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Abstract— Over the last century, Component Analysis (CA)
methods such as Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA), Canonical Correlation Analysis
(CCA), Laplacian Eigenmaps (LE), and Spectral Clustering
(SC) have been extensively used as a feature extraction step
for modeling, clustering, classification, and visualization. CA
techniques are appealing because many can be formulated as
eigen-problems, offering great potential for learning linear and
non-linear representations of data in closed-form. However,
the eigen-formulation often conceals important analytic and
computational drawbacks of CA techniques, such as solving
generalized eigen-problems with rank deficient matrices (e.g.,
small sample size problem), lacking intuitive interpretation of
normalization factors, and understanding commonalities and
differences between CA methods.

This paper proposes a unified least-squares framework to
formulate many CA methods. We show how PCA, LDA, CCA,
LE, SC, and their kernel and regularized extensions, correspond
to a particular instance of least-squares weighted kernel reduced
rank regression (LS-WKRRR). The LS-WKRRR formulation of
CA methods has several benefits: (1) provides a clean connection
between many CA techniques and an intuitive framework to
understand normalization factors; (2) yields efficient numerical
schemes to solve CA techniques; (3) overcomes the small sample
size problem; (4) provides a framework to easily extend CA
methods. We derive new weighted generalizations of PCA, LDA,
CCA and SC, and several novel CA techniques.

Index Terms— Principal Component Analysis, Linear Discrimi-
nant Analysis, Canonical Correlation Analysis, k-means, Spectral
Clustering, Reduced Rank Regression, Kernel Methods and
Dimensionality Reduction.

I. INTRODUCTION

Over the last century, Component Analysis (CA) methods [1]
such as Principal Component Analysis (PCA) [2], [3], Linear
Discriminant Analysis (LDA) [4], [5], Canonical Correlation
Analysis (CCA) [6], Laplacian Eigenmaps (LE) [7], Locality
Preserving Projections (LPP) [8], and Spectral Clustering (SC)
[9] have been extensively used as a feature extraction step for
modeling, classification, visualization and clustering problems.
The aim of CA techniques is to decompose a signal into relevant
components that are optimal for a given task (e.g., classification,
visualization). These components, explicitly or implicitly (e.g.,
kernel methods), define the representation of the signal. CA
techniques are appealing for two main reasons. Firstly, CA models
typically have a small number of parameters, and therefore can
be estimated using relatively few samples. CA techniques are
especially useful to model high-dimensional data, because due
to the curse-of-dimensionality learning models typically requires
a large number of samples. Secondly, many CA techniques can be
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formulated as eigen-problems, offering great potential for efficient
learning of linear and non-linear models without local minima.
The use of eigen-solvers to address statistical problems dates back
to the 1930s, and since then many numerically stable and efficient
packages have been developed to solve eigen-problems. For these
reasons, during the last century, many computer vision, computer
graphics, signal processing, and statistical problems were framed
as learning a low dimensional CA model.

Although CA methods have been widely used in many scien-
tific disciplines, there is still a need for a better mathematical
framework than the eigen-formulation to analyze and extend CA
techniques. The least-squares unified framework proposed in this
paper provides a tool for analyzing, generalizing, and developing
efficient algorithms to solve many CA methods. This paper shows
how Kernel PCA (KPCA), Kernel LDA (KLDA), Kernel CCA
(KCCA), Normalized Cuts (Ncuts), and LE correspond to a
particular instance of a least-squares weighted kernel reduced
rank regression (LS-WKRRR) problem. This framework should
provide researchers with a thorough understanding of a large
number of existing CA techniques, and it may serve as a tool
for dealing with novel CA problems as they arise. Preliminary
versions of this work were published at [10], [11].

This paper recovers the spirit of three previously published
papers seeking unified frameworks. Borga [12] showed how
PCA, Partial Least Squares, CCA and Multiple Linear Regression
can be formulated as generalized eigen-value problems (GEPs).
To efficiently solve the GEP for high-dimensional data, Borga
proposed to use a gradient-descent algorithm on a Rayleigh
quotient. Roweis and Ghahramani [13] showed how a Linear
Dynamical System (LDS) is the generative model for Hidden
Markov Models, Kalman Filter, vector quantization, Factor Anal-
ysis, and mixture of Gaussians. By introducing non-linearities
into the model, [13] demonstrated how Independent Component
Analysis can also be cast as an extension of a LDS. Yan et al. [14]
have proposed a unifying view of PCA, LPP, Isomap, and LDA
using a graph theoretical formulation. Additionally, the authors
proposed Marginal Fisher Analysis, a variant of non-parametric
LDA [15].

This paper differs from previous research in that it unifies PCA,
CCA, LDA, SC, LE, and their kernel and regularized extensions
using the LS-WKRRR model. Moreover, we show that several
extensions of the LS-WKRRR derive into novel techniques such
as Dynamic Coupled Component Analysis (DCCA), Aligned
Cluster Analysis (ACA), Canonical Time Warping (CTW), Fil-
tered Component Analysis (FCA), Parameterized Kernel Principal
Component Analysis (PaKPCA), Feature Selection for Subspace
Analysis (FSSA) and Discriminative Cluster Analysis (DCA). In
addition, we propose new weighted extensions for PCA, LDA,
CCA, and SC.

The rest of the paper is organized as follows: Section II
introduces the notation. Section III describes the LS-WKRRR
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problem and derives the coupled generalized eigenvalue system
of equations that results from solving it. Section IV relates PCA,
KPCA and weighted extensions to the LS-WKRRR. Section V
shows how LDA, KLDA, CCA, KCCA and weighted extensions
are a particular instance of LS-WKRRR. Section VI connects LS-
WKRRR to non-linear embedding methods. Section VII shows
the relationship between LS-WKRRR, k-means and SC. Section
VIII describes extensions of CA methods derived from the LS-
WKRRR framework. Section IX finalizes the paper with the
conclusions.

II. NOTATION

Bold capital letters denote matrices (e.g., D), bold lower-case
letters represent column vectors (e.g., d). All non-bold letters
denote scalar variables. dj is the jth column of the matrix D.
dij denotes the scalar in the ith row and jth column of D. ||d||22
denotes the Euclidean squared norm of the vector d. tr(A) =∑
i aii is the trace of the matrix A. D = diag(a) is an operator

that transforms a vector a into a diagonal matrix D such that dii =

ai. vec(A) is an operator which converts a matrix A ∈ <m×n into
a column vector a ∈ <mn×1. ||A||2F = tr(ATA) = tr(AAT )

designates the squared Frobenius norm of A. |A| represents the
determinant of the matrix A. 1k ∈ <k×1 is a vector of ones. Ik
denotes a k×k identity matrix. ◦ denotes the Hadamard product,
∗ represents the convolution, and ⊗ the Kronecker product. ∝
refers to “proportional to the maximization of”. Jx denotes an
error function for a standard formulation of a CA method, and
Ex refers to the LS-WKRRR version.

III. A GENERATIVE MODEL FOR COMPONENT ANALYSIS

This section introduces the formulation for the least-squares
weighted kernel reduced rank regression (LS-WKRRR) problem.
In the following sections, we will show how the LS-WKRRR is
the generative model for many CA methods, including KPCA,
KLDA, KCCA, LE, and Ncuts.

A. Least-Squares Weighted Kernel Reduced Rank Regression (LS-
WKRRR)

Since its introduction in the early 1950s by Anderson [16], [17],
the reduced-rank regression (RRR) model has inspired a wealth
of diverse applications in several fields such as signal processing
[18], [19] (also known as reduced-rank Wiener filtering), neural
networks [20] (also known as asymmetric PCA), time series
analysis [16], and computer vision [21]. This section extends
previous work by introducing kernels and weights into the RRR
framework, and it derives the system of GEPs resulting from
solving the LS-WKRRR problem.

Learning a linear regression between two high-dimensional
data sets is usually an ill-posed problem due to lack of training
samples to constrain the regression parameters. Consider learning
a regression between two high-dimensional data sets, X ∈ <x×n
and D ∈ <d×n, and let T ∈ <d×x be the regression matrix.
The LS regression problem minimizes minT ||D − TX||2F . The
optimal T can be found in closed-form as T = DXT (XXT )−1.
If rank(X) < x the matrix XXT will be rank deficient.
In this situation dimensionality reduction or regularization is
often necessary. A common approach to learn the mapping is
to independently learn low-dimensional models for X and D

using PCA or KPCA, and then to learn a linear or non-linear

mapping between the projections using a supervised learning
technique. Applying PCA/KPCA separately to each set preserves
the directions of maximum variance within the set, but these
do not necessarily correspond to the direction of maximum
covariation between sets [21]. That is, independently learning
low-dimensional models may result in a loss of important detail
relevant to the coupling between sets. The RRR model [16], [19],
[20] finds a linear mapping, T, that minimizes the LS error subject
to a rank constraint on T, effectively reducing the number of free
parameters to estimate. The RRR model minimizes ||D−TX||2F
subject to rank(T) = k.

