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Abstract Multiple instance learning (MIL) is a binary classificationproblem with
loosely supervised data where a class label is assigned onlyto a bag of instances
indicating presence/absence of positive instances. In this paper we introduce a novel
MIL algorithm using Gaussian processes (GP). The bag labeling protocol of the MIL
can be effectively modeled by the sigmoid likelihood through the max function over
GP latent variables. As the non-continuous max function makes exact GP inference
and learning infeasible, we propose two approximations: the soft-max approximation
and the introduction of witness indicator variables. Compared to the state-of-the-art
MIL approaches, especially those based on the Support Vector Machine (SVM), our
model enjoys two most crucial benefits: (i) the kernel parameters can be learned in
a principled manner, thus avoiding grid search and being able to exploit a variety
of kernel families with complex forms, and (ii) the efficientgradient search for ker-
nel parameter learning effectively leads to feature selection to extract most relevant
features while discarding noise. We demonstrate that our approaches attain superior
or comparable performance to existing methods on several real-world MIL datasets
including large-scale content-based image retrieval problems.
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1 Introduction

The paper deals with the multiple instance problem, a very important topic in ma-
chine learning and data mining. We begin with its formal definition. In the standard
supervised classification setup, we have training data{(xi ,yi)}ni=1 which are labeled
at the instance level. In the binary classification setting,yi ∈ {+1,−1}. In multiple
instance learning (MIL) (Dietterich et al, 1997) problem, on the other hand, the as-
sumption is rather loosen in the following manner: (i) one isgivenB bags of instances
{Xb}Bb=1 where each bag,Xb = {xb,1, . . . ,xb,nb}, consists ofnb instances (∑bnb = n),
and (ii) the labels are provided only at the bag-level in a waythat for each bagb,
Yb = −1 if yi = −1 for all i ∈ Ib, andYb = +1 if yi = +1 for some i∈ Ib, whereIb
indicates the index set for instances in bagb.

The MIL is considered to be more realistic than standard classification setup due
to its notion of bag in conjunction with the bag labeling protocol. Two most typi-
cal applications are image retrieval (Zhang et al, 2002; Gehler and Chapelle, 2007)
and text classification (Andrews et al, 2003). For instance,the content-based image
retrieval fits well the MIL framework as an image can be seen asa bag comprised
of smaller regions/patches (i.e., instances). Given a query for a particular object, one
may be interested in deciding only whether the image contains the queried object
(Yb = +1) or not (Yb =−1), instead of solving the more involved (and probably less
relevant) problem of labeling every single patch in the image. In text classification,
one is more concerned with the concept/topic (i.e., bag label) of an entire paragraph
than labeling each of the sentences that comprise the paragraph. The MIL framework
is also directly compatible with other application tasks including the object detec-
tion (Viola et al, 2005) and the identification of proteins (Tao et al, 2004).

Although we only consider the original MIL problem defined asabove, there
are other alternative problems and generalization. For instance, themultiple instance
regressiondeals with the real-valued outputs instead of binary labels(Dooly et al,
2002; Ray and Page, 2001), and themultiple instance clusteringtackles the multiple
instance problems in unsupervised situations (Zhang and Zhou, 2009; Zhang et al,
2011). The MIL problem can be extended to more generalized forms. One typical
generalization is to modify the bag positive condition to bedetermined by somecol-
lection of positive instances, instead of a single one (Scott et al, 2003). Essentially
and more generally, one can obtain other types of generalized MIL problems by spec-
ifying how the collection of underlying instance-level concepts is combined to form
the label of the bag (Weidmann et al, 2003).

Traditionally, the MIL problem was tackled by specially tailored algorithms; for
example, the hypothesis class of axis-parallel rectanglesin the feature space has been
introduced in (Dietterich et al, 1997), which is iteratively estimated to contain in-
stances from positive bags. In (Maron and Lozano-Perez, 1998), the so-called di-
verse density (DD) is defined to measure proximity between a bag and a positive
intersection point. Another line of research considers theMIL problem as a standard
classification problem at a bag-level via proper development of kernels or distance
measures on the bag space (Wang and Zucker, 2000; Gärtner etal, 2002; Tao et al,
2004; Chen et al, 2006). Particularly it subsumes the set kernels for SVMs (Gärtner



3

et al, 2002; Tao et al, 2004; Chen et al, 2006) and the Hausdorff set distances (Wang
and Zucker, 2000).

A different perspective that regards the MIL as a missing-label problem was re-
cently emerged. Unlike the negative instances which are alllabeled negatively, the
labels of instances in the positive bags are considered as latent variables. The latent
labels have additional positive bag constraints, namely that at least one of them is
positive, or equivalently,∑i

yi+1
2 ≥ 1 for i ∈ Ib such thatYb = +1. In this treatment,

a fairly straightforward approach would be to formulate a standard (instance-level)
classification problem (e.g., SVM) that can be optimized over the model and the
latent variables simultaneously. Themi-SVMapproach of (Andrews et al, 2003) is
derived in this manner.

More specifically, the following optimization problem is solved for both the hy-
perplane parameter vectorw and the output variables{yi}:

min
{yi},w,{ξi}

1
2
||w||2 +C

n

∑
i=1

ξi

s.t. ξi ≥ 1−yiw>xi, ξi ≥ 0 for all i,

yi =−1 for all i ∈ Ib s.t. Yb =−1.

∑
i∈Ib

yi +1
2
≥ 1 for all b s.t.Yb = +1. (1)

Although the latent instance label treatments are mathematically appealing, a
drawback of such approaches is that they involve a (mixed) integer programming
which is generally difficult to solve. There have been several heuristics or approxi-
mate solutions such as those proposed in (Andrews et al, 2003). Recently, the deter-
ministic annealing (DA) algorithm has been employed (Gehler and Chapelle, 2007),
which approximates the original problem to a continuous optimization by introducing
binary random variables in conjunction with the temperature-scaled (convex) entropy
term. The DA algorithm begins with a high temperature to solve a relatively easy
convex-like problem, and iteratively reduces the temperature with the warm starts
(initialized at the solution obtained from the previous iteration).

Instead of dealing with all instances in a positive bag individually, a more in-
sightful strategy is to focus on themost positiveinstance, often referred to as the
witness, which is responsible for determining the label of a positive bag. In the SVM
formulation, theMI-SVMof (Andrews et al, 2003) directly aims at maximizing the
margin of the instance with the most positive confidence w.r.t. the current modelw
(i.e., maxi∈Ib〈w,xb,i〉). An alternative formulation has been introduced in theMICA
algorithm (Mangasarian and Wild, 2008), where they indirectly form a witness us-
ing convex combination over all instances in a positive bag.TheEM-DD algorithm
of (Zhang et al, 2002) extends the diverse density frameworkof (Maron and Lozano-
Perez, 1998) by incorporating the witnesses. In (Gehler andChapelle, 2007) the DA
algorithms have also been applied to the witness-identifying SVMs, exhibiting supe-
rior prediction performance to existing approaches.

Even though some of these MIL algorithms, especially the SVM-based discrim-
inative methods, are quite effective for a variety of situations, most approaches are
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non-probabilistic, thus unable to capture the underlying generative process of the MIL
data formation. In this paper1 we introduce a novel MIL algorithm using the Gaus-
sian process (GP), which we callGPMIL. Motivated from the fact that a bag label is
solely determined by the instance that has the highest confidence toward the positive
class, we design the bag class likelihood as the sigmoid function over the maximum
GP latent variables on the instances. By marginalizing out the latent variables, we
have a nonparametric, nonlinear probabilistic modelP(Yb|Xb) that fully respects the
bag labeling protocol of the MIL.

Dealing with a probabilistic bag class model is not completely new. For instance,
the Noisy-OR model suggested by (Viola et al, 2005) represents a bag label prob-
ability distribution, where the learning is formulated within the functional gradi-
ent boosting framework (Friedman, 1999). A similar Noisy-OR modeling has re-
cently been proposed with Bayesian treatment by (Raykar et al, 2008). In their ap-
proaches, however, the bag class model is built from theinstance-levelclassifica-
tion modelsP(yi |xi), more specifically,P(Yb = −1|Xb) = ∏i∈Ib P(yi = −1|xi) and
P(Yb = +1|Xb) = 1−P(Yb = −1|Xb), which may incur several drawbacks. First of
all, it involves additional modeling effort for the instance-level classifiers, which may
be unnecessary, or only indirectly relevant to the bag classdecision. Moreover, the
Noisy-OR model combines the instance-level classifiers in aproduct form, treating
each instance independently. This ignores the impact of potential interaction among
the neighboring instances, which may be crucial for the accurate bag class predic-
tion. On the other hand, our GPMIL represents the bag class model directly with-
out employing probably unnecessary instance-level classifiers. The interaction among
the instances is also incorporated through the GP prior thatessentially enforces the
smoothness regularization along the neighboring structure of the instances.

