baselines of MC
and performing clustering and classification steps separately (LRRMC). We note that
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Table 5: Localization comparisons for HOHA dataset.

Method Supervision Localization score Mean IOU
θ = 0.1 θ = 1

Raptis et al. [7] Full 54.3% 28.6% –
Our Method Weak 56.2% 21.0% 42.9%

Table 6: Average localization IOU on the UCF Sports dataset. Note that [26] and [8]
use the bounding box annotations during the training, while ours is weakly-supervised.

Action Subset of frames All frames
[26] [8] [31] Ours [26] [8] [31] Ours

Diving 36.5 43.4 46.7 44.8 37.0 – 44.3 43.7
Golf – 37.1 51.3 53.1 – – 50.5 52.3

Kicking – 36.8 50.6 54.3 – – 48.3 52.9
Lifting – 68.8 55.0 69.0 – – 51.4 63.5
H-Ride 68.1 21.9 29.5 34.5 64.0 – 30.6 32.5

Running 61.4 20.1 34.3 31.2 61.9 – 33.1 30.1
Skating – 13.0 40.0 45.5 – – 38.5 43.2

Swing-B – 32.7 54.8 57.1 – – 54.3 57.5
Swing-S – 16.4 19.3 48.7 – – 20.6 44.1
Walking – 28.3 39.5 47.5 – – 39.0 47.1

Avg. – 31.8 42.1 51.3 – – 41.0 46.7

the multi-label nature of our method allows us to provide results for simultaneous ac-
tions on the MSR-II dataset, as seen on Fig. 9. An important note on the recognition
results, is that our method performed competitively even with those specifically focused
for recognition (i.e., that do not perform any localization of the activity) and methods
that train with fully annotated datasets. This is despite the fact that when using the
whole frame or video features for recognition, we are dealing with many outliers and
significant noise. Furthermore, our model extracts the exact spatio-temporal segmenta-
tion of the activity, rather than a simple bounding box, cuboid or voxel representation,
as opposed to many previous works. We improve the recognition results on all datasets,
and also achieve good localization scores. We believe these could be improved further
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Fig. 9: Recognition and localization results on action recognition datasets. Each result
from a test video is illustrated in a pair of images, first of which is a sample frame
of the video containing the action of the interest. The trajectory groups are shown on
this image, each with a different color. The second image shows the selected trajectory
group(s) by our algorithm. (a) results from the HOHA dataset, (b) results from the UCF
Sports dataset, and (c) results from MSR-II action datset.
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if more accurate spatio-temporal annotations in the datasets were used as ground truth
instead of bounding boxes.

As could be seen, our method achieved much better results compared to many state-
of-the-art methods. This is basically due to two important properties of our method. Our
method deals with errors and outliers in the feature vectors and the labels. As could be
seen in (5) we extract the erroneous elements as well in the process of minimizing
the matrix ranks. The error for both LRR and MC are incorporated simultaneously,
which tend to correct one another in the process. On the other hand, our method labels
the actions via transduction, which alone improves the results compared to inductive
approaches. There are no separate train and test phases and our approach incorporates
activity parts and information from the whole dataset when minimizing the nuclear
norm and deciding on the instance classes.

6 Conclusions

In this paper, we have proposed a low-rank formulation for weakly supervised learning
and have applied it to the challenging problem of activity recognition. Our approach
uses a simultaneous convex matrix completion and LRR subspace clustering frame-
work to recover the labels for the test videos and localize the spatio-temporal extent
of activities throughout each video. Interactions between the activity parts are glob-
ally modeled throughout the entire dataset using the subspace clustering procedure,
while the matrix completion framework labels the activities ensuring that labeling is
consistent within clusters and vice-versa. Our experiments show this joint process sig-
nificantly improves results, when compared to performing clustering and classification
steps separately. Moreover, it attains performances comparable to state-of-the-art meth-
ods for classification and localization in all three datasets tested.

Unlike typical MIL approaches, our method to be naturally multi-label and is able
to handle video sequences where several activity parts have to occur together in a bag
to define an action, and actions occur simultaneously in different spatial locations.

As a direction for future work, we intend to apply and develop incremental proce-
dures for the training and testing and exploit parallel algorithms for the SVD operations
needed to optimize (5), such as in [40], in order to decrease processing time.
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