The LS-WKRRR extends previous work on RRR in three
aspects: (1) it explicitly parameterizes T as the outer product
of two matrices of rank k, that is T = BAT , where A ∈ <x×k
and B ∈ <d×k, similar to [19]–[21]; (2) it incorporates non-
linear regression. In the more general formulation, LS-WKRRR
maps D and X to a feature space using kernel methods. That
is, Γ = φ(D) = [ φ(d1) φ(d2) · · · φ(dn) ] ∈ <dd×n
represents a mapping of D. φ denotes a mapping from the d

dimensional input space to the feature space (dd dimensions).
Similarly, Υ = Φ(X) = [ ϕ(x1) ϕ(x2) · · · ϕ(xn) ] ∈ <dx×n
denotes the mapping for X. φ and ϕ map the data to a (usually)
higher dimensional space, where the data is more likely to behave
linearly. (3) The LS-WKRRR incorporates different weights for
the features Wr ∈ <dd×dd , and samples Wc ∈ <n×n.

The LS-WKRRR problem minimizes the following expression

E0(A,B) = ||Wr(Γ−BATΥ)Wc||2F = (1)

tr(WT
c ΓTWT

r WrΓWc)− 2tr(WT
c ΓTWT

r WrBATΥWc)

+tr(WT
c ΥTABTWT

r WrBATΥWc) ,

with respect to the regression matrices A ∈ <dx×k and B ∈
<dd×k. A spans the subspace that preserves the correlation
between Υ and Γ, and B spans the column space of Γ. Wr ∈
<dd×dd is a matrix that weights the features (e.g., PCA) or classes
(e.g., LDA). Similarly, Wc ∈ <n×n weights the importance of
each sample. In the following, we will assume that the weighting
matrices are symmetric and full rank. Eq. (1) is the fundamental
equation of CA methods. In the rest of the manuscript, we will
show how to relate many CA methods to this equation.

The necessary conditions on A and B for the minimum of
Eq. (1) are

∂E0
∂B = 2W2

rBATΥW2
cΥ

TA− 2W2
rΓW2

cΥ
TA = 0, (2)

∂E0
∂A = 2ΥW2

cΓ
TW2

rB− 2ΥW2
cΥ

TABTW2
rB = 0. (3)

Eq. (2) and Eq. (3) form a set of coupled equations that have
solutions in terms of a GEP in either A or B. Assuming that
ATΥW2

cΥ
TA is invertible and substituting the optimal B =

ΓW2
cΥ

TA(ATΥW2
cΥ

TA)−1 derived from Eq. (2) into Eq. (1),
minimizing E0(A) w.r.t. A is equivalent to the maximization of

tr
(
(ATΥW2

cΥ
TA)−1(ATΥW2

cΓ
TW2

rΓW2
cΥ

TA)
)
. (4)

Similarly, assuming that (BTW2
rB)−1 and (ΥW2

cΥ
T )−1

exist, substituting the optimal value of A =

(ΥW2
cΥ

T )−1ΥW2
cΓ

TW2
rB(BTW2

rB)−1 from Eq. (3) into
Eq. (1), minimizing E0(B) is equivalent to the maximization of

tr
(
(BTW2

rB)−1(BTW2
rΓW2

cΥ
T

(ΥW2
cΥ

T )−1ΥW2
cΓ

TW2
rB)

)
. (5)
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Eq. (4) and Eq. (5) are quotient trace problems (one possible
multidimensional extension of Rayleigh quotients). For a given
pair S1,S2 of real symmetric matrices, the quotient trace problem
optimizes

J(B) = tr
(
(BTS2B)−1BTS1B

)
, (6)

and the solution is given by the following GEP [15]

S1B = S2BΛ, (7)

where Λ is a diagonal matrix containing the generalized eigenval-
ues. The eigenvectors (columns of B) are critical points of J(B).
The solution of Eq. (4) is unique up to an invertible transformation
R ∈ <k×k, that is, E0(AR) = E0(A). Similarly, Eq. (5) is
invariant under k × k invertible linear transformations.

Recasting the CA eigen-formulation as a LS-WKRRR problem,
Eq. (1), has a number of desirable benefits that will be illustrated
throughout the paper:

1) Eq. (1) provides a unified expression for many CA methods.
The commonalities and differences between the methods, as
well as the intrinsic relationship, can be easily understood
from Eq. (1). See Sections IV, V, VI and VII.

2) The Least-Squares (LS) formulation provides an alternative
and simple framework to understand normalization factors
in CA methods (e.g., normalization factors in spectral graph
clustering in Section VII, weighting factors in PCA/LDA in
Section IV).

3) Eq. (1) has a unique global minimum [22] and many
numerical optimization methods are available to solve it
(Section III.B). In general, algorithms that directly optimize
the LS-WKRRR can be more efficient than eigen-solvers
for large-scale problems. In addition, on-line versions can
be easily derived.

4) Directly optimizing Eq. (1) solves the small sample size
(SSS) problem of standard eigen-formulations.

5) The LS formulation allows many extensions of CA methods
(Section VIII). It is unclear how to formulate these new
extensions using eigen-formulations.

B. Computational Aspects of LS-WKRRR

This section reviews three methods to optimize the LS-
WKRRR model.

1) Subspace Iteration: Standard numerical packages to solve
GEPs (i.e. S1B = S2BΛ) are not well suited to solve Eq. (4) or
Eq. (5) for high-dimensional data, especially when the number of
samples is smaller than the number of features (SSS problem). In
this case, directly minimizing the Rayleigh quotient xTS1x

xTS2x
with

numerical methods (e.g., [12], [23]) can avoid the SSS problem.
However, these methods rely on deflation procedures in order to
obtain several eigenvectors and the deflation process often breaks
down numerically [24] (especially when increasing the number of
eigenvectors). To overcome these problems, this section reviews
the subspace iteration method [24].

Given two covariance matrices, S1 ∈ <d×d and S2 ∈ <d×d,
and an initial random matrix V0 ∈ <d×q , the subspace iteration
method alternates the following steps:

S1V̂t+1 = S2Vt , (8)

S = V̂T
t+1S1V̂t+1 , T = V̂T

t+1S2V̂t+1 , (9)

SW = TW∆ , (10)

Vt+1 = V̂t+1W , V̂t+1 = V̂t+1/||V̂t+1||F .

The first step of the subspace iteration algorithm, Eq. (8), solves
a linear system of equations to find V̂t+1. In the second step,
the covariances S1 and S2 are projected onto V̂t+1, Eq. (9).
In order to impose the constraints that VT

t+1S1Vt+1 = Λ and
VT
t+1S2Vt+1 = Iq , V̂t+1 is transformed by W. W results

from solving the q × q GEP of Eq. (10). It can be shown
that as t increases, Vt+1 will converge to the eigenvectors of
S1B = S2BΦ and ∆ to the eigenvalues Φ [24]. The convergence
is achieved when |δ

k+1
i −δki |
δk+1
i

< ε ∀i, where δki denotes the k-
largest generalized eigenvalue, and ε is the convergence criterion.
The subspace iteration algorithm converges linearly and the
convergence rate is proportional to |δq|

|δq+1| [24]. It is not critical
that V0 has a projection onto the first q generalized eigenvectors,
because numerical errors will provide such a projection.

2) Alternated Least Squares (ALS): ALS approaches alternate
between solving for A with B fixed, and solving for B with A

fixed. Each step can be computed in closed-form as

At+1 = (ΥW2
cΥ

T )−1ΥW2
cΓ

TW2
rB

t(BtTW2
rB

t)−1, (11)

Bt+1 = ΓW2
cΥ

TA(t+1)(A(t+1)TΥW2
cΥ

TA(t+1))−1.(12)

In the case of kernel methods, the ALS procedure needs to
re-parameterize B, see Section IV-B for more details.

3) Gradient descent and second-order methods: For large
amounts of high-dimensional data, gradient descent and second-
order algorithms (e.g., Newton, conjugate gradient) are typically
more computationally efficient than eigensolvers [25], [26]. Eq.
(2) and Eq. (3) suggest a simple gradient descent update:

At+1 = At − ηa
∂E0(At)

∂A
, Bt+1 = Bt − ηb

∂E0(Bt)

∂B
. (13)

ηa and ηb in Eq. (13) can be estimated using a line search
strategy [25], [27]. Alternatively, an upper bound on the diagonal
of the Hessian matrix can be used [26], [28]. Recently, Buchanan
and Fitzgibbon [25] showed how second-order algorithms such as
the damped Newton algorithm on the joint matrix vec([A; B])) is
more efficient than ALS or gradient descent algorithms to solve
for A,B. Moreover, in the case of having missing data, the joint
damped Newton algorithm is able to avoid local minima more
often. Finally, it is important to notice that both the ALS and the
gradient-based methods effectively solve the SSS problem unlike
those that directly solve the GEP.

