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Abstract

The face is one of the most powerful channel of non-

verbal communication. The most commonly used taxonomy

to describe facial behaviour is the Facial Action Coding

System (FACS). FACS segments the visible effects of facial

muscle activation into 30+ action units (AUs). AUs, which

may occur alone and in thousands of combinations, can de-

scribe nearly all-possible facial expressions. Most existing

methods for automatic AU detection treat the problem us-

ing one-vs-all classifiers and fail to exploit dependencies

among AU and facial features. We introduce joint-patch and

multi-label learning (JPML) to address these issues. JPML

leverages group sparsity by selecting a sparse subset of fa-

cial patches while learning a multi-label classifier. In four

of five comparisons on three diverse datasets, CK+, GFT,

and BP4D, JPML produced the highest average F1 scores

in comparison with state-of-the art.

1. Introduction

The Facial Action Coding System (FACS) [10] is a

comprehensive system for describing facial movements.

Anatomically-based descriptors, referred to as Action Units

(AUs), alone and in thousands of combinations can account

for nearly all-possible facial expressions. This descriptive

power is not without cost. Manual FACS coding is labor

intensive. Training can require a hundred hours or more to

reach acceptable competence. Once a FACS coder achieves

this milestone, annotation (also referred to as coding) can

require an hour or more for each 30- to 60 seconds of

video, and inter-observer reliability must be closely mon-

itored to maintain quality. To make possible more efficient

use of FACS, computer vision strives for automatic AU cod-

ing. While significant progress has been made toward this

goal [1,6,9,22], at least two critical problems remain. These

are patch and multi-label learning. Patch learning (PL) ad-

dresses how to effectively exploit local dependencies be-

tween features; multi-label learning (ML) seeks to exploit

strong correlations among AUs.

Most current approaches extract features across the en-

tire face and concatenate them for AU detection. Within lo-

cal regions, however, many of these features are correlated.
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Figure 1. Joint patch and multi-label learning (JPML): (a) the

learned classification matrix with consideration of positive and

negative AU relations, (b) likely and rarely co-occurring AUs, (c)

patch indexes, and (d) automatically selected patches for AU12.

We define local regions as patches centered around facial

landmarks. By modeling features within local patches in-

formed by FACS, it is possible to give greater weights to

informative regions of interest and to reduce a large number

of correlated features to achieve efficient learning. Zhong

et al. [34] effectively applied patch learning to detect pro-

totypic expressions (e.g., happy or sad). We apply patch

learning to the more demanding problem of AU detection.

Similarly, just as features within patches have con-

straints, or correlation, AUs have constraints as well. AU 1

(inner-brow raise) increases the likelihood of AU 2 (outer-

brow raise) and decreases the likelihood of AU 6 (cheek

raiser). Multi-label learning builds upon this knowledge.

Learning related AUs simultaneously improves learning

in part by implicitly increasing the sample size for each

AU. Recent efforts have explored AU relationships using

Bayesian networks (BN) [25, 26] and dynamic Bayesian

networks (DBN) [28]. Some developed generic domain

knowledge to learn AU models without training data [15].

We address patch and multi-label learning with one

stone. By taking both PL and ML into account, we model

dependencies among both features and AUs. We explore

two types of AU relations, termed positive correlation and

negative competition, by statistically analyzing more than

350,000 samples from three varied datasets that include

both posed and spontaneous facial behavior. The latter in-



cludes two- and three-person social contexts and a range of

emotion inductions. Given such AU relations, we develop

joint patch and multi-label learning (JPML) to simultane-

ously select a discriminative subset of patches and learn

multi-AU classifiers. JPML leverages the structure in the

classification matrix and AU labels, and naturally blends

two tasks into one.

Fig. 1 illustrates the main idea. (a) shows a classifica-

tion matrix in which columns correspond to patch indices

and rows to individual AU classifiers; (b) shows likely and

unlikely co-occurring AUs; (c) shows patch indices. (d)

illustrates the patches selected by JPML, illustrating that

JPML is able to finding a discriminative subset of patches to

identify a target AU, in this case AU12 (oblique lip corner

puller). In experiments, we will show that the joint pro-

cesses of JPML are mutually-beneficial due to the comple-

mentary characteristics in the classification matrix.