In addition to the above-mentioned advantages, the most important benefit of the
GPMIL, especially contrasted with the SVM-based approaches, is that the kernel hy-
perparameters can be learned in a principled manner (e.g., empirical Bayes), thus
avoiding grid search and being able to exploit a variety of kernel families with com-
plex forms. Another promising aspect is that the efficient gradient search for kernel
parameter learning effectively leads to feature selectionto extract most relevant fea-
tures while discarding noise. One caveat of the GPMIL is thatit is intractable to
perform exact GP inference and learning due to the non-continuous max function.
We remedy it by proposing two approximation strategies: thesoft-max approxima-
tion and the use of witness indicator variables which can be further optimized by
the deterministic annealing schedule. Both approaches often exhibit more accurate
prediction than most recent SVM variants.

The paper is organized as follows. After briefly reviewing the Gaussian process
and introducing notations used throughout the paper in Sec.2, our GPMIL framework
is introduced in Sec. 3 with the soft-max approximation for inference and learning.
The witness variable based approximation for GPMIL is described in Sec. 4, while we

1 It is an extension of our earlier work (conference paper) published in (Kim and De la Torre, 2010). We
extend the previous work broadly in two aspects: i) More technical details and complete derivations are
provided for Gaussian process and our approaches based on it, which makes the manuscript comprehensive
and self-contained, and ii) The experimental evaluation includes more extensive multiple instance learning
datasets including the SIVAL image retrieval database and the drug activity datasets.
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also suggest the deterministic annealing optimization. After discussing relationship
with existing MIL approaches in Sec. 5, the experimental results of the proposed
methods on both synthetic data and real-world MIL benchmarkdatasets are provided
in Sec. 6. We conclude the paper in Sec. 7.

2 Review on Gaussian Processes

In this section we briefly review the Gaussian process model.The Gaussian process
is a nonparametric, nonlinear Bayesian regression model. For the expositional con-
venience, we first consider alinear regression from inputx ∈ R

d to output f ∈ R:

f = w>x+ ε, where w ∈ R
d is the model parameter andε ∼N (0,η2). (2)

Given n i.i.d. data points{(xi, fi)}ni=1, where we often use vector notations,f =
[ f1, . . . , fn]> andX = [x1, . . . ,xn]

>, we can express the likelihood as:

P(f|X,w) =
n

∏
i=1

P( fi |xi ,w) = N (f;Xw,η2I). (3)

We then turn this into a Bayesian nonparametric model by placing prior onw and
marginalizing it out. With a Gaussian priorP(w) = N (0, I), it is easy to see that

P(f|X) =
∫

P(f|X,w)P(w)dw = N (f;0,XX>+ η2I) N (f;0,XX>). (4)

Here, we letη → 0 to have a noise-free model. Although we restrict ourselvesto the
training data, adding a new test pair(x∗, f∗) immediately leads to the following joint
Gaussian by concatenating the test point with the training data, namely

P(

[
f∗
f

]
|
[

x∗
X

]
) = N

([
f∗
f

]
;

[
0
0

]
,

[
x>∗ x∗ x>∗ X>

Xx∗ XX>

])
. (5)

From (5), the predictive distribution forf∗ is analytically available as a conditional
Gaussian:

P( f∗|x∗, f,X) = N ( f∗;x>∗ X>(XX>)−1f,x>∗ x∗−x>∗ X>(XX>)−1Xx∗). (6)

A nonlinear extension of (4) is straightforward by replacing the finite dimensional
vectorw by an infinite dimensional nonlinear functionf (·) 2. TheGaussian process
(GP) is a particular choice of prior distribution on functions, which is characterized
by thecovariance function(i.e., the kernel function)k(·, ·) defined on the input space.
Formally, a GP withk(·, ·) satisfies:

Cov( f (xi), f (x j )) = k(xi ,x j), for anyxi andx j . (7)

2 We abuse the notationf to indicate either a function or a response variable evaluated atx (i.e., f (x)
interchangeably.
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In fact, any distribution onf that satisfies (7) is a GP. Forf that follows the GP prior
with k(·, ·), marginalizing outf produces a nonlinear version of (4),

P(f|X) = N (f;0,K β ), (8)

whereK β is the kernel matrix on the input dataX (i.e.,[K β ]i, j = kβ (i, j)). Here,β in
the subscript indicates the (hyper)parameters of the kernel function (e.g., for the RBF
kernel,β includes the length scale, the magnitude, and so on). As the dependency
on β is clear, we will sometimes drop the subscript for notational convenience. For a
new test inputx∗, by lettingk(x∗) = [k(x1,x∗), . . . ,k(xn,x∗)]>, we have a predictive
distribution for a test responsef∗, similar to (6). That is,

P( f∗|x∗, f,X) = N ( f∗;k(x∗)>K−1f,k(x∗,x∗)−k(x∗)>K−1k(x∗)). (9)

When the GP is applied for regression or classification problems, we often treat
f aslatentrandom variables indexed by the training data samples, and introduce the
actual (observable) output variablesy = [y1, . . . ,yn]

> which are linked tof through a
likelihood modelP(y|f)= ∏n

i=1P(yi | fi). In the Appendix, we review in greater details
two most popular likelihood models that yield GP regressionand GP classification.

3 Gaussian Process Multiple Instance Learning (GPMIL)

In this section we introduce a novel Gaussian process (GP) model for the MIL prob-
lem, which we denote byGPMIL. Our approach builds a bag class likelihood model
from the GP latent variables, where the likelihood is the sigmoid of themaximum
latent variables.

Note that the bagb is comprised ofnb points Xb = {xb,1, . . . ,xb,nb}. Accord-
ingly, we assign the GP latent variables to the instances in the bagb, and we denote
them byFb = { fb,1, . . . , fb,nb}. One can regardfi (∈ Fb) as aconfidencescore to-
ward the (instance-level) positive class forxi (∈ Xb). That is, the sign offi indicates
the (instance-level) class labelyi , and its magnitude implies how confident it is. In
the MIL, our goal is to devise a bag class likelihood modelP(Yb|Fb) instead of the
instance-level modelP(yi | fi). Note that the latter is a special case of the former since
an instance can be seen as a singleton bag. Once we have the bagclass likelihood
model, we can then marginalize out all the latent variablesF = {Fb}Bb=1 under the
Bayesian formalism using the GP priorP(F|X) given the entire inputX = {Xb}Bb=1.

Now, consider the situation where the bagb is labeled as positive (Yb = +1). The
chance is determined solely by the single point that is themost likely positive(i.e., the
largestf ). The larger the confidencef , the higher the chance is. The other instances
do not contribute to the bag label prediction no matter what their confidence scores
are3. Hence, we can let:

P(Yb = +1|Fb) ∝ exp(max
i∈Ib

fi). (10)

3 We provide a better insight about our argument here. It is true that any other instances can make a
bag positive, but it is the instance with the highest confidence score (what we calledmost likely positive
instance) that solely determines the bag label. In other words, to have an effect on the label of a bag, an
instance needs to get the largest confidence score. In formalprobability terms, the instancei can determine
the bag label only for the events that assign the highest confidence toi. It is also important to note that even
though maxi∈B fi indicates a single instance, max function examinesall instances in the bag to find it.
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Similarly, the odds of the bagb being labeled as negative (Yb =−1) is affected solely
by the single point which is theleast likely negative. As far as that point has a negative
confidencef , the label of the bag is negative, and the larger the confidence− f , the
higher the chance is. This leads to the model:

P(Yb =−1|Fb) ∝ exp(min
i∈Ib
− fi). (11)

Combining (10) and (11), we have the following bag class likelihood model:

P(Yb|Fb) =
1

1+exp(−Ybmaxi∈Ib fi)
. (12)

Note also that (12), in the limiting case where all the bags become singletons (i.e.,
classical supervised classification), is equivalent to thestandard Gaussian process
classification model with the sigmoid link4.