IV. PCA, KPCA, AND WEIGHTED EXTENSIONS

This section derives PCA, KPCA and weighted extensions as a
particular case of the fundamental equation of CA methods, Eq.
(1).

A. Principal Component Analysis (PCA)

PCA is one of the most popular dimensionality reduction
techniques [1]–[3], [20]. The basic ideas behind PCA date back to
Pearson in 1901 [2], and a more general procedure was described
by Hotelling [3] in 1933. PCA finds an orthogonal subspace
B ∈ <d×k that maximizes

J1(B) = tr(BTStB) s.t. BTB = Ik, (14)

where St = 1
n−1D(In − 1

n1n1Tn )DT denotes the covariance
matrix (see Appendix A). B is a basis for the principal subspace
of D, where d denotes the number of features, n the number of
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samples, k the dimension of the subspace, and k 6 min(n, d).
PCA can be computed in closed-form by calculating the leading
eigenvectors of the covariance matrix St [1], [20]. The PCA
projections, C = BTD(In− 1

n1n1Tn ) ∈ <k×n, are decorrelated,
that is, CCT = Λ, where Λ ∈ <k×k is a diagonal matrix
containing the eigenvalues of St. During the paper, the trace
quotients in standard CA methods or standard CA formulations
will be denoted by Jx, whereas the LS-WKRRR or LS extensions
will be denoted by Ex.

For large data sets of high-dimensional data (d and n are
large), minimizing the least-squares error function is an efficient
procedure (in both space and time) to compute the principal
subspace of D [29], [30]. There exist several least-squares error
functions such that the stationary points are solutions of PCA.
Consider the fundamental equation of CA, Eq. (1), where Υ =

In,Wr = Id,Wc = In,Γ = D, and D1n = 0 (zero mean data):

E1(B,A) = ||D−BAT ||2F . (15)

In this case, Eq. (4) and Eq. (5) transform to

E1(A) ∝ tr
(
(ATA)−1(ATDTDA)

)
, (16)

E1(B) ∝ tr
(
(BTB)−1(BTDDTB)

)
. (17)

Recall that ∝ represents “proportional to the maximization of”.
The optimal B (primal problem) is given by the leading eigen-
vectors of the covariance matrix DDT ∈ <d×d, that effectively
maximizes Eq. (17). Similarly, the dual PCA formulation finds
the matrix A that maximizes Eq. (16). The optimal A is given
by the leading eigenvectors of the Gram matrix DTD ∈ <n×n.

Eq. (15) can be solved directly with ALS, gradient descent [29]
or second-order methods [25]. ALS approaches to solve Eq. (15),
alternate between solving for A while B is fixed and vice versa
[22], [26], [31], [32]. In the case of PCA, the ALS equations
(Eq. (11) and Eq. (12)) can be solved with the following systems
of linear equations: DTB = ABTB and DA = BATA. This
optimization is equivalent to the Expectation Maximization (EM)
algorithm in probabilistic PCA (PPCA) [30], [33] when the noise
becomes infinitesimal and equal in all directions. Once A and B

are found, the unique PCA solution (B̂) can be obtained by finding
an invertible transformation R ∈ <k×k that jointly diagonalizes
B̂T B̂ and ÂT Â, where B̂ = BR and Â = A(R−1)T . R has to
satisfy the simultaneous diagonalization of RTBTBR = I and
RT (ATA)−1R = Λ−1, where Λ ∈ <k×k is a diagonal matrix
containing the eigenvalues of the covariance matrix St. R can be
computed by solving the k×k GEP (ATA)−1R = BTBRΛ−1.

Alternatively, PCA can also be derived from a least-squares
optimization problem by considering Eq. (1) with the following
values [29]: Γ = D,Wr = Id,Wc = In,A = B, that results in:

E2(B) = ||D−B(BTD)||2F s.t. BTB = Ik . (18)

However, Eq. (18) is more challenging to optimize because it is
quartic in B. Moreover, this formulation of PCA does not allow
to incorporate robustness to intra-sample outliers [26].

B. Kernel Principal Component Analysis (KPCA)

Similar to PCA, KPCA [34] can be derived from Eq. (1), by
lifting the original data samples, D, to a feature space, Γ = φ(D).
The kernelized version of Eq. (15) can be written as

E3(B,A) = ||Γ−BAT ||2F . (19)

Observe that in the case of kernel methods, it is (in general) not
possible to directly solve the primal problem, Eq. (5). This is
because the covariance in the feature space, ΓΓT , can be infinite
dimensional. In the dual problem, A can be computed maximizing
Eq. (4), that is

E3(A) ∝ tr((ATA)−1ATKA), (20)

where K = ΓTΓ ∈ <n×n is the kernel matrix. Each element
kij = k(di,dj) of K represents the similarity between two
samples by means of a kernel function. To center the kernel matrix
in the feature space, the mean needs to be introduced into the
formulation, i.e. ||Γ − µ1Tn − BAT ||2F , where µ = 1

nΓ1n. We
omit the details in the interest of space.

For large amounts of data (large n) an ALS or down-hill
approaches to computing KPCA can be computationally more
convenient (see Section III-B.2). To apply the ALS method in
the case of KPCA, a re-parameterization of B is needed. Recall
that for KPCA, B can be expressed as a linear combination of the
data in feature space Γ [35]; that is, B = Γα, where α ∈ <n×k.
Substituting this expression into Eq. (19) results in

E3(α,A) = ||Γ(In −αAT )||2F . (21)

Assuming that K is invertible, we can alternate between comput-
ing α and A as

α = A(ATA)−1 , A = (αTKα)−1αTK . (22)

C. Weighted Extensions

In many situations it is convenient to weight differently features
and/or samples. For instance, when modeling faces from images,
it is likely that some pixels have more variance than others
(e.g., pixels in the eye regions have more variance than pixels
in the cheeks) and they should be weighted less in the model.
Alternatively, we might be interested in weighing the influence
of samples (e.g., reduce the influence of sample outliers in the
subspace).

Eq. (4) and Eq. (5) provide a partial solution to the weighting
problem. For instance, consider the weighted PCA case, with a
matrix that weights rows (Wr) and a matrix that weights columns
(Wc) in Eq. (1). The closed-form solutions for the weighted PCA
are given by Eq. (4) and Eq. (5):

E0(A) ∝ tr
(
(ATW2

cA)−1(ATW2
cD

TW2
rDW2

cA)
)
, (23)

E0(B) ∝ tr
(
(BTW2

rB)−1(BTW2
rDW2

cD
TW2

rB)
)
. (24)

Eq. (23) and Eq. (24) have a closed-form solution as a GEP. For
A, the GEP is W2

cD
TW2

rDW2
cA = W2

cAΛa and for B the
GEP is W2

rDW2
cD

TW2
rB = W2

rBΛb. The Generalized Singular
Value Decomposition [36], [37] provides an alternative approach
to solve the previous weighted PCA problem.

It is also possible to find a weighted KPCA solution for features
and samples. Weighting the samples (i.e. Wc 6= In) directly
translates to weighting the kernel matrix and results in solving
the following GEP: KW2

cA = AΛa. If the weighting is in the
feature space (i.e. Wr 6= Idd ), the weighted KPCA problem can
still be solved using the kernel trick [38].

In general, for an arbitrary set of weights for features or
samples, the weighted PCA minimizes

E4(A,B) = ||W ◦ (D−BAT )||2F , (25)
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where ◦ denotes the Hadamard or pointwise product. In general,
Eq. (25) does not have a closed-form solution in terms of GEP
[31], [37]. Moreover, the problem of data factorization with
arbitrary weights has several local minima depending on the
structure of the weights [25], [39]. Minimization of Eq. (25), has
been typically used to solve PCA with missing data [25], [31],
[39] and outliers [26], [40]. Recently, Aguiar et al. [41] proposed
a closed-form solution to the data factorization problem, when
the missing data has a special structure.

V. LDA, KLDA, CCA, KCCA AND WEIGHTED EXTENSIONS

This section relates LDA, KLDA, CCA and KCCA to Eq. (1),
and derives weighted generalizations.