2. Related Work

Automatic facial AU detection has been a vital research

domain for objectively describing facial action related to

emotion. See [1, 6, 9, 22] for comprehensive reviews. Our

work closely follows recent efforts in patch learning and

multi-label learning. Below we review each in turn.

Patch learning: Existing AU detection methods often

perform feature learning to select a representative subset

of raw features. Examples include AdaBoost [16], Gentle-

Boost [27], and linear SVM [18]. However, as described in

FACS [10], AUs relate to specific regions of human faces,

i.e., some facial regions are more important than others for

recognizing specific AUs. If one seeks to detect brow raise

(AUs 1 and 2), the eye and forehead regions are likely to be

more informative than the jaw. Using domain knowledge,

feature selection is sampled within subregions, or patches,

of the face. Following this intuition, patch learning was

proposed to model the region specificity to improve the

performance of AU detection. Zhong et al. [34] divided

a facial image into uniform patches, and then categorized

these patches into common ones and specific ones accord-

ing to basic expressions. Following a similar idea, Liu et

al. [17] proposed to select common and specific patches

corresponding to an expression pair (e.g., happy-sadness).

However, these patches were modeled implicitly and do not

directly capture regional importance for certain AUs. Re-

cently, Taheri et al. [24] used two-layer group sparse coding

to encode AUs on predefined regions, and recovered facial

expressions using sparsity in AU composition rules.

These patch learning approaches have been proved effec-

tive on posed expressions. However, the patch locations are

pre-defined on a normalized template, and hence could fail

to precisely capture the specificity of patches due to non-

rigidity of human faces. Besides, it is unclear how AUs

relations can be incorporated in these studies.

Multi-label learning: Existing research suggest the ex-

istence of strong AU correlations [15, 28]. For instance,

AUs 6 and 12 are known co-occur in expressions of en-

joyment and embarrassment. We can use such AU corre-

lations to improve AU detection (e.g., [5, 13, 18, 27]). To

this end, Bayesian Networks (BN) [25, 26] and dynamic

BN [28] have been used to exploit AU correlations. Other

approaches exist, as well. Using generic domain knowl-

edge, AU correlations can be modeled as a directional graph

without training data [15]. In addition, a sparse multi-task

model can be employed, assuming tasks are similar [32].

Without further research, it is unclear how these methods

can best identify a discriminative subset of patches to im-

prove AU detection. We propose a joint patch and multi-

label learning (JPML) framework that simultaneously ad-

dresses patch- and multi-label learning for AU detection.

These tasks prove mutually beneficial.

3. Joint Patch and Multi-label Learning (JPML)

3.1. Formulation

Let D = {(xi,yi)}
N
i=1 be the training set with N in-

stances and L AUs, where xi ∈ R
D is a feature vector

from a facial image, and yi ∈ {+1,−1}L is an L × 1 la-

bel vector which indicates a presence of the ℓ-th AU if the

ℓ-th element yiℓ = +1, and an absence of the ℓ-th AU if

yiℓ = −1 (see notation1). For notational convenience, we

denote X = [x1, ...,xN ] ∈ R
D×N as a data matrix, and

Iℓ = {i|yiℓ = +1} as an index set of instances that con-

tain the ℓ-th AU. Our goal is to learn L linear classifiers

in the matrix form W = [w1, ...,wL] ∈ R
D×L that en-

forces group-wise sparse feature selection (corresponding

to the rows of W) and label relations (corresponding to the

columns of W). We formulate JPML as an unconstrained

optimization problem:

min
W

L(W,D) + αΩ(W) + Ψ(W,X), (1)

where L(W,D) =
∑L

ℓ=1

∑

i∈Iℓ
ln(1 + exp(−yiℓw

⊤
ℓ xi))

is the logistic loss, Ω(W) is the patch regularizer that en-

forces sparse rows of W as groups, and Ψ(W,X) is a rela-

tional regularizer that constrains predictions on X with AU

relations. Tuning parameters are α for Ω(·) and (β1, β2)
included in Ψ(·, ·). Problem (1) involves two tasks: iden-

tify a discriminative subset of patches for each AU (patch

learning), and incorporate AU relations into model learning

(multi-label learning). Below we detail each task in turn.