When incorporating the likelihood model (12) into the GP framework, one bot-
tleneck is that we have non-differentiable formulas due to the max function. We ap-
proximate it by the soft-max5: max(z1, . . . ,zm)≈ log∑i exp(zi). This leads to the ap-
proximated bag class likelihood model:

P(Yb|Fb) ≈
1

1+exp(−Yb log∑i∈Ib efi )

=
1

1+(∑i∈Ib efi )−Yb
. (13)

Whereas the soft-max is often good approximation to the max function, it should
be noted that unlike the standard GP classification with the sigmoid link, the neg-
ative log-likelihood− logP(Yb|Fb) = log(1+ (∑i∈Ib efi )−Yb) is not a convex func-
tion of Fb for Yb = +1 (although it is convex forYb = −1). This corresponds to a
non-convex optimization in the approximated GP posterior computation and learning
when the Laplace or variational approximation methods are adopted. However, using
the (scaled) conjugate gradient search with different starting iterates, one can properly
obtain a well-approximated posterior with a meaningful setof hyperparameters.

Before we proceed further to the details of inference and learning, we briefly dis-
cuss the benefits of the GPMIL compared to the existing MIL methods. As mentioned
earlier, the GPMIL directly models the bag class distribution, without suboptimally
introducing instance-level models such as the Noisy-OR model of (Viola et al, 2005).
Also, framed in the GP framework, the posterior estimation and the hyperparame-
ter learning can be accomplished by simple gradient search with similar complexity
as the standard GP classification, while it enables probabilistic interpretation (e.g.,
uncertainty in prediction). Moreover, we have a principledway to learn the kernel
hyperparameters under the Bayesian formalism, which is notproperly handled by
other kernel-based MIL methods.

4 So, it is also possible to have a probit version of (12), namely P(Yb|fb) = Φ(Ybmaxi∈Ib fi ), whereΦ(·)
is the cumulative normal function.

5 It is well known that the soft-max provides relatively tightbounds for the max, maxm
i=1 zi ≤

log∑m
i=1 exp(zi)≤maxmi=1 zi + logm. Another nice property is that the soft-max is a convex function.
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Fig. 1 Graphical model for GPMIL.

3.1 Posterior, Evidence, and Prediction

From the latent-to-output likelihood model (13), our generative GPMIL model can
be depicted in a graphical representation as Fig. 1. Following the GP framework, all
the latent variablesF = {F1, . . . ,FB}= { fb,i}b,i are dependent on one another as well
as on all the training input pointsX = {X1, . . . ,XB} = {xb,i}b,i , conforming to the
following distribution:

P(F|X) = N (F;0,K), (14)

Similarly, for a new test bagX∗ = {x∗,1, . . . ,x∗,n∗} together with the corresponding
latent variablesF∗ = { f∗,1, . . . , f∗,n∗}, we have a joint Gaussian prior on the concate-
nated latent variables,{F∗,F}, from which the predictive distribution onF∗ can be
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derived as (by conditional Gaussian):

P(F∗|X∗,F,X) = N

(
F∗; k(X∗)>K−1F, k(X∗,X∗)−k(X∗)>K−1k(X∗)

)
, (15)

wherek(X∗) is the(n×n∗) train-test kernel matrix whosei j -th element isk(xi ,x∗, j),
andk(X∗,X∗) is the(n∗×n∗) test-test kernel matrix whosei j -th element isk(x∗,i ,x∗, j).

Under the usual i.i.d. assumption, the entire likelihoodP(Y = [Y1, . . . ,YB]|F) is
the product of the individual bag likelihoodsP(Yb|Fb) in (13). That is,

P(Y|F) =
B

∏
b=1

P(Yb|Fb)≈
B

∏
b=1

1
1+(∑i∈Ib efi )−Yb

. (16)

Equipped with (14) and (16), one can compute the posterior distributionP(F|Y,X) ∝
P(F|X)P(Y|F) and the evidence (or the data likelihood)P(Y|X) =

∫
F P(F|X)P(Y|F),

where the GP learning maximizes the evidence w.r.t. the kernel hyperparameters (also
known as the empirical Bayes). However, similar to the GP classification cases, the
non-Gaussian likelihood term (16) causes intractability in the exact computation, and
we resort to some approximation. Here we focus on the Laplaceapproximation6

where its application to standard GP classification is very popular and reviewed in
Appendix.

The Laplace approximation essentially replaces the product P(Y|F)P(F|X) by a
Gaussian with the mean equal to the mode of the product, and the covariance equal to
the inverse Hessian of the product evaluated at the mode. Forthis purpose, we rewrite

P(Y|F)P(F|X) = exp(−S(F)) · |K |−1/2 · (2π)−n/2,

where S(F) =
B

∑
b=1

l(Yb,Fb)+
1
2

F>K−1F,

l(Yb,Fb) =− logP(Yb|Fb)≈ log
(

1+(∑
i∈Ib

efi )−Yb

)
. (17)

We first find the minimum ofS(F), namely

F̂ = argmin
F

S(F), (18)

where the optimum is denoted bŷF. Solving (18) can be done by gradient search
as usual. Unlike the standard GP classification, however, notice thatS(F) is a non-
convex function ofF since the Hessian ofS(F), H + K−1, is generally not positive
definite, whereH is the block diagonal matrix whoseb-th block has thei j -th entry

[Hb]i j = ∂ 2l(Yb,Fb)
∂ fi∂ f j

for i, j ∈ Ib. Although this may hinder obtaining the global mini-

mum easily,S(F) is bounded below by 0 (from (17)), and the (scaled) conjugateor

6 Although it is feasible, here we do not take the variational approximation into consideration for sim-
plicity. Unlike the standard GP classification, it is difficult to perform, for instance, the Expectation Prop-
agation (EP) approximation since the moment matching, the core step in EP that minimizes the KL diver-
gence between the marginal posteriors, requires the integration over the likelihood function in (13), which
requires further elaboration.
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Newton-type gradient search with different initial iterates can yield a reliable solu-
tion.

We then approximateS(F) by a quadratic function using its Hessian evaluated at
F̂, namelyH(F̂)+K−1. Yet, in order to enforce a convex quadratic form, we need to
address the case thatH +K−1 is not positive definite, which although very rare, could
happen as gradient search only discovers a point close (not exactly the same) to local
minima. We approximate it to the closest positive definite matrix by projecting it onto
the PSD cone. More specifically, we letQ ≈ H +K−1, with Q = ∑i max(λi ,ε)viv>i ,
whereλ andv are the eigenvalues/vectors ofH +K−1, andε is a small positive con-
stant. In this wayQ is a positive definite matrix closest to the Hessian with precision
ε. Letting Q̂ beQ evaluated at̂F, we approximateS(F) by the following quadratic
function (i.e., using the Taylor expansion)

S(F)≈ S(F̂)+
1
2
(F− F̂)>Q̂(F− F̂), (19)

which leads to Gaussian approximation forP(F|Y,X)

P(F|Y,X)≈N (F; F̂,Q̂−1). (20)

The data likelihood (i.e., evidence) immediately follows from the similar approx-
imation,

P(Y|X,θ )≈ exp(−S(F̂))|Q̂|−1/2|K |−1/2. (21)

We then maximize (21) (so-calledevidence maximizationorempirical Bayes) w.r.t. the
kernel parametersθ by gradient search.