A. Linear Discriminant Analysis (LDA)

Let D ∈ <d×n be a matrix, where each column is a vectorized
data sample from one of c classes. d denotes the number of
features and n the number of samples. G ∈ <n×c is an indicator
matrix such that

∑
j gij = 1, gij ∈ {0, 1}, and gij is 1 if di

belongs to class j, and 0 otherwise. LDA, originally proposed
by Fisher [4], [5] for the two-class case and later extended to
the multi-class case [15], [42], computes a linear transformation
(A ∈ <d×k) of D that maximizes the Euclidean distance between
the means of the classes (Sb) while minimizing the within-class
variance (Sw). Trace quotients are among the most popular LDA
optimization criteria [15]. For instance, LDA can be obtained by
maximizing

J2(A) = tr((ATS1A)−1ATS2A), (26)

where several combinations of S1 and S2 matrices lead to
the same LDA solution (e.g., S1 ∈ {Sw,St,Sw} and S2 ∈
{Sb,Sb,St}). In the case of high-dimensional data, the covariance
matrices are likely to be rank-deficient due to lack of training sam-
ples, and standard eigen-solutions for LDA can be ill-conditioned.
This is the well-known small sample size (SSS) problem. In recent
years, many algorithms have been proposed to deal with the SSS
problem, including PCA+LDA [43], [44], regularized LDA [45],
and many other methods that explore several combinations of
the Null and Range spaces of S1 and S2 [46]. See [47] for the
analysis of the maximum in Eq. (26) as a function of the four
fundamental spaces of S1 and S2.

LDA has been previously formulated as a regression problem
for the two-class case [48], and extended to the multi-class
case [45], [49], [50]. This section provides a simpler derivation of
the relation between regression and LDA following our previous
work [10]. In the following, we will assume zero mean data
(D1 = 0). Consider Eq. (1), where Γ = GT , Υ = D, Wr =

(GTG)−
1
2 , Wc = In, and D1 = 0:

E5(A,B) = ||(GTG)−
1
2 (GT −BATD)||2F . (27)

In this case, Eq. (4) transforms to

E5(A) ∝ tr((AT DDT︸ ︷︷ ︸
St

A)−1AT DG(GTG)−1GTDT︸ ︷︷ ︸
Sb

A). (28)

St denotes the total covariance matrix and Sb the between-class
covariance matrix (see Appendix A). Eq. (28) is one of the
standard trace quotients for LDA. Recall that LDA is a supervised
learning problem and the binary indicator matrix G is known.
LDA can be understood as finding a linear mapping with RRR

from the data samples (D) to the labels (G). The weighting
factor GTG compensates for unequal number of samples between
classes. Observe, that directly optimizing Eq. (28) (e.g., gradient
descent) with respect to A and B in Eq. (27) avoids the SSS
problem and can be numerically efficient for large amounts of
high-dimensional data.

B. Kernel Linear Discriminant Analysis (KLDA)

KLDA [51] can also be derived from Eq. (1). Consider Eq. (1),
where Γ = GT , Υ = φ(D), Wr = (GTG)−

1
2 , Wc = In:

E6(A,B) = ||(GTG)−
1
2 (GT −BATΥ)||2F . (29)

In this case, Eq. (4) has the following expression:

E6(A) ∝ tr((ATΥΥTA)−1ATΥG(GTG)−1GTΥTA). (30)

Using the Mercer theorem [35], it can be shown that the solution
to the KLDA problem can be expressed as A = Υα [51]. Using
this fact, the KLDA can be found as the solution of the following
GEP, KG(GTG)−1GTKTα = K2αΛα, where K = ΥTΥ is
the kernel matrix. α and Λα are the eigenvectors and eigenvalues
of the GEP, respectively.

C. Canonical Correlation Analysis (CCA) and Kernel CCA

CCA is a technique to extract common features from a pair
of multivariate data. CCA, first proposed by Hotelling in 1936

[6], identifies relationships between two sets of variables by
finding the linear combination of the variables in the first set
(D ∈ <dd×n) that are most highly correlated with a linear
combination of the variables in the second set (X ∈ <dx×n).

Assuming zero mean data (i.e. D1n = 0, X1n = 0), CCA finds
a combination of the original variables (i.e. BTD and ATX) that
maximize [6]:

J3(A,B) = tr(BTSDXA) s.t. BTSD
t B = ATSX

t A = I,

(31)
where SX

t = 1
n−1XXT ,SD

t = 1
n−1DDT , and SDX =

1
n−1DXT . The pair of canonical variates (bTi D, aTi X) is un-
correlated with other canonical variates of lower order. Each suc-
cessive canonical variate pair achieves the maximum relationship
orthogonal to the preceding pair. Observe that canonical correla-
tions are invariant with respect to a full-rank affine transformation
of X and D. Eq. (31) has a closed-form solution as two symmetric
GEPs [6], [52]:

(SX
t )−1SXD(SD

t )−1SDXA = AΛa, (32)

(SD
t )−1SDX(SX

t )−1SXDB = BΛb. (33)

The number of solutions (canonical variates) is given by
min (dx, dd).

In general, it is not clear how Eq. (1) can recover the canonical
variates, because CCA treats both data sets D and X sym-
metrically, whereas LS-WKRRR only normalizes for the input
X. At this point, it is worth observing that if X = GT (the
indicator matrix), the CCA solution of Eq. (33) is equivalent to
the LDA solution, Eq. (28). In this case, using our matrix notation
it is straightforward to show that Eq. (33) in CCA reduces to
SD
b B = SD

t BΛb (assuming zero mean data). Using this fact, we
can interpret LDA as CCA. LDA finds the linear subspace that
maximally correlates D with GT . Using this observation, it is
simple to relate CCA to the fundamental equation of CA, Eq. (1).
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In order to treat all variables symmetrically, we introduce weights
in the predicted variable, D, and show that the CCA solution
can be recovered using the fundamental equation of CA, Eq. (1).
Consider Eq. (1), where Γ = D, Υ = X, Wr = (DDT )−

1
2 , and

Wc = In:

E7(A,B) = ||(DTD)−
1
2 (D−BATX)||2F . (34)

After substituting these values into Eq. (4) results in

E7(A) ∝ tr((ATSX
t A)−1ATSXD(SD

t )−1SDXA) , (35)

which corresponds to the GEP for CCA, Eq. (32). Similarly, Eq.
(5) corresponds to

E7(B) ∝ tr((BT (DDT )−1B)−1BT (DDT )−1X

DT (DDT )−1DXT (DDT )−1B) . (36)

After a change of variable, U = B(DDT )−1 (assuming the
inverse exist), Eq. (36) can be re-written as

E7(U) ∝ tr((UT (SD
t )U)−1UTSDX(SX

t )−1SXDU) , (37)

which is the same solution provided by CCA, Eq. (33). As in
KLDA, similar derivation can be done for the case of KCCA.

There exist other LS energy-based formulations of CCA that
are worth mentioning. To treat all variables symmetrically, the
minima of the following LS function corresponds to CCA:

E8(A,B) = ||BTD−ATX||2F (38)

s.t. BTSD
t B = Id , ATSX

t A = Id,

Alternatively, CCA can also be recovered using an unweighted
regression. [53], [54] have shown that the canonical variates
minimize

E9(A,B) = |D−BATX| s.t. ATSX
t A = Id,

where recall |.| denotes determinant. This is equivalent to mini-
mizing Eq. (1) if Γ = D, Υ = X, Wr = I, Wc = I using the
determinant instead of the Frobenious norm as the loss function.

D. Weighted extensions

Similar to PCA and KPCA, there are possible weighted exten-
sions for LDA and KLDA. Consider Eq. (4) and Eq. (5) where
Γ = GT and Wr = (GTG)−

1
2 :

E0(A) ∝ tr
(
(ATΥW2

cΥ
TA)−1

(ATΥW2
cG(GTG)−1GTW2

cΥ
TA)

)
, (39)

E0(B) ∝ tr
(
(BT (GTG)−1B)−1(BT (GTG)−1

GTW2
cΥ

T (ΥW2
cΥ

T )−1ΥW2
cG(GTG)−1B

)
. (40)

Eq. (39) and Eq. (40) extend previous work on weighted
LDA/CCA approaches by allowing us to weight the samples
rather than the classes [55]. Similar expressions can be derived
for weighted CCA and KCCA, changing GT for X.

VI. NON-LINEAR EMBEDDING METHODS

Recently, a large family of algorithms, such as ISOMAP
[56], Local Linear Embedding (LLE) [57], Laplacian Eigenmaps
(LE) [7] or Locality Preserving Projections (LPP) [8] have derived
a compact low-dimensional non-linear embedding that preserves
local geometric properties of underlying high-dimensional mani-
fold of the data. In this section, we show how several nonlinear
embedding methods can be formulated as a particular instance of
LS-WKRRR.

A. Laplacian Eigenmaps (LE) and Locality Preserving Projection
(LPP)

Laplacian Eigenmaps (LE) [7] is a non-linear embedding tech-
nique originally motivated by the need to visualize and analyze
large amounts of multivariate data. The goal of LE is to find
an embedding that preserves the local structure of nearby high-
dimensional input patterns. LE exploits the Graph Laplacian of
a neighborhood graph on the sample data D. Each edge of the
n × n neighborhood graph measures the affinity between two
sample points di and dj . If the nodes i and j are connected (e.g.,
k-nearest neighbors or ε-neighborhoods), a variety of possible
weights can be given, for instance: wij = e−

1
2σ2
||di−dj ||22 or 1.