1 Bold capital letters denote a matrix X; bold lower-case letters denote

a column vector x. xi the i-th column of the matrix X. All non-bold

letters represent scalars. Xij denotes the scalar in the (i, j)-th entry of

the matrix X. xj denotes the scalar in the jth element of x. 1m ∈ R
m

is a vector of ones. 0m×n ∈ R
m×n are matrices of zeros. I(x) is an

indicator function that returns 1 if the statement x is true, and 0 otherwise.
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Figure 2. Patch importance between standard feature learning and

our patch learning for AU1, 12 and 24 on CK+ dataset. Weights on

each patch are computed as the norm of their classification vectors,

and then normalized to [0,1].

3.2. Patch learning

The first task addresses patch learning. According

to FACS [10], AUs are defined according to appearance

changes at particular facial regions. Unlike standard fea-

ture learning methods that treats features separately [16,

19], patch learning constrains local dependencies in facial

patches and gains better interpretation. Existing work se-

lect patches on uniformly distributed grid [17,24,34], while

this paper exploits landmark patches that are centered at

facial landmarks (as depicted in Fig. 1(c)). These landmark

patches adapt better in real-world facial expression recogni-

tion scenario because of the non-rigidity of faces. In partic-

ular, we describe each patch using a 128-D SIFT descriptor.

Each facial image is then represented as a 6272-D feature

vector by concatenating SIFT descriptors of all landmarks.

To address the regional appearance changes on AUs, we

define a group-wise sparsity on the classification matrix W.

Group sparsity learning aims to split variables into groups

and then to select groups in sparsity. It has been shown to

effectively recover joint sparsity across input dimensions,

and successfully applied to computer vision (e.g., [14, 31]).

Given the structural nature of our problem, within each col-

umn of W, we split every 128 values into non-overlapping

groups, where each group corresponds to the SIFT features

extracted from a particular patch. This grouping encour-

ages a sparse selection of patches by jointly setting a group

of rows to zero. In particular, Problem (1) reduces to:

min
W

L(W,D) + αΩ(W), (2)

where Ω(W) =
∑L

ℓ=1

∑49
p=1 ‖w

p
ℓ‖2 is the patch regular-

izer, and w
p
ℓ is the p-th group for the ℓ-th AU, i.e., rows of

wℓ grouped by the patch p.

Patch importance: To validate the ability of maintain-

ing the specificity of patches, we compare standard feature

learning2 (treat each feature independently) and our patch

2ℓ1-regularized linear SVM [11] was used as feature learning.
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Figure 3. F1-Norm with respect to different #patches for AU12

on CK+ dataset. Three marked faces indicate the 18, 26 and 42

selected patches, which are depicted as light yellow circles.

learning (treat features as groups), using the defined patch

importance ‖wp
ℓ‖2. As shown in Fig. 2, patch learning of-

fers a better interpretation of important patches correspond-

ing to three AU examples. For instance, patches around in-

ner eyebrow contain higher importance for AU1; for AU24,

patches around mouth (especially upper lips) are shown

more important. Moreover, compared to previous work that

manually defines a fixed region for AU12 (e.g., [24,29]), our

patch learning for AU12 automatically emphasizes not only

upper lips (not lower lips), but also the patches around lower

nose and slightly minor importance on the lower eyelid (cor-

responding to AU6). It can be seen that patch learning fa-

cilitates the specificity of relevant facial patches. Similar

results could be obtained on other AUs and basic emotions.

#Patches versus performance: A natural question to

ask is how the number of patches influences performance on

AU detection. Intuitively, more patches should improve per-

formance because more information is provided. To answer

this question, we performed an experiment on AU12 using

the CK+ dataset. Patches are selected in a descending order

with respect to the patch importance. As shown in Fig. 3,

the performance increases quickly until it hits the best per-

formance with 18 patches, which associate with the zygo-

matic major in AU12 (upper lips and lower nose). When

#patches become 25, patches on lower eyelid (associated

with AU6) are included, showing that patches associated

with AU6 are related to AU12. However, the performance

drops slightly because not all patches carry useful informa-

tion for a particular AU, coinciding with the findings [34].

Introducing more patches potentially include more noises

that fluctuate the performance. Observing similar perfor-

mance between #patches=18 and #patches=42, one can jus-

tify the importance of patch specificity, i.e., only a subset of

patches are discriminative for AU detection.