More specifically, the negative log-likelihood,NLL = − logP(Y|X,θ ), can be
approximately written as:

NLL =
B

∑
b=1

l(Yb, F̂b)+
1
2

F̂>K−1F̂+
1
2

log|I +KH |. (22)

The gradient of the negative log-likelihood with respect toa (scalar) kernel parameter
θm (i.e.,θ = {θm}) can then be derived easily as follows:

∂NLL
∂θm

=−1
2

α>
( ∂K

∂θm

)
α +

1
2

tr

(
(H−1 +K)−1

( ∂K
∂θm

))
+

1
2

tr

(
(H +K−1)−1

( ∂H
∂θm

))
,

(23)

where

α = K−1F̂ and
( ∂H

∂θm

)

i, j
= tr

((∂H i, j

∂F

)>
(I +KH )−1

( ∂K
∂θm

)
α

)
. (24)

Here,tr(A) is the trace of the matrixA. In the implementation, one can exploit the

fact that
∂H i, j

∂F is highly sparse (only the corresponding block ofFb can be non-zero).
The overall learning algorithm is depicted in Algorithm 1.
Given a new test bagX∗ = {x∗,1, . . . ,x∗,n∗}, it is easy to derive the predictive

distribution for the corresponding latent variablesF∗ = { f∗,1, . . . , f∗,n∗}. Using the
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Algorithm 1 GPMIL Learning
Input: Initial guessθ , the tolerance parameterτ .
Output: Learned hyperparametersθ .
(a) FindF̂ from (18) for currentθ .
(b) ComputeQ̂ using the PSD cone projection.
(c) Maximize (21) w.r.t.θ .
if ||θ −θold||> τ then

Go to (a).
else

Returnθ .
end if

Gaussian approximated posterior (20) together with the conditional Gaussian prior
(15), we have:

P(F∗|X∗,Y,X) =
∫

P(F∗|X∗,F,X)P(F|Y,X)dF

≈
∫

P(F∗|X∗,F,X)N (F; F̂,Q̂−1)dF

= N

(
F∗; k(X∗)>K−1F̂, k(X∗,X∗)+k(X∗)>(K−1Q̂−1K−1−K−1)k(X∗)

)
.

(25)

Finally, the predictive distribution for the test bag classlabelY∗ can be obtained by
marginalizing outF∗, namely

P(Y∗|X∗,Y,X) =

∫
P(F∗|X∗,Y,X)P(Y∗|F∗)dF∗. (26)

The integration in (26) generally needs further approximation. If one is only inter-
ested in the mean prediction (i.e., the predicted class label), it is possible to approx-
imate P(F∗|X∗,Y,X) by a delta function at its mean (mode),µ := k(X∗)>K−1F̂,
which yields the test prediction:

Class(Y∗)≈ sign

(
1

1+(∑i∈∗eµi )−1 −0.5

)
. (27)

4 GPMIL using Witness Variables

Although the approach in Sec. 3 is reasonable, one drawback is that the target func-
tion we approximate (i.e.,S(F)) is not in general a convex function (due to the non-
convexity of− logP(Yb|Fb)), where we perform the PSD projection step to find the
closest convex function in the Laplace approximation. In this section, we address this
issue in a different way by introducing the so-calledwitness latent variableswhich
indicate the most probably positive instances in the bags.

For each bagb, we introduce the witness indicator random variablesPb = [pb,1, . . . , pb,nb]
>,

wherepb,i represents the probability thatxb,i is considered as awitnessof the bagb.
We call an instance awitnessif it contributes to the likelihoodP(Yb|Fb). Note that
∑i pb,i = 1, andpb,i ≥ 0 for all i ∈ Ib. In the MIL, asP(Yb|Fb) is solely dependent on
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the most likely positive instance, it is ideal to put all the probability mass to a single
instance as:

pb,i =

{
1 if i = argmaxj fb, j

0 otherwise
(28)

Alternatively, it is also possible to define a soft witness assignment7 using a sigmoid
function:

pb,i =
exp(λ fb,i)

∑ j∈Ib exp(λ fb, j)
, (29)

whereλ is the parameter that controls the smoothness of the assignment.
OncePb is given, we then define the likelihood as a sigmoid of the weighted sum

of fi ’s with weightspi ’s:

P(Yb|Fb,Pb) =
1

1+exp(−Yb ∑i pb,i fb,i)
. (30)

The aim here is to replace themaxor thesoft-maxfunction in the original derivation
by theexpectation, ∑i pb,i fb,i , a linear function ofFb given the witness assignment
Pb. Notice that givenPb, the negative log-likelihood of (30) is a convex function of
Fb.

In the full Bayesian treatment, one marginalizes outPb, namely

P(Yb|Fb) =
∫

P(Yb|Fb,Pb)P(Pb|Fb)dPb, (31)

whereP(Pb|Fb) is a Dirac’s delta function with the point support given as (28) or
(29). However, this simply leads to the very non-convexity raised by the original
version of our GPMIL. Rather we pursue the coordinate-wise convex optimization
by separating the process of approximatingP(Yb|Fb) into two individual steps: (i)
find the witness indicatorPb from Fb using (28) or (29), and (ii) (while fixingPb)
represent the likelihood as the sigmoid of the weighted sum (30), and perform poste-
rior approximation. We alternate these two steps until convergence. Note that in this
setting the Laplace approximation becomes quite similar tothat of the standard GP
classification, having the additional alternating optimization as an inner loop.

4.1 (Optional) Deterministic Annealing

When we adopt the soft witness assignment in the above formulation, it is easy to see
that (29) is very similar to the probability assignment in the deterministic annealing
(i.e., Eq. (11) of (Gehler and Chapelle, 2007)) while the smoothness parameterλ
now acts as the inverse temperature in the annealing schedule. Motivated by this, we
can have a annealed version of posterior approximation. More specifically, it initially
begins with a smallλ (large temperature) corresponding to a uniform-likePb, and
repeats the followings: perform a posterior approximationstarting from the optimum
Fb in the previous stage to get a newFb, then increaseλ to reduce the entropy ofPb.

7 This has a close relation to (Gehler and Chapelle, 2007)’s deterministic annealing approach to SVM.
Similar to (Gehler and Chapelle, 2007), one can also consider a scheduled annealing, where the inverse of
the smoothness parameterλ in (29) serves as the annealing temperature. See Sec. 4.1 forfurther details.
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5 Related Work

This section briefly reviews/summarizes some typical approaches to MIL problems
that are related to our models.

The pioneering work by (Dietterich et al, 1997) introduces the multiple instance
problem, where they suggest a specific type of hypothesis class that can be learned
iteratively to meet the positive bag/instance constraints. Since this work, there have
been considerable research results on MIL problems. Most ofthe existing approaches
can roughly belong to one of two different techniques: 1) directly learning a dis-
tance/similarity metric between bags, and 2) learning a predictor model while prop-
erly dealing with missing labels.

The former category includes: the diverse density (DD) of (Maron and Lozano-
Perez, 1998) that aims to estimate proximity between a bag and a positive intersection
point, the EM-DD of (Zhang et al, 2002) that extends the DD by introducing wit-
ness variables, and several kernel/distance measures proposed by (Wang and Zucker,
2000; Gärtner et al, 2002; Tao et al, 2004; Chen et al, 2006).In the other category, the
most popular and sophisticated SVM framework has been exploited to find reason-
able predictors. Themi-SVM(Andrews et al, 2003) is derived by formulating SVM-
like optimization with the MIL’s bag constraints. The difficult integer programming
has been mitigated by the technique of deterministic annealing (Gehler and Chapelle,
2007).

Apart from instance-level predictors, the idea of focusingon themost positive
instance or thewitness, has been studied considerably. In the SVM framework,MI-
SVMof (Andrews et al, 2003) directly maximizes the margin of theinstance with the
most positive confidence. Alternatively, theMICA algorithm (Mangasarian and Wild,
2008) parameterized witnesses as linear weighted sums overall instances in positive
bags. Our GPMIL model can also be seen as a witness-based approach as the bag
class likelihood is dominated by the maximally confident instance either via sigmoid
soft-max modeling or via introducing witness random variables.

Some of the recent multiple instance algorithms have close relationships with
the witness technique similar to ours. We briefly discuss twointeresting approaches.
In (Li et al, 2009), the CBIR problem is particularly considered where the regions
of interest can be seen as witnesses or key instances in positive bags. They formed a
convex optimization problem iteratively by finding violated key instances and com-
bining them via multiple kernel learning. The optimizationinvolves a series of stan-
dard SVM subproblems, and can be solved efficiently by a cutting plane algorithm.
In (Liu et al, 2012), the key instance detection problem is tackled/formulated within
a graph-based voting framework, which is formed either by a random walk or an
iterative rejection algorithm.

We finally list some of more recent MIL algorithms. In (Antićand Ommer, 2012),
a MIL problem is tackled by two alternating tasks of learningregular classifiers and
imputing missing labels. They introduced the so-calledsuperbags, a random ensem-
ble of sets of bags, aimed for decoupling two tasks to avoid overfitting and improve
robustness. Instead of building bag-level distance measures, (Wang et al, 2011) pro-
poses a new approach of forming aclass-to-bagdistance metric. The goal is to reflect
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the semantic similarities between class labels and bags. The maximum margin opti-
mization is formulated and solved by parameterizing the distance metrics.