Given the weighted graph, W ∈ <n×n, LE minimizes [7]

J4(Y) =
∑n
i=1

∑n
j=1 wij ||yi − yj ||22 = 2tr(YTLY)

s.t. YTSY = Ik, (41)

where Y ∈ <n×k is a matrix containing the low dimensional
embedding. S ∈ <n×n is a diagonal matrix such that each entry
is the sum of the rows of W, i.e. sii =

∑
j wij . L = S −W

is the Graph Laplacian. The constraint YTSY = Ik removes an
arbitrary scaling factor in the embedding. Recall that solving Eq.
(41) is equivalent to minimizing

J5(Y) = tr((YTSY)−1YTLY). (42)

and maximizing

J6(Y) ∝ tr((YTSY)−1YTWY). (43)

The LE embedding can be found by solving the following GEP,
WY = SYΛ.

Locality Preserving Projections (LPP) [8], similar to LE, finds
an embedding that preserves neighborhood structure of the data.
Unlike LE, LPP parameterizes Y with a linear transformation of
the data Y = DTB. Observe that with a linear parameterization
it becomes natural to handle new test data out of the observed
data set. LPP maximizes

J7(B) = tr((BTDSDTB)−1BTDWDTB), (44)

LE can also be derived from the fundamental equation of CA.
Consider Eq. (1), where, Υ = In, Wr = Id and Wc = S

1
2 :

E10(B,A) = ||(Γ−BAT )S
1
2 ||2F , (45)

where Γ = φ(D). In this case, Eq. (4) translates into

E10(A) ∝ tr((ATSA)−1ATSKSA), (46)

where K = ΓTΓ is the kernel matrix. LE can be achieved
minimizing Eq. (45). In this case, the normalized kernel matrix
will be K = S−1WS−1. Recall that not for all choices of
W, K will be strictly positive definite or might not have an
explicit functional form. In case of computing LE using the
unnormalized graph Laplacian, L, it is easy to show that with
Wc = In and adding the mean in the feature space, LE is
equivalent to compute KPCA in the pseudo-inverse of L [58].
Similar connection between KPCA and LE had been previously
reported by [59].

LPP can also be derived by minimizing

E11(B,A) = ||(Γ−BATD)S
1
2 ||2F . (47)
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LPP can be interpreted as a method to perform reduced rank
regression from the input space to the feature space (assuming a
positive definite kernel exists).

B. Local Linear Embedding (LLE) and Neighborhood Preserving
Embedding

Local Linear Embedding (LLE) [57] finds an embedding of the
data, D, that preserves the local structure of nearby input patterns
in the high-dimensional space. LLE builds the embedding by
preserving the geometry of pair-wise relations between samples
in the high-dimensional manifold. In the first step, LLE com-
putes a weight matrix, W ∈ <n×n, that contains the structural
information of the embedding by minimizing

J8(W) =
∑n
i=1 ||di −

∑
j∈ℵ(i) wijdj ||

2
2 = ||D(In −W)||2F

s.t. W1n = 1n.

ℵ(i) denotes the k-nearest neighbors of di, and W is a matrix
such that each column only has k (or less) non-zero values. The
weight matrix, W, can be computed by solving a linear system of
equations [57]. Once W is calculated, LLE finds the embedding
Y that minimizes

J9(Y) =
∑n
i=1 ||yi −

∑
j wijyj ||

2
2 = ||Y(In −W)||2F (48)

s.t. Y1n = 0 and YYT = Id .

Eq. (48) can be solved by finding the eigenvectors corresponding
to the smallest nonzero eigenvalues of M = (In−W)(In−W)T .

Similar to LPP, Neighborhood Preserving Embedding [60]
parameterizes Y with a linear transformation, that is Y =

BTD, and the solution is given by the minimum of the GEP
DMDTB = DDTBΛ. The matrix M is a discrete approxima-
tion of the Laplace Beltrami operator on the manifold [7], [60].

LLE can be interpreted as performing KPCA in a particular
kernel matrix [58]. LLE computes the smallest eigenvectors of
the matrix M = (In −W)(In −W)T , which is equivalent to
finding the maximum eigenvalue of the identity matrix scaled
by the maximum eigenvalue (λmax) minus the original matrix,
that is: M̂ = λmaxIn −M. The leading eigenvector of M̂ is 1n
and projecting out this eigenvector is equivalent to the centering
operation in feature space done by KPCA [58]. Ham et al. [58]
have also shown that ISOMAP can also be interpreted as KPCA
with special kernel matrices.

VII. K-MEANS AND SPECTRAL CLUSTERING

This section relates LS-WKRRR to k-means, Spectral Cluster-
ing and proposes a new clustering method, Discriminative Cluster
Analysis (DCA).

A. k-means

k-means clustering [61], [62] splits a set of n objects into c

groups by minimizing the within-cluster variation. That is, k-
means clustering finds the partition of the data that is a local
optimum of the following energy function [10], [63]–[65]:

J10(b1, ...,bc) =

c∑
i=1

∑
j∈Ci

||dj − bi||22, (49)

where dj is a vector representing the jth data point, and bi is
the geometric centroid of the data points for ith cluster. Eq. (49)
can be rewritten in matrix form as [10]:

E12(B,A) = ||D−BAT ||2F = tr(Sw) (50)

s.t. A1c = 1n and aij ∈ {0, 1},

where A ∈ <n×c is the indicator matrix and B ∈ <d×c is the
matrix of centroids. Recall that the equivalence between the k-
means error function Eq. (49) and Eq. (50) is only valid if A

strictly satisfies the constraints. Observe that Eq. (50) can be
derived from the fundamental equation of CA, Eq. (1), where
Υ = In,Wr = Id,Wc = In,Γ = D.

The k-means algorithm performs coordinate descent in
E12(B,A). Given the actual value of the centroids, B, the first
step finds for each data point dj , the aj (jth row of A) such that
one of the columns is one and the rest 0, while minimizing Eq.
(50). The second step optimizes over B = DA(ATA)−1, which
is equivalent to computing the mean of each cluster.

After optimizing over B, Eq. (50) can be rewritten as:
E12(A) = ||D − DA(ATA)−1AT ||2F = tr(DTD) −
tr((ATA)−1ATDTDA) ≥

∑min(d,n)
i=c+1 λi, where λi are the

eigenvalues of DTD. The continuous solution of A lies in the
c−1 subspace spanned by the first c−1 eigenvectors with largest
eigenvalues of DTD [63], [64]. In this case, the error E12 is equal
to the sum of the residual eigenvalues, i.e. E12 =

∑min(d,n)
i=c+1 λi.

This is the spectral relaxation of the k-means algorithm.

B. Normalized Cuts (Ncuts)

Recently, spectral graph methods for clustering have arisen as
a solid approach to data clustering, and have grown in popularity
[64]–[68]. Spectral clustering arises from concepts in spectral
graph theory, where the connection between graphs and matrices
provides powerful tools to tackle graph theoretical and linear
algebra problems.

Spectral clustering, constructs a weighted graph, M(W, Q),
with n nodes Q = [q1, ..., qn], where the ith node represents the
sample di, and each weighted edge, wij , measures the similarity
between two samples, di and dj . Once the affinity matrix W ∈
<n×n is computed, the clustering problem can be seen as a graph
cut problem [69], where the goal is to find a partition of the graph
that minimizes a particular cost function. A popular cost function
is

cut(M) =
∑

qi∈R,qj∈Q−R
wij , (51)

where qi denotes the ith node of the Graph M , Q represents all
nodes and R is a subset of the nodes. Finding the optimal cut is an
NP complete problem, and spectral graph methods use relaxations
to find an approximate solution. However, minimization of this
objective function, Eq. (51), favors partitions containing isolated
nodes, and better measures such as Ncuts [66] or ratio-cuts [70]
have been proposed. Ncuts [66] finds a low dimensional embed-
ding better suited for clustering by computing the eigenvector
with the second smallest eigenvalue of the normalized Laplacian
S−

1
2 LS−

1
2 , where L = S −W ∈ <n×n, and S is a diagonal

matrix whose elements are the sum of the rows of W, that is,
sii =

∑
j wij . See [68], [71]–[74] for a comparison of different

spectral clustering algorithms.
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Recently, [65], [75] established the connection between kernel
k-means and Ncuts. In this section, we follow a simpler derivation
of the same idea with our compact matrix notation [10], and relate
it to KPCA [34]. Consider Eq. (1), where Γ = φ(D), Υ =

In,Wr = Id, Wc = diag(ΓTΓ1n)−
1
2 , the weighted kernelized

version of k-means, Eq. (50), is:

E13(B,A) = ||(Γ−BAT )Wc||2F . (52)

Recall that the weight matrix Wc weights each sample (columns
of Γ) differently. In this case minimizing Eq. (52) is equivalent
to maximizing Eq. (4), that is:

E13(A) ∝ tr((ATW2
cA)−1ATW2

cKW2
cA), (53)

where K = ΓTΓ is the standard affinity matrix in spectral graph
methods. After a change of variable Z = ATWc, Eq. (53) can
be expressed as:

E13(Z) ∝ tr((ZZT )−1ZWcKWcZ
T ). (54)

Eq. (54) is the same expression used in NCuts [66], considering
Wc = S−

1
2 and K = ΓTΓ ∈ <n×n. Once again, with a LS

view of Ncuts, the connection with KPCA (without centering
the data in the feature space) becomes evident. Moreover, the
LS formulation is more general because it allows for different
kernels and weights. For instance, the weight matrix could be
used to reject the influence of a pair of data points with unknown
similarity (i.e., missing data).