3.3. Multilabel learning

The next task is to exploit label relations for AU detec-

tion. Learning multiple related labels effectively increases

the sample size for each class, and improves the prediction

performance (e.g., [3,30]). Despite the AU relations derived
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Figure 4. The relation matrix studies on more than 350,000 valid

frames with AU labels. Red solid and dashed yellow rectangles,

respectively, indicate the relations of positive correlations and neg-

ative competitions studied in this work.

from prior knowledge [15, 28], this section explores sta-

tistically the AU co-occurrence among more than 350,000

frames. Below we describe how we discover these relations,

and how they can be incorporated into JPML.

Discover AU relations: We seek AU relations by statis-

tically analyzing three datasets, CK+ [18], GFT [23] and

BP4D [33], which contains 214 subjects and more than

350,000 valid frames with AU labels. The most frequently

occurring AUs are used throughout this paper. Here, our

goal is to discover likely and rarely co-occurring AUs.

Fig. 4 shows the relation matrix studied on the datasets.

The (i, j)-th entry of the upper right matrix was computed

as the coefficient correlation between the i-th and the j-th

AU using ground truth labels; an entry of the lower left ma-

trix was computed on the labels containing at least either

the i-th or the j-th AU. One could interpret the upper ma-

trix in Fig. 4 as a mutual relation of concurring AU pairs,

and the lower matrix as an exclusive relation that one AU

competes against another. After investigating this matrix

with the FACS [10] and related studies [15, 28], we derive

two types of AU relations, positive correlation and negative

competition, as summarized in Table 1.

To discover these relations, we derive explicit rules as

follows. AUs with over moderate positive correlations, i.e.,

correlation coefficient ≥ 0.40, are assigned as positive cor-

relations, e.g., AUs (6, 12) co-occur frequently to describe a

Duchenne smile. AUs with large negative correlations, i.e.,

correlation coefficient ≤0.60, are selected as negative com-

petitions, implying these AUs compete against each other

and thus avoid occurring at the same time, e.g., AUs (12,

15) have negative influences on each other (coincide with

the findings in [15]). Note that, for the lower matrix, we

exclude the consideration of relations between upper face

and lower face AUs, because their facial muscles function

Table 1. AU relations discovered and used in this study

AU relations AU groups

Positive correlation (1,2), (6,7), (6,10), (7,10), (6,12), (7,12),

(10,12), (17,24)

Negative competition (1,6), (1,7), (2,6), (2,7), (10,17), (10,23),

(10,24), (12,15), (12,17), (12,23), (12,24),

(15,23), (15,24), (23,24)

separately and thus do not compete against each other. In

addition, one can observe that the absolute values of lower

matrix are much larger than the upper ones, providing an-

other evidence that out of thousands of AU combinations,

most rarely co-occur, coinciding with [24].

Incorporate AU relations into JPML: Denote the set of

AU pairs with positive correlations and with negative com-

petitions as P and N , respectively. For instance, (1,2) and

(6,12) are in P; (15,23), (15,24), and (23,24) are in N . To

incorporate the AU relations discovered above, we intro-

duce the relational regularizer as:

Ψ(W,X) = β1PC(W,X,P) + β2NC(W,X,N ), (3)

where β1 and β2 are tradeoff coefficients. PC(W,X,P)
captures the AU relations of positive correlations:

PC(W,X,P) =
1

2

∑

(i,j)∈P

γij‖w
⊤
i X−w⊤

j X‖22, (4)

where γij is a pre-defined similarity score that determines

how similar two predictions w⊤
i X and w⊤

j X are. The

larger γij is, the more similar predictions are for the i-th

and the j-th AUs in P (γij=2000 in our experiments). The

intuition behind this regularizer is that positively correlated

AUs implies similar predictions. NC(W,X,N ) is defined

in analogy to exclusive lasso [35]: NC(W,X,N )q =
∑N

i=1

∑|N |
n=1

(

∑

j∈Nn

∣

∣w⊤
j xi

∣

∣

)2

, where Ni indicates the

i-th element in N , and |N | = 14 in our case (as shown in

Table 1). For example, N1 is the AU pair (1,6) with negative

competition. Because the ℓ1 norm tends to achieve a sparse

solution, if one classifier predicts AU1 in the group N1, the

AU6 classifier tends to generate small prediction values. In

this way, we are able to introduce competitions among the

predictions within the same negative group. As a result, we

solve for the multi-label learning task of JPML:

min
W

L(W,D) + Ψ(W,X). (5)

We detail our algorithm to solve JPML as follows.