Apart from typical treatments that consider bags having a finite number of in-
stances, the approach in (Babenko et al, 2011) regards bags as low dimensional man-
ifolds embedded in high dimensional feature space. The geometric manifold struc-
ture of the manifold bags is then learned from data. This can be essentially seen
as employing a particular bag kernel that preserves the geometric constraints that
reside in data. In (Fu et al, 2011), they focus on the problem of efficient instance
selection under large instance spaces. An adaptive instance selection algorithm is in-
troduced, which alternates between instance selection andclassifier learning in an
iterative manner. In particular, the instance selection isseeded by a simple kernel
density estimator on negative instances.

There are several unique benefits of having the GP framework in MIL problems.
First, by using GP, choosing parameters of the kernel/modelcan be done in a princi-
pled manner (e.g., empirical Bayes of maximizing data likelihood) unlike some ad-
hoc methods by SVM. Also, the parameters in GP models are random variables, and
hence can be marginalized out within the Bayesian probabilistic framework to yield
more flexible models. Furthermore, apart from other non-parametric kernel machines,
one can interpret the underlying kernels more directly as the covariance functions,
for which certain domain knowledge can be effectively exploited. In our MIL for-
mulation, the bag label scoring model process is specifically treated as a covariance
function over the input instance space. More importantly, we have observed empiri-
cally that the proposed GPMIL approaches achieve often times much more accurate
prediction than existing methods including recent SVM-based MIL algorithms.

6 Experiments

In this section we conduct experimental evaluation for bothartificially generated data
and several real-world benchmark datasets. The latter includes the MUSK datasets (Di-
etterich et al, 1997), image annotation, and text classification datasets traditionally
well-framed in multiple instance learning setup. Furthermore, we test the proposed
algorithms on the large-scale content-based image retrieval task using the SIVAL
dataset (Rahmani and Goldman, 2006).

We run two different approximation schemes for our GPMIL, which are denoted
by: (a)GP-SMX = the soft-max approximation with the PSD projection described in
Sec. 3, and (b)GP-WDA = the approximation using the witness indicator variables
with the deterministic annealing optimization discussed in Sec. 4. In theGP-SMX, the
GP inference/learning optimization is done by the (scaled)conjugate gradient search
with different starting iterates. In theGP-WDA, we start from a large temperature (e.g.,
λ = 1e−1), and decrease it in log-scale (e.g.,λ ← 10·λ ) until there is no significant
change in the quantities to be estimated. For both methods, we first estimate kernel
hyperparameters by empirical Bayes (i.e., maximizing the evidence likelihood), then
use the learned hyperparameters to the test prediction. TheGPMIL is implemented
in Matlab based on the publicly available GP codes from (Rasmussen and Williams,
2006).
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Fig. 2 Visualization of the synthetic 1D dataset. It depicts the instance-level input and output samples,
where the bag formation is done by randomly grouping the instances. See text for details.

In the following section, we first demonstrate the performance of the proposed
algorithms on artificially generated data.

6.1 Synthetic Data

In this synthetic setup, we test the capability of the GPMIL on estimating the kernel
hyperparameters accurately from data. We construct the synthetic 1D dataset gener-
ated by a GP prior with random formation of the bags. The first step is to sample
the input data pointsx uniformly from the real line[−30,30]. For the 1000 sam-
ples generated, the latent variablesf are randomly generated from the GP prior dis-
tribution with the covariance matrix set equal to the(1000× 1000) kernel matrix
from the input samples. The kernel has a particular form, specifically the RBF kernel
k(x,x′) = exp(−||x− x′||2/2σ2), where the hyperparameter is set toσ = 3.0. The
RBF kernel form is assumed known to the algorithms, and the goal is to estimateσ
as accurately as possible. Given the sampledf , the actual instance-level class out-
put y is then determined by:y = sign( f ). Fig. 2 depicts the instance-level input and
output samples (i.e.,f (andy) vs.x).

To form the bags, we perform the following procedure. For each bagb, we ran-
domly assign the bag labelYb uniformly from{+1,−1}. The number of instancesnb

is also chosen uniformly at random from{1, . . . ,10}. WhenYb = −1, we randomly
selectnb instances from the negative instances of the 1000-sample pool. On the other
hand, whenYb = +1, we flip the 10-side fair coin to decide the positive instance
portion pp∈ {0.1,0.2, . . . ,1.0}, with which the bag is constructed fromdpp× nbe
instances selected randomly from the positive instances and the rest (also randomly)
from the negative instance pool. We generate 100 bags. We repeat the above proce-
dure randomly 20 times.

We then perform the GPMIL hyperparameter learning startingfrom the initial
guessσ = 1.0. We compute the averageσ estimated for 20 trials. The results are:
3.2038±0.2700 for the GP-SMX approach, and3.0513±0.2149 for the GP-WDA,
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which are very close to the true valueσ = 3.0. This experimental result highlights
unique benefit of our GPMIL algorithms, namely that we can estimate the kernel pa-
rameters precisely in a principled manner, which is difficult to be achieved by other
existing MIL approaches that rely on heuristic grid search on the hyperparameter
space.

6.2 Competing Approaches

In this section we perform extensive comparison study of ourGPMIL approaches
against the state-of-the-art MIL algorithms. The competing algorithms are summa-
rized below. The datasets, evaluation setups, and prediction results are provided in
the following sections.

– GP-SMX: The proposed GPMIL algorithm that implements the soft-maxapprox-
imation with the PSD projection.

– GP-WDA: The proposed GPMIL algorithm that incorporates the witness indica-
tor random variables optimized by deterministic annealing.

– mi-SVM: The instance-level SVM formulation by treating the labelsof instances
in positive bags as missing variables to be optimized (Andrews et al, 2003).

– MI-SVM : The bag-level SVM formulation that aims to maximize the margin of
the most positive instance (i.e., witness) with respect to the current model (An-
drews et al, 2003).

– AL-SVM : The deterministic annealing extension of the instance-level mi-SVM
by introducing binary random variables that indicate the positivity/negativity of
the instances (Gehler and Chapelle, 2007).

– ALP-SVM : Further extension ofAL-SVM by incorporating extra constraints on
the expected number of positive instances per bag (Gehler and Chapelle, 2007).

– AW-SVM : The deterministic annealing extension of the witness-basedMI-SVM
approach (Gehler and Chapelle, 2007).

– EMDD: Probabilistic approach to find witnesses of the positive bags to estimate
diverse densities (Zhang et al, 2002). We use Jun Yang’s implementation, referred
to asMultiple Instance Learning Library8.

– MICA : SVM formulation that indirectly represents the witnessesusing convex
combination over instances in positive bags (Mangasarian and Wild, 2008). The
linear program formulation for the MICA has been implemented in MATLAB.

Unless stated otherwise, all the kernel machines includingour GPMIL algorithms
employ the RBF kernel. For the SVM-based methods, the scale parameter of the RBF
kernel is chosen as the median of the pairwise pattern distances. The hyperparameters
are optimized using cross validation. Other parameters areselected randomly.

8 Available at http://www.cs.cmu.edu/∼juny/MILL.
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6.3 Standard Benchmark Datasets

6.3.1 The MUSK Datasets

The MUSK datasets (Dietterich et al, 1997) have served widely as the benchmark
dataset for demonstrating performance of MIL algorithms. The datasets consist of
the description of molecules using multiple low-energy conformations. The feature
vectorx is of 166-dimensional. There are two different types of bag formation de-
noted by MUSK1 and MUSK2, where the MUSK1 has approximatelynb = 6 con-
formations (instances) per bag, while the MUSK2 takesnb = 60 instances per bag on
average.

For comparison with the existing MIL algorithms, we follow the experimental
setting similar to that of (Andrews et al, 2003; Gehler and Chapelle, 2007), where
we conduct 10-fold cross validation. This is further repeated 5 times with different
(random) partitions, and the average accuracies are reported. The test accuracies are
shown in Table 1.

Our GPMIL algorithms, for both approximation strategiesWDA andSOFT-MAX,
exhibit superior classification performance to the existing approaches for the two
MUSK datasets. One exception is the MICA where their reported error is the smallest
on the MUSK2 dataset. This can be mainly due to the use of L1-regularizer in the
MICA that yields a sparse solution suitable for the large-scale MUSK2 dataset. As is
also alluded in (Gehler and Chapelle, 2007), it may not be directly comparable with
the other methods.