Typically, after the embedding is found, there are several
multiway cut algorithms to cluster the data in the embedded
space [71], [76]. See [68], [73] for a review of rounding methods
and more advanced rounding strategies. In related work, Rahimi
and Recht [77] showed how Ncuts [66], originally presented
as a graph-theoretic algorithm, can be framed as a regression
problem. They also pointed out the problems of sensitivity of
Ncuts to outliers. Zass and Shashua [72] showed the importance
of normalizing the affinity matrix in spectral clustering. Important
connections have also been made between clustering and manifold
learning. Bengio et al. [59] also showed the connection between
the continuous formulation of spectral embedding and KPCA
through learning eigenfunctions.

C. Discriminative Cluster Analysis (DCA)

The k-means algorithm is a widely used technique for cluster-
ing due to its easiness of programming and good performance;
however, k-means suffers from several drawbacks: it is sensitive
to initial conditions, only optimal for hyper-spherical clusters and
does not remove undesirable features for clustering. A common
approach to clustering high-dimensional data with k-means is to
project the data onto the space spanned by the principal compo-
nents. Clustering in the space of principal components has been
shown to be equivalent to the spectral relaxation of k-means [64].
However, the space of principal components does not necessarily
improve the separability of the clusters. This section describes
Discriminative Cluster Analysis (DCA) [10] that computes a
low dimensional discriminative space that encourages cluster
separability, and provides a more natural solution to the rounding
problem in spectral clustering. DCA simultaneously performs
dimensionality reduction and clustering, improving efficiency and
clustering performance in comparison with generative approaches
(e.g., PCA). Recently, Ding and Li [78], Bach and Harchaoui [79],

and Ye et al. [80] have further shown advantages of discriminative
clustering methods versus generative approaches.

Consider again the LS formulation for LDA, Eq. (27), and
assume zero mean data (D1n = 0):

E14(B,A) = ||(GTG)−
1
2 (GT −BATD)||2F , (55)

where recall that G ∈ <n×c is an indicator matrix such that∑
j gij = 1, gij ∈ {0, 1}, and gij is 1 if di belongs to class j,

and 0 otherwise. After substituting the optimal B value, Eq. (55)
can be rewritten as Eq. (4)

E14(A) ∝ tr
(
(ATDDTA)−1(ATDG(GTG)−1GTDTA)

)
. (56)

Eq. (56) is the basis for DCA. In LDA, G is given (supervised
problem), but in clustering (unsupervised) G is not known. Based
upon this observation, the goal of DCA is to jointly optimize
over the clustering variable, G, and the dimensionality reduction
matrix, A. In the first step, given an initial estimate of a local
similarity matrix, G(GTG)−1GT , DCA optimizes A finding a
low dimensional projection well suited for clustering (i.e. the
samples that belong to the same class are grouped together and
the means of the classes are far from each other). Later, DCA
performs a “soft” clustering in this discriminative embedding.
The result of the clustering is feedback into the dimensionality
reduction step, and this procedure is repeated until convergence.
See [10] for more details on the optimization.

Finally, it is worth pointing out that the optimization problem
in Eq. (56) is similar in spirit to recent work on clustering
with non-negative matrix factorization [65], [81], [82]. However,
DCA optimizes a discriminative criterion rather than a generative
one, and simultaneously optimizes dimensionality reduction and
clustering.

VIII. LEAST-SQUARES EXTENSIONS OF CA METHODS

In previous sections, we have related many CA methods to
the LS-WKRRR problem. This section relates the fundamental
equation of CA, Eq. (1), with other CA methods such as Non-
negative Matrix Factorization (NMF), Probabilistic PCA (PPCA),
and Regularized LDA (RLDA), and proposes new extensions
of CA methods such as Dynamic Coupled Component Analysis
(DCCA), Aligned Cluster Analysis (ACA), Canonical Time Warp-
ing (CTW), Filtered Component Analysis (FCA), Parameterized
Kernel Principal Component Analysis (PaKPCA), and Feature Se-
lection for Subspace Analysis (FSSA). These extensions typically
involve adding extra constraints on A or B, additional terms or
new operators into the LS-WKRRR framework. It is important
to notice that the LS formulation proposed in this paper allows
several of these extensions, and it is unclear how they could be
derived from an eigen-formulation.

A. Non-negative Matrix Factorization (NMF)

Early work on NMF was performed in the area of chemomet-
rics, known under the name of “self modeling curve resolution”
[83]. It followed by work on positive matrix factorization done
by Pattero and Tapper [84] and Shen and Israel [85] proposing
positive extensions of Factor Analysis and PCA with application
to environmental problems. Later, Lee and Seung [82] further
investigated the properties of the fitting algorithm for two types
of factorizations, and applied it to visual data. Recently, Ding
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et al. [81] have shown the relation between NMF and spectral
clustering.

The main difference between standard NMF and PCA is that
NMF constrains the matrices A and B to be non-negative, i.e. all
elements must be equal to or greater than zero. As PCA, NMF
can also be derived from Eq. (1), imposing positive constraints
on A and B. That is,

E15(B,A) = ||D−BAT ||2F s.t. A > 0 B > 0 (57)

Unfortunately NMF does not have a closed-form solution as a
GEP. Most successful approaches to optimize NMF make use of
bound optimization algorithms. See [65], [82] for more details.

B. Probabilistic PCA (PPCA)

Probabilistic PCA (PPCA) [13], [33], [86] is a probabilistic
extension of PCA and a general case of Factor Analysis (FA) [52].
This section shows how the maximum-likelihood estimation for
the parameters of the PPCA model, when noise is isotropic, can
also be obtained from a least squares formulation.

Let us assume zero mean data and consider Eq. (1) with the
following values: Γ = St,Wr = Id,Wc = In,A = UΛ

1
2 ,B =

UΛ
1
2 . After adding an extra term σ2Id to the factorization, Eq.

(1) results in

E16(U,Λ, σ2) = ||St −UΛUT − σ2Id||2F , (58)

where U ∈ <d×k and Λ ∈ <k×k is a diagonal matrix. The
necessary conditions for the minima of Eq. (58) w.r.t U, σ2 are

UΛ = (St − σ2Id)U,

σ2 =
tr(St−UΛUT )

tr(Id)
=

tr(St−UΛ̂UT )
d−k .

The optimal U corresponds to the leading eigenvectors of St.
Observe that St and (St−σ2Id) have the same eigenvectors and
the eigenvalues of (St − σ2Id) are the eigenvalues of St minus
σ2. Λ̂ represents the k first eigenvalues of the covariance matrix
St, and Λ = Λ̂ − σ2Ik the first k eigenvalues of (St − σ2Id).
σ2 corresponds to the average residual eigenvalue. These are
the same expressions as the maximum-likelihood estimation for
PPCA [13], [33], [86].

C. Regularized LDA (RLDA)

The LDA solution is typically ill-posed when the number of
samples is smaller than the number of features, i.e. the SSS
problem. In order to transform the ill-posed problem into a well-
posed one, a regularization term is often added. Several research
papers have addressed the benefits of Regularized LDA (RLDA),
see [45], [46] for a review. This section shows how to derive
RLDA from a LS-WKRRR formulation.

Consider regularizing Eq. (1), as

E17(A,B) = ||Wr(Γ−BATΥ)Wc||2F +λ||WrBAT ||2F . (59)

The necessary conditions on B for the minimum of Eq. (59)
are

∂E17
∂B = W2

rBATΥW2
cΥ

TA−
W2

rΓW2
cΥ

TA + λW2
rBATA = 0. (60)

Substituting the optimal B = ΓW2
cΥ

TA
(
AT (ΥW2

cΥ
T +

λId)A
)−1 of Eq. (60) into Eq. (59) leads to the following

expression:

E17(A) ∝ tr
(
(AT (ΥW2

cΥ
T + λId)A)−1

(ATΥW2
cΓ

TW2
rΓW2

cΥ
TA)

)
. (61)

Eq. (61) is the generalized weighted expression for RLDA. If we
consider Γ = GT , Wr = (GTG)−

1
2 , Υ = D and Wc = In in

Eq. (59), Eq. (61) is equivalent to standard RLDA [45], [46].