3.4. Algorithm

Because Ω(W) and Ψ(W,X) constrain on W differ-

ently, Problem (1) cannot be solved directly. We rewrite

Problem (1) by introducing auxiliary variables W1,W2.,
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Figure 5. Illustration of convergence curve on learning active patches on AU12 with algorithm PL. While the iterations proceed, PL

identifies the regions for AU12 (lip corner puller) with better specificity.

Algorithm 1 Patch learning (PL)

Input: Training data D = {(xi,yi)}
N
i=1, ML matrix W2, La-

grange multiplier of ADMM ρ and U, learning rate η1, and

penalty parameter α.

Output: PL matrix W1∈ R
D×L with sparse groups of rows.

1: for ℓ = 1, . . . , L do

2: w
(0)
1ℓ = 1

D
1D,v(0)= 1

D
1D, a(0)=1, t=0; // Initialization

3: while not convergence do

4: z(t)=v(t)−η1(∇L(w
(t)
1ℓ ,D)+u

(t)
ℓ +ρ(w

(t)
1ℓ −w

(t)
2ℓ ));

5: for p = 1, . . . , 49 do

6: w
p(t+1)
1ℓ = I(‖zp(t)‖2 > α)(1− α

‖zp(t)‖2
)zp(t);

// w
p
1ℓ is the p-th patch within the ℓ-th column of W1

7: end for

8: a(t+1) = 2
t+1

;

9: v(t+1) = w
(t+1)
1ℓ + ( 1−a(t)

a(t) a(t+1))(w
(t+1)
1ℓ −w

(t)
1ℓ );

10: t = t+ 1;

11: end while

12: end for

and then jointly optimize W1 and W2 using ADMM [2]:

min
W1,W2

L(W1,D)+αΩ(W1)+Ψ(W2,X)+
ρ

2
‖W1−W2‖

2
F

s.t.W1=W2. (6)

The augmented Lagrangian can be written as:

Lρ(W1,W2,U) = L(W1,D)+αΩ(W1)+Ψ(W2,X)

+〈U,W1−W2〉+
ρ

2
‖W1 −W2‖

2
F . (7)

ADMM consists of three updates:

W
(k+1)
1 = min

W1

Lρ(W1,W
(k)
2 ,U(k)), (8)

W
(k+1)
2 = min

W2

Lρ(W
(k+1)
1 ,W2,U

(k)), (9)

U(k+1) = U(k) + ρ(W
(k+1)
1 −W

(k+1)
2 ). (10)

Solving (8) involves the patch regularizer Ω(W1) and

the augmented terms in Lp. Because solving for W1 with

L2,1 norm is a non-smooth problem, here we use the accel-

erated gradient method [4] to decompose L2,1 norm into

49 sub-problems. Algo. 1 summarizes the detailed pro-

cedure. The convergence condition in the algorithm is

‖w(t+1) −w(t)‖2 ≤ δ (δ=10−5 in our case).

Algorithm 2 Multi-label learning (ML)

Input: Training data D = {(xi,yi)}
N
i=1, PL matrix W1, La-

grange multiplier of ADMM ρ and U, learning rate η2,

penalty parameter β2, and accuracy control parameter µ.

Output: ML matrix W2∈R
D×L.

1: W
(0)
2 = 1

D
1D×L,V

(0)= 1
D
1D×L, a

(0)=1, t=0; // Init.

2: while not convergence do

3: U(t) = (1− a(t))W
(t)
2 + a(t)V(t);

4: Hµ = 0L×D;

5: for i = 1, . . . , N do

6: zi = min(1,max(−1, U
(t)⊤

xi

µ
));

7: qi = z⊤nU
(t)⊤xi −

µ

2
‖zi‖

2
2;

8: Hµ = Hµ + qi(zix
⊤
i );

9: end for

10: V(t+1)=V(t)− 1
η2
(H⊤

µ−u+ρ(W1−U
(t)))+∇PC(U(t));

11: W
(t+1)
2 = (1− a(t))W

(t)
2 + a(t)V(t+1);

12: a(t+1) = 2
t+1

;

13: t = t+ 1;

14: end while

Fig. 5 illustrates the convergence process of PL on

AU12. While the number of iteration increases, PL con-

verges to a subset of patches that preserves better speci-

ficity. On iteration #1, many patches are selected and thus

remain an ambiguous representation. From iteration #10

to #30, patches associated with AU12 are strengthen