6.3.2 Image Annotation

We test the algorithms on the image annotation datasets devised by (Andrews et al,
2003) from the COREL image database. Each image is treated asa bag comprised
of the segments (instances) that are represented as featurevectors of color, text, and
shape descriptors. Three datasets are formed for the objectcategories, tiger, elephant,
and fox, regarding images containing the object as positive, and the rest as negative.

We follow the same setting as the original paper: There are 100/100 positive/negative
bags, each of which contains 2∼ 13 instances. Similar to (Andrews et al, 2003;
Gehler and Chapelle, 2007), we conduct 10-fold cross validation. This is further re-
peated 5 times with different (random) partitions. Table 1 shows the test accuracies.
The proposed GPMIL algorithms achieve significantly higheraccuracy than the best
competing approaches most of the time. Comparing two approximation methods for
GPMIL, GP-WDA often outperformsGP-SMX, implying that the approximation based
on witness variables followed by a proper deterministic annealing schedule can be
more effective than the soft-max approximation with the spectral convexification.

6.3.3 Text Classification

We next demonstrate the effectiveness of the GPMIL algorithm on the text categoriza-
tion task. We use the MIL datasets provided by (Andrews et al,2003) obtained from
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Table 1 Test accuracies (%) on MUSK and Image Annotation Datasets. We report the accuracies of the
proposed GPMIL algorithms,GP-SMX (soft-max approximation) andGP-WDA (witness variables with de-
terministic annealing). In AW-SVM and AL-SVM, for the two annealing schedules suggested by (Gehler
and Chapelle, 2007), we only show the ones with smaller errors. Boldfaced numbers indicate the best
results.

Dataset GP-SMX GP-WDA mi-SVM MI-SVM AL-SVM ALP-SVM AW-SVM EMDD MICA
MUSK1 88.5± 3.5 89.5± 3.4 87.6± 3.5 79.3± 3.7 85.7± 3.0 86.5± 3.4 85.7± 3.1 84.6± 4.2 84.0± 4.4
MUSK2 87.9± 3.8 87.2± 3.7 83.8± 4.8 84.2± 4.5 86.3± 4.0 86.1± 4.7 83.4± 4.2 84.7± 3.2 90.3± 5.8
TIGER 87.1± 3.6 87.4± 3.6 78.7± 5.0 83.3± 3.3 78.5± 4.8 85.2± 3.2 82.7± 3.5 72.1± 4.0 81.3± 3.1

ELEPHANT 82.9± 4.0 83.8± 3.8 82.7± 3.6 81.5± 3.5 79.7± 2.1 82.8± 3.0 81.9± 3.4 77.5± 3.4 81.7± 4.7
FOX 63.2± 4.1 65.7± 4.9 58.7± 5.7 57.9± 5.5 63.7± 5.4 65.7± 4.3 63.3± 4.2 52.2± 5.9 58.3± 6.2

Table 2 Test accuracies (%) on text classification. Boldfaced numbers indicate the best results.

Dataset GP-WDA mi-SVM MI-SVM EMDD
TST1 94.4 93.6 93.9 85.8
TST2 85.3 78.2 84.5 84.0
TST3 86.1 87.0 82.2 69.0
TST4 85.3 82.8 82.4 80.5
TST7 80.3 81.3 78.0 75.4
TST9 70.8 67.5 60.2 65.5
TST10 80.4 79.6 79.5 78.5

the well-known TREC9 database. The original data are composed of 54000 MED-
LINE documents annotated with 4903 subject terms, each defining a binary concept.
Each document (bag) is decomposed into passages (instances) of overlapping win-
dows of 50 or less words. Similar to the settings in (Andrews et al, 2003), a smaller
subset is used, where the data are publicly available9. The dataset is comprised of 7
concepts (binary classification problems), each of which has roughly the same num-
ber (about 1600) of positive/negative instances from 200/200 positive/negative bags.

In Table 2 we report the average test accuracies of the GPMIL with theWDA ap-
proach, together with those of competing models from (Andrews et al, 2003). For
MI-SVM and mi-SVM, only the linear SVM results are shown since the linear ker-
nel outperforms polynomial/RBF kernels most of the time. Inthe GPMIL we also
employ the linear kernel. We see that for a large portion of the problem sets, our
GPMIL exhibits significant improvement over the methods provided in the original
paper (EM-DD, mi-SVM, and MI-SVM).

6.4 Localized Content-Based Image Retrieval

The task of content-based image retrieval (CBIR) is perfectly fit to the MIL formu-
lation. A typical setup of the CBIR problem is as follows: oneis given a collection
of training images where each image is labeled as+1 (−1) indicating existence (ab-
sence) of a particular concept or object in the image. Treating an entire image as a

9 http://www.cs.columbia.edu/∼andrews/mil/datasets.html.
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bag, and the regions/patches in the image as instances, it exactly reduces to the MIL
problem: we only have bag-level labels where at least one positive region implies that
the image is positive.

For this task, we use the SIVAL (Spatially Independent, Variable Area, and Light-
ing) dataset (Rahmani and Goldman, 2006). The SIVAL datasetis composed of 1500
images of 25 different object categories (60 images per category). The images of
single objects are photographed with highly diverse backgrounds, while the spatial
locations of the objects within images are arbitrary. This image acquisition setup can
be more realistic and challenging than the popular COREL image database in which
objects are mostly centered in the images occupying majorities of images.

The instance/bag formation is as follows: Each image is transformed into the
YCbCr color space followed by pre-processing using a wavelet texture filter. This
gives rise to six features (three colors and three texture features) per pixel. Then the
image is segmented by the IHS segmentation algorithm (Zhangand Fritts, 2005).
Each segment (instance) of the image is represented by the 30-dim feature vector by
taking averages of color/texture features over pixels in the segment itself as well as
those from its four neighbor segments (N, E, S, W). It ends up with 31 or 32 instances
per bag.

We then form binary MIL problems via one-vs-all strategy (i.e., considering each
of 25 categories as the positive class and the other categories as negative): For each
categoryc, we take 20 random (positive) images fromc, and randomly select one
image from each of the classes other thanc (that is, collecting 24 negative images).
These 44 images serve as the training set, and all the rest of the images are used for
testing. This procedure is repeated randomly for 5 times, and we report the average
performance (with standard errors) in Table 3.

Since the label distributions of the test data are highly unbalanced (for each cat-
egory, the negative examples take about 97% of the test bags), we used the AUROC
(Area-Under ROC) measure instead of the standard error rates. In this result, we ex-
cluded MICA not only because its performance is worse than best performing ones
for most categories, but also it often takes a large amount oftime to converge to op-
timal solutions. As shown in the results, the proposed GPMILmodels perform best
most of the problem sets, exhibiting superb or comparable performance to the existing
methods. The Gaussian process priors used in our models haveeffects of smoothing
by interpolating the latent score variables across unseen test points, which is shown
to be highly useful for improving generalization performance.
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Table 3 Test accuracies (AUROC scores) on the SIVAL CBIR dataset. Boldfaced numbers indicate the best results within the marginof significance.