D. Dynamic Coupled Component Analysis (DCCA)

This section describes Dynamic Coupled Component Analysis
(DCCA) [21], an extension of the fundamental equation of CA,
Eq. (1), that generalizes CCA to learn correlations between two
time series D ∈ <dd×n and X ∈ <dx×n. DCCA minimizes

E18(B1,B2,A) = ||D−B1A||2F + λ1||A−BT
2 X||2F

+λ2
∑n
i=1 ||ai −Rai−1||22, (62)

where A ∈ <k×n contains the projected coefficients from the
dataset X that are maximally correlated with D. B1 ∈ <dd×k
spans the column space of D, and B2 ∈ <dx×k is a basis that
preserves the correlations between D and X. R ∈ <k×k is a
matrix that couples the coefficients ai over time and temporally
regularizes the solution. Eq. (62) is similar to CCA, Eq. (34),
with three main differences: (1) the dynamic term couples the
correlations through time, (2) it provides an uncertainty value for
the coefficients A controlled by λ1, (3) the predicted variable (D)
is not normalized.

E. Aligned Cluster Analysis (ACA)

This section describes Aligned Cluster Analysis (ACA) [87], an
extension of kernel k-means and SC for time series clustering and
embedding. Given a sequence D = [d1, · · · ,dn] ∈ <d×n with n
samples, ACA decomposes D into m disjointed segments, each of
which corresponds to one of k temporal clusters. The ith segment,
Zi = [dsi , · · · ,dsi+1−1] = D[si,si+1) ∈ <

d×ni , is composed of
samples that begin at position si and end at si+1− 1. The length
of the segment is constrained as ni = si+1 − si ≤ nmax. nmax

represents the maximum length of the segment and it controls
the temporal granularity of the factorization. An indicator matrix
A ∈ {0, 1}k×m assigns each segment to a cluster; aci = 1 if Zi
belongs to cluster c.

ACA combines kernel k-means or SC with Dynamic Time
Alignment Kernel (DTAK) [88] to achieve temporal clustering
by minimizing

E19(A,B, s) = ||[φ(Z1) · · · φ(Zm)]−BA||2F (63)

=
∑k
c=1

∑m
i=1 aci ‖φ(Zi)− bc‖22︸ ︷︷ ︸

distc(Zi)

,

where distc(Zi) refers to the distance between the ith segment
and the center of class c. φ(·) is a mapping such that, τij =

φ(Zi)
Tφ(Zj) is the DTAK. Observe that if we remove the

variable s, ACA is equivalent to kernel k-means and SC, that
is, ||φ(D)−BA||2F s.t. AT 1k = 1n and aij ∈ {0, 1}. There are
two main differences between kernel k-means and ACA: (1) ACA
defines a distance between segments, whereas kernel k-means
only defines distances between samples, (2) a new set of variables,
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s, is introduced to optimize over the start and end for each of
the segments. ACA is iteratively minimized with an alternating
strategy, using Dynamic Programming to optimize over s and
kernel k-means or SC to solve for G. See [87] for more details.

F. Canonical Time Warping (CTW)

This section reviews Canonical Time Warping (CTW) [89], an
extension of CCA for spatio-temporal alignment of two signals
D ∈ <dd×nd and X ∈ <dx×nx with different number of samples
and features.

Dynamic time warping (DTW) has been a frequent approach
to align time series. DTW minimizes the following least-squares
error function [89]

E20(Wx,Wy) = ‖DWT
d −XWT

x ‖2F , (64)

where Wd ∈ {0, 1}m×nd and Wx ∈ {0, 1}m×nx are binary
matrices such that the sum of the rows is 1. Wd and Wx can
only replicate samples of the original signal D and X. Observe
that Eq. (64) is similar to the CCA’s objective, Eq. (38). CCA
applies linear transformations to the rows (features) while DTW
replicates columns (samples or time).

A major limitation of DTW is that it does not have a fea-
ture weighting mechanism to remove irrelevant dimensions for
alignment. Moreover, it is unclear how to use DTW to align
two datasets with a different number of features (e.g., video
and motion capture data). In order to add a feature weighting
mechanism, CTW adds a linear transformation in the feature
space as CCA does. CTW combines DTW (Eq. 64) and CCA
(Eq. 38) by minimizing

E21(Wx,Wd,Vx,Vd) = ‖VT
d DWT

d −VT
xXWT

x ‖2F , (65)

where Vx ∈ <dx×b, Vd ∈ <dd×b, b ≤ min(dx, dd) project the
sequences in the same coordinate system. On the other hand, Wx

and Wd stretch the signals in time. Similar to CCA, to make
CTW invariant to translation, rotation and scaling, we impose
the following constraints: (i) XWT

x 1m = 0dx , DWT
d 1m =

0dd , (ii) VT
xXDxXTVx = VT

d DDdD
TVd = Ib and (iii)

VT
xXWDTVd to be a diagonal matrix, where Dx = WT

xWx,
Dd = WT

d Wd and W = WT
xWd. CTW extends previous work

on CCA by adding temporal alignment and generalizes DTW
by allowing a feature selection and dimensionality reduction
mechanism for signals of different dimensions. More details on
CTW are given in [89].

G. Filtered Component Analysis (FCA)

Multiband representations of images (e.g., [90], [91]) have
proven to be useful in many computer vision problems such as
robust image matching [91], visual learning [90] and detection
[92]. Learning image filters can also be casted in the LS-WKRRR
framework.

Given a set of training images, D ∈ <d×n, where each sample
di is an image, the aim of Filtered Component Analysis (FCA)
[92] is to find a set of filters B1, ··· ,F that decorrelate the spatial
statistics of D. Consider Eq. (1), where Υ = In, Wr = Id,
Wc = In, Γ = D, A = Id, D1 = 0, and the subtraction operator
is replaced by a convolution (denoted by ∗)

E22(B) =

n∑
i=1

||di ∗B||22 . (66)

Without imposing any constraints on B ∈ <fx×fy (filter coef-
ficients), maximizing E22 w.r.t. B is unbounded. To avoid this
trivial solution, we impose that the sum of squared coefficients
is 1, i.e. ||B||2F = 1. In this case, Eq. (66) has a solution as
a GEP given by the leading eigenvectors of Q, where Q =∑n
i=1

∑
(x,y) d

(x,y)
i d

(x,y)
i

T
. (x, y) represents the domain where

the convolution is valid and d
(x,y)
i is a patch of size (fx, fy)

centered at the coordinates (x, y) of the image di. The matrix
Q can be computed efficiently in space or frequency using the
autocorrelation function of di or the integral image.

To learn a filter bank (B1, ··· ,F ) in a discriminative manner,
FCA maximizes

E23 =

F∑
f=1

( n∑
i=1

||di ∗Bf ||22 − λ
n2∑
j=1

||dnj ∗Bf ||22
)
, (67)

where di is the ith sample of the positive class and dnj denotes
the jth sample of the negative class (e.g., background). Eq. (67)
can be solved in closed-form as a GEP, see [92] for more details.

It is interesting to consider the analogy with PCA. PCA
computes the leading eigenvectors of St =

∑n
i=1 did

T
i

whereas FCA computes the leading eigenvectors of Q =∑n
i=1

∑
(x,y) d

(x,y)
i d

(x,y)
i

T
. While PCA finds the directions of

maximum variation of the covariance matrix, FCA finds the
directions of maximum variation of the sum of all overlapping
patches. PCA decorrelates the signal with the covariance of the
data, whereas FCA decorrelates the spatial statistics. Adding non-
linear layers within the convolutional architecture [93] can extract
higher-order moments of the signal in a discriminative manner.

H. Parameterized Kernel Principal Component Analysis
(PaKPCA)

Learning a subspace invariant to possible normalizations of
the data is of interest in many statistical problems, for instance,
learning a model of visual data invariant to geometric transfor-
mations (e.g., rotation, scale). Several researchers have proposed
learning visual appearance models invariant to geometric transfor-
mations [94]–[99]. This section describes Parameterized Kernel
Principal Component Analysis (PaKPCA), an extension of Eq.
(1), to learn a non-linear shape and appearance model invariantly
to rigid and non-rigid geometric transformations [100].

We parameterize an image d ∈ <d×1 with a geometric
transformation f(x, r) [101], [102], d(f(x, r)). In the case of an
affine transformation f(x, r) is

f(x, r) =

(
r1
r2

)
+

(
r3 r4
r5 r6

)(
x

y

)
, (68)

where r = (r1, r2, r3, r4, r5, r6) are the affine parameters and
x = (x1, y1, · · · , xn, yn) is a vector containing the coordinates
of the pixels of a given image region. Alternatively, non-rigid
motion can be added in a straightforward manner by changing the
definition of f . Consider f(Bscs, r) = f(

∑k
l=1 c

s
lb
S
l , r), where

Bs is a non-rigid shape basis learned by computing PCA on a
set of registered shapes [103]. The coefficient cs represents the
non-rigid parameters, and r denotes the rigid parameters. In this
case, f(Bscs, r) will model rigid and non-rigid motion.

Consider Eq. (1), with the following values: Γ = D,Wr =

Id,Wc = In, and parameterize di with a geometric transforma-
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tion f(Bscs, ri)

E24(CS ,A,B,R) =

n∑
i=1

||φ
(
di(f(Bscsi , ri))

)
−Bai||22 (69)

with the constraints that BTB = Ik. Observe that the previous
equation is equivalent to KPCA if f(Bscsi , ri) = x (image
coordinates), that is, if the geometric transformation does not
change the position of the coordinates in the image. Unlike
KPCA, Eq. (69) is optimized w.r.t. the subspace B,A, non-rigid
coefficients CS and rigid coefficients R. For more information
see [100].

I. Feature Selection for Subspace Analysis (FSSA)

A relatively unexplored problem in subspace analysis is how to
select a subset of features that minimize the distance to a given
subspace. Recently, Roig et al. [104] proposed an extension of Eq.
(1) to solve a relaxed version of the subspace feature selection
problem. Consider Eq. (1), where Υ = Id,Wr = Ik,Wc =

1,Γ = vec(PD), and after subtracting the mean µ results in:

E25(P,a) = ||vec(PD)− µ−Ba||22 (70)

s.t. pij ∈ {0, 1},
∑
j pij = 1 ∀ i,

∑
i pij = {0, 1} ∀ j

where D ∈ <d×r is a matrix in which each row contains r

features, and d denotes instances of a given feature. For instance,
in the case of the features being two dimensional landmarks r = 2

for the (x, y), or in the case of the SIFT descriptor [105] r = 128.
P ∈ <k×d is an indicator matrix such that

∑
j pij = 1 ∀i,

pij ∈ {0, 1}, and pij is 1 if the feature i belongs to the subset of k
points that minimize the distance to the subspace. The sum of the
columns of P can be either 0 or 1, that is:

∑
i pij = {0, 1} ∀j.

The objective of the optimization is to simultaneously find the
subset of k features (selected by P) and the subspace coefficients
(a) that minimize the error E25 in Eq. (70). To reduce the
number of parameters, [104] computed the optimal value of
a = BT (vec(PD) − µ) and after substituting this expression
into Eq. (70) resulted in

E25(P) = ||(Irk −BBT )(vec(PD)− µ)||22 ∝
− 1

2vec(P)TQvec(P) + bT vec(P), (71)

where Q = (D ⊗ Ik)HTH(D ⊗ Ik)T ∈ <kn×kn, H = (Irk −
BBT ) ∈ <kr×kr , and b = (D ⊗ Ik)HTHµ ∈ <kn×1. [104]
proposed a quadratic programming solution to minimize Eq. (71),
and showed how it outperforms greedy [106], and naive gradient-
descent approaches [104].

IX. CONCLUSIONS AND FUTURE WORK

This paper shows that the LS-WKRRR is the generative model
for several CA methods. In particular, we have shown how the
fundamental equation of CA, Eq. (1), relates to PCA, LDA,
CCA, LE, k-means, spectral methods, and their regularized and
kernel extensions. We have derived the coupled system of eigen-
equations that results from finding the critical points of Eq. (1),
and suggested several numerical optimization schemes. The LS
formulation of CA has several advantages:
• allows understanding the commonalities and differences be-

tween several CA methods, as well as the intrinsic relation-
ships,

• helps to understand normalization factors in CA methods,

• suggests new optimization strategies for CA methods,
• avoids numerical problems of existing eigen-methods for

rank deficient matrices (e.g., SSS problem),
• allows many extensions of CA methods.

We have derived weighted extensions for PCA, LDA, CCA,
and kernel extensions. In addition, we have shown that several
extensions of the LS-WKRRR derive into novel techniques such
as DCA, DCCA, ACA, CTW, FCA, PaKPCA, and FSSA.

There exists a number of other CA techniques that are closely
related to the fundamental equation of CA. An approximation
to Independent Component Analysis can be derived from Eq.
(15), by imposing that the coefficients A follow distributions
with heavy tails (i.e. high kurtosis) [107]. Williams [108] showed
that metric Multidimensional Scaling can be interpreted as KPCA
if the kernel function is isotropic. Other techniques such as
Partial Least Squares [12] or Probabilistic Latent Semantic Anal-
ysis [109] also have close connections to Eq. (1). In the LS
formulation, we have implicitly assumed that the error follows
an isotropic Gaussian distribution. Extensions to more complex
noise models that follow the exponential family distribution have
lead to the Exponential family PCA [110], [111], that can be
seen as a extension of Eq. (1) changing the Frobenious norm
for other metric. In Eq. (15) both regression matrices A and
B are deterministic. On the other hand, Latent variable models
(LVM) [13], [112] (e.g., Factor Analysis, PPCA, mixtures of
Gaussians) incorporate a distribution in some of the variables,
and are considered the probabilistic extensions of CA. Finally,
Eq. (15) can be interpreted as a matrix factorization technique.
Tensor factorization methods [113], [114] can also be considered
as a generalization of PCA to more than two dimensions and can
be formulated as extensions of Eq. (1). Formulating LVM and
tensor factorization methods as extensions of Eq. (1) can benefit
from the same advantages of the LS framework discussed in this
paper.

APPENDIX

A: COVARIANCE MATRICES IN COMPONENT ANALYSIS

Many CA methods can be formulated as generalized eigen-
value problems (GEPs). This appendix derives a compact matrix
expression for most common covariance matrices in CA.

Let D ∈ <d×n be a matrix where each column is a vectorized
data sample from one of c classes. d denotes the number of
features and n number of samples. Some of the most common
CA covariance matrices can be conveniently expressed in matrix
form as [115]:

St =
1

n− 1

n∑
j=1

(dj −m)(dj −m)T =
1

n− 1
DPtD

T ,

Sw =
1

n− 1

c∑
i=1

∑
dj∈Ci

(dj −mi)(dj −mi)
T =

1

n− 1
DPwDT ,

Sb =
1

n− 1

c∑
i=1

ni(mi −m)(mi −m)T =
1

n− 1
DPbD

T ,

where m = 1
nD1n is the mean vector, mi is the mean vector

for class i, ni denotes the number of samples for class i, and Pi
are projection matrices (i.e. PTi = Pi and P2

i = Pi) with the
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following expressions:

Pt = In − 1
n1n1Tn , Pw = In −G(GTG)−1GT ,

Pb = G(GTG)−1GT − 1
n1n1Tn .

G ∈ <n×c is an indicator matrix such that
∑
j gij = 1, gij ∈

{0, 1}, and gij is 1 if di belongs to class j, and 0 otherwise. Sb
is the between-class covariance matrix and represents the average
distance between the means of the classes. Sw is the within-class
covariance matrix that contains information about the average
compactness of each class. St is the total covariance matrix.
Using this matrix expressions, it is straightforward to show that
St = Sw + Sb. The upper bounds on the ranks of Sb,Sw, and St
are min(c− 1, d),min(n− c, d),min(n− 1, d), respectively.

B: ABBREVIATIONS

ACA: Aligned Cluster Analysis, ALS: Alternated Least-Squares,
CA: Component Analysis, CCA: Canonical Correlation Analy-
sis, DCA: Discriminative Cluster Analysis, DCCA: Dynamic
Coupled Component Analysis, DTW: Dynamic Time Warping,
FCA: Filtered Component Analysis, GEPs: Generalized Eigen-
value Problems, KCCA: Kernel Canonical Correlation Analysis,
KLDA: Kernel Linear Discriminant Analysis, KPCA: Kernel
Principal Component Analysis, LDA: Linear Discriminant Anal-
ysis, LE: Laplacian Eigenmap, LLE: Local Linear Embedding,
LPP: Locality Preserving Projections, LS: Least-Squares, LS-
WKRRR: Least-Squares Weighted Kernel Reduced Rank Regres-
sion, NMF: Non-negative Matrix Factorization, Ncuts: Normalized
Cuts, PaKPCA: Parameterized Kernel Principal Component Anal-
ysis, PCA: Principal Component Analysis, PPCA: Probabilistic
PCA, SC: Spectral Clustering, SSS: Small Sample Size.
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