Category GP-SMX GP-WDA mi-SVM MI-SVM AL-SVM ALP-SVM AW-SVM EMDD

AjaxOrange 90.05± 8.61 94.20± 8.48 75.47± 5.20 63.57± 7.60 87.68± 3.53 83.72± 5.97 86.28± 12.66 56.83± 11.22

Apple 61.69± 2.69 67.43± 3.11 54.70± 4.24 47.20± 3.99 50.77± 4.93 52.45± 2.24 61.26± 6.54 54.63± 2.79

Banana 67.69± 7.05 68.92± 4.51 61.79± 5.72 55.82± 3.45 60.52± 4.62 62.05± 4.63 63.89± 4.87 59.86± 5.18

BlueScrunge 72.04± 6.46 68.13± 1.21 65.04± 7.66 67.17± 9.40 71.94± 5.20 67.65± 5.01 71.82± 7.60 66.04± 3.03

CandleWithHolder 89.49± 3.35 86.58± 7.54 80.85± 2.12 76.73± 4.47 76.81± 5.57 77.67± 5.34 84.70± 2.15 69.36± 5.86

CardboardBox 76.35± 15.89 73.53± 3.81 65.03± 4.03 64.93± 5.32 68.86± 4.26 67.31± 4.72 68.04± 3.33 58.42± 1.12

CheckeredScarf 94.85± 5.36 92.29± 8.52 81.44± 1.28 80.01± 2.27 88.04± 2.06 90.93± 2.93 88.63± 1.31 89.90± 2.37

CokeCan 96.55± 3.14 95.14± 3.30 93.61± 0.86 79.07± 6.74 92.49± 2.94 88.39± 4.32 92.45± 1.16 72.59± 5.20

DataMiningBook 77.07± 11.68 72.82± 5.40 69.82± 9.63 58.13± 2.84 75.25± 6.02 72.95± 6.19 78.86± 6.35 71.75± 7.26

DirtyRunningShoe 79.16± 3.18 82.39± 4.88 74.90± 4.83 67.73± 2.66 77.71± 1.93 81.00± 3.34 82.17± 4.01 80.14± 3.89
DirtyWorkGloves 61.32± 4.91 80.96± 3.65 73.86± 3.80 63.07± 4.67 76.77± 4.84 66.59± 3.14 76.96± 6.08 66.11± 3.12

FabricSoftnerBox 96.13± 6.50 94.94± 3.29 95.53± 0.72 83.17± 6.23 96.17± 2.04 93.20± 3.84 97.52± 2.01 75.65± 12.77

FeltFlowerRug 92.98± 8.71 87.80± 7.47 85.91± 2.12 84.52± 1.40 89.40± 1.89 89.39± 3.78 90.75± 3.31 76.42± 7.66

GlazedWoodPot 63.66± 8.42 67.40± 2.68 50.93± 4.34 47.73± 6.49 55.75± 4.40 57.41± 3.58 58.47± 5.69 73.45± 6.68
GoldMedal 82.82± 4.20 71.59± 5.19 83.40± 11.63 52.07± 8.25 86.89± 2.79 86.18± 4.75 87.68± 4.06 74.38± 6.90

GreenTeaBox 93.73± 2.79 93.56± 5.00 88.50± 6.93 86.64± 7.17 95.47± 2.75 92.67± 1.00 93.48± 1.55 79.92± 7.70

JuliesPot 87.23± 9.08 91.78± 11.23 82.12± 17.26 51.87± 3.29 84.37± 10.52 80.86± 10.58 88.88± 6.76 83.06± 8.39

LargeSpoon 60.01± 4.74 63.30± 3.46 54.16± 3.73 57.02± 3.18 54.38± 1.53 55.08± 1.81 54.13± 0.76 59.01± 1.49

RapBook 67.43± 3.33 67.73± 6.60 60.33± 3.14 57.18± 2.93 60.80± 4.60 60.59± 1.82 59.31± 3.78 55.78± 3.25

SmileyFaceDoll 80.65± 2.28 75.32± 5.76 75.52± 1.73 74.46± 5.98 81.05± 4.54 68.55± 4.72 81.47± 9.52 65.47± 6.77

SpriteCan 80.31± 9.91 79.84± 7.29 72.75± 3.21 75.38± 7.28 74.07± 5.91 75.99± 7.66 78.57± 7.47 64.36± 5.03

StripedNotebook 89.29± 3.40 90.45± 5.40 70.64± 7.34 63.26± 3.31 88.10± 2.86 81.08± 4.33 88.90± 2.66 61.47± 4.25

TranslucentBowl 79.71± 5.79 72.62± 3.75 79.33± 8.82 62.48± 3.02 78.96± 5.32 74.72± 4.48 77.12± 6.58 75.08± 6.90

WD40Can 90.41± 5.78 79.82± 4.42 88.99± 3.30 83.02± 2.66 92.02± 1.83 88.34± 3.05 94.10± 1.17 70.57± 6.23

WoodRollingPin 71.17± 6.73 75.26± 4.47 54.72± 1.62 61.72± 4.06 57.09± 2.28 59.09± 3.80 64.57± 2.91 58.90± 3.81
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6.5 Drug Activity Prediction

Next we consider the drug activity prediction task with the publicly available artificial
molecule dataset10. In the dataset, the artificial molecules were generated such that
each feature value represents the distance from the molecular surface when aligned
with the binding sites of the artificial receptor. A moleculebag is then comprised of
all likely low-energy configurations or shapes for the molecule. More details on the
data synthesis can be found in (Dooly et al, 2002).

The data generation process is quite similar to the MUSK datasets, while a notable
aspect is that the real-valued labels are introduced. The label for a molecule is the ratio
of the binding energy to the maximum possible binding energygiven the artificial
receptor, hence representing binding strength, which is real-valued between 0 and 1.
We transform it to a binary classification setup by thresholding the label by 0.5.

We select two different types of datasets: one has 166-dim features and the other
283-dim. The former dataset is similar to the MUSK data whilethe latter aims to
mimic the proprietary Affinity dataset from CombiChem (Dooly et al, 2002). In each
of the two datasets, there are different setups by having different numbers of relevant
features. For the 166-dim dataset, we have two setups ofr = 160 andr = 80 wherer
indicates the number of relevant features (the rest features can be regarded as noise).
For the 283-dim dataset, we consider four setups ofr = 160,120,80,40.

As the features are blend of relevant and noise ones, one can deal with feature
selection. In our GP-based models, the feature selection can be gracefully achieved by
the hyperparameter learning with the so-called ARD kernel under the GP framework.
The ARD kernel is defined as follows, and allows individual scale parameter for each
feature dimension.

k(x,x′) = exp
(
− 1

2
(x−x′)>P−1(x−x′)

)
, whereP = diag(p2

1, . . . , p2
d). (32)

Here,d is the feature dimension, anddiag(·) makes a diagonal matrix with its argu-
ments. Learning the hyperparameters of the ARD kernel in ourGPMIL models can be
done by efficient gradient search under empirical Bayes (data likelihood maximiza-
tion). For the other approaches, however, it should be notedthat it is computationally
infeasible to perform grid search or cross validation like optimization to select rele-
vant features from the large feature dimensions.

For each data setup, we split the data into 180 training bags and 20 test bags,
where each bag consists of 3∼ 5 instances. The procedure is repeated randomly
for 5 times, and we report in Table 4 the means and standard deviations of the test
accuracies. For our GPMIL models, the performance of the GP-WDA models are
shown (as GP-SMX performs comparably), where we contrast the ARD kernel with
the standard isotropic RBF kernel (denoted by ISO). To identify the dataset, we use
the notation #-relevant-features/#-features, for instance, the dataset 40/283
indicates that only 40 out of 283 features are relevant, and the rest are noise. For
all datasets, each feature vector consists of the relevant features taking the first part,
followed by the noise features.

10 http://www.cs.wustl.edu/∼sg/multi-inst-data/.
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Table 4 Test accuracies (%) on the drug activity prediction dataset.

Dataset
GP-WDA GP-WDA

mi-SVM MI-SVM AL-SVM ALP-SVM AW-SVM EMDD
(ARD) (ISO)

160/166 100.00± 0.00 97.78± 4.97 100.00± 0.00 97.78± 4.97 97.78± 4.97 100.00± 0.00 100.00± 0.00 82.22± 9.94

80/166 97.78± 4.97 95.56± 6.09 77.78± 7.86 93.33± 6.09 86.67± 9.30 93.33± 6.09 95.56± 6.09 75.56± 9.30

160/283 100.00± 0.00 100.00± 0.00 96.00± 4.18 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 96.00± 8.94

120/283 100.00± 0.00 99.00± 2.24 88.00± 4.47 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 86.00± 5.48

80/283 100.00± 0.00 98.00± 2.74 87.00± 6.71 97.00± 2.74 100.00± 0.00 97.00± 2.74 100.00± 0.00 82.00± 8.37

40/283 99.00± 2.24 94.00± 5.48 91.00± 5.48 92.00± 9.08 94.00± 4.18 93.00± 2.74 92.00± 2.74 80.00± 7.07
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Fig. 3 Learned ARD kernel hyperparameters, log(p2
k), k = 1, . . . ,283, for the 40/283 dataset. From the

definition of ARD kernel (32), a lower value ofpk indicates that the corresponding feature dimensionk is
more informative.

As demonstrated in the results, most approaches perform equally well when the
number of relevant features is large. On the other hand, as the portion of the relevant
features decreases, the test performance degrades, and thefeature selection becomes
more crucial to the classification accuracy. Promisingly our GPMIL model equipped
with the ARD kernel feature selection capability performs outstandingly, especially
for the 40/283 dataset. For the GP-WDA (ARD), we also depict in Fig. 3 the learned
ARD kernel hyperparameters in log-scale, that is, log(p2

k) for k = 1, . . . ,283 for the
40/283 dataset. From the ARD kernel definition (32), a lower value of pk indicates
that the corresponding feature dimension is more informative. As shown in the figure,
the first 40 relevant features are correctly recovered (lowpk values) by the GPMIL
learning algorithm.

7 Conclusion

We have proposed novel MIL algorithms by incorporating bag class likelihood mod-
els in the GP framework, yielding nonparametric Bayesian probabilistic models that
can capture the underlying generative process of the MIL data formation. Under the
GP framework, the kernel parameters can be learned in a principled manner using
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efficient gradient search, thus avoiding grid search and being able to exploit a variety
of kernel families with complex forms. This capability has been further utilized for
feature selection, which is shown to yield improved test performance. Moreover, our
models provide probabilistic interpretation, informative for better understanding of
the MIL prediction problem. To address the intractability in the exact GP inference
and learning, we have suggested several approximation schemes including the soft-
max with the PSD projection and the introduction of the witness latent variables that
can be optimized by the deterministic annealing. For several real-world benchmark
MIL datasets, we have demonstrated that the proposed methods can yield superior or
comparable prediction performance to the existing state-of-the-art approaches.

Unfortunately, the proposed GPMIL algorithms were usuallyslower in running
time than SVM-based methods, mainly due to the overhead of matrix inversion in
Gaussian process inference. This is a well-known issue/drawback of most GP-based
methods nearly all the time, and we do not rigorously deal with the computational ef-
ficiency of the proposed methods here. However, there are several recent approaches
to reduce computational complexity of GP inference (e.g., sparse GP or pseudo in-
put methods (Snelson and Ghahramani, 2006; Lázaro-Gredilla et al, 2010)). Their
application to our GPMIL framework is left as our future work.

Appendix: Gaussian Process Models and Approximate Inference

We review the Gaussian process regression and classification models as well as the Laplace method for
approximate inference.

A.1 Gaussian Process Regression

When the output variabley is a real-valued scalar, one natural likelihood model fromf to y is theadditive
Gaussian noisemodel, namely

P(y| f ) = N (y; f ,σ2) =
1√

2πσ2
exp

(
− (y− f )2

2σ2

)
, (33)

whereσ2, the output noise variance, is another set of hyperparameters (together with the kernel parameters
β ). Given the training data{(xi ,yi )}ni=1 and with (33), we can compute the posterior distribution forthe
training latent variablesf analytically, namely

P(f|y,X) ∝ P(y|f)P(f|X) = N (f;K(K +σ2I)−1y,(I −K(K +σ2I)−1)K). (34)

When the posterior off is obtained, we can readily compute the predictive distribution for a test output
y∗ onx∗. We first derive the posterior forf∗, the latent variable for the test point, by marginalizing out f as
follows:

P( f∗|x∗,y,X) =
∫

P( f∗|x∗, f,X)P(f|y,X)df

= N ( f∗;k(x∗)>(K +σ2I)−1y,k(x∗,x∗)−k(x∗)>(K +σ2I)−1k(x∗)). (35)

Then it is not difficult to see that the posterior fory∗ can be obtained by marginalizing outf∗, namely

P(y∗|x∗,y,X) =
∫

P(y∗| f∗)P( f∗|x∗,y,X)d f∗

= N (y∗;k(x∗)>(K +σ2I)−1y,k(x∗ ,x∗)−k(x∗)>(K +σ2I)−1k(x∗)+σ2). (36)
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So far, we have assumed that the hyperparameters (denoted byθ = {β ,σ2}) of the GP model are
known. However, it is a very important issue to estimateθ from the data, the task often known as theGP
learning. Following the fully Bayesian treatment, it would be ideal to place a prior onθ and compute a
posterior distribution forθ as well, however, due to the difficulty of the integration, itis usually handled
by theevidence maximization, also referred to as theempirical Bayes. The evidence in this case is the data
likelihood,

P(y|X,θ ) =
∫

P(y|f,σ2)P(f|X,β )df = N (y;0,Kβ +σ2I). (37)

We then maximize (37), which is equivalent to solving the following optimization problem:

θ∗ = argmax
θ

logP(y|X,θ ) = argmin
θ
|Kβ +σ2I |+y>(Kβ +σ2I)−1y. (38)

(38) is non-convex in general, and one can find a local minimumusing the quasi-Newton or the conjugate
gradient search.

A.2 Gaussian Process Classification

In the classification setting where the output variabley takes a binary11 value from{+1,−1}, we have
several choices for the likelihood modelP(y| f ). Two most popular ways to link the real-valued variablef
to the binaryy are the sigmoid and the probit.

P(y| f ) =

{
1

1+exp(−y f) (sigmoid)

Φ(y f) (probit)
(39)

whereΦ(·) is the cumulative normal function. We letl(y, f ;γ ) =− logP(y| f ,γ), whereγ denotes the (hy-
per)parameters of the likelihood model12. Likewise, we often drop the dependency onγ for the notational
simplicity.

Unlike the regression case, it is unfortunate that the posterior distributionP(f|y,X) has no analytic
form as it is a product of the non-GaussianP(y|f) and the GaussianP(f|X). One can consider three stan-
dard approximation schemes within the Bayesian framework:(i) Laplace approximation, (ii) variational
methods, and (iii) sampling-based approaches (e.g., MCMC). It is often the cases that the third method is
avoided due to the computational overhead (as we samplefs,n-dimensional vectors, wheren is the number
of training samples). In the below, we briefly review the Laplace approximation.

A.3 Laplace Approximation

The Laplace approximation essentially replaces the product P(y|f)P(f|X) by a Gaussian with the mean
equal to the mode of the product, and the covariance equal to the inverse Hessian of the product evaluated
at the mode. More specifically, we let

S(f) =− log
(
P(y|f)P(f|X)

)
=

n

∑
i=1

l(yi , fi )+
1
2

f>K−1f +
1
2

log|K |+ n
2

log2π. (40)

Note that (40) is a convex function off since the Hessian ofS(f), Λ +K−1, is positive definite whereΛ is

the diagonal matrix with entries[Λ ]ii = ∂ 2l (yi , fi )
∂ f 2

i
. The minimum ofS(f) can be attained by a gradient search.

We denote the optimum byfMAP = argmaxf S(f). LettingΛ MAP beΛ evaluated atfMAP, we approximate
S(f) by the following quadratic function (i.e., using the Taylorexpansion)

S(f)≈ S(fMAP)+
1
2
(f− fMAP)>(ΛMAP+K−1)(f− fMAP), (41)

11 We only consider binary classification where the extension to multiclass cases is straightforward.
12 Although the models in (39) have no parameters involved, we can always consider more general cases.

For instance, one may play with a generalized logistic regression (Zhang and Oles, 2000):P(y| f ,γ) ∝(
1

1+exp(γ(1−y f))

)γ .
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which essentially leads to a Gaussian approximation forP(f|y,X), namely

P(f|y,X)≈N (f; fMAP,(Λ MAP+K−1)−1). (42)

The data likelihood (i.e., evidence) immediately follows from the similar approximation,

P(y|X,θ )≈ exp(−S(fMAP))(2π)n/2|Λ MAP+K−1
β |
−1/2, (43)

which can be maximized by gradient search with respect to thehyperparametersθ = {β ,γ}.
Using the Gaussian approximated posterior, it is easy to derive the predictive distribution forf∗:

P( f∗|x∗,y,X) = N ( f∗;k(x∗)>K−1fMAP,k(x∗,x∗)−k(x∗)>((ΛMAP)−1 +K−1)−1k(x∗)). (44)

Finally, the predictive distribution fory∗ can be obtained by marginalizing outf∗, which has a closed form
solution for the probit likelihood model as follows13:

P(y∗ = +1|x∗,y,X) = Φ
( µ̄√

1+ σ̄2

)
, (45)

whereµ̄ andσ̄2 are the mean and the variance ofP( f∗|x∗,y,X), respectively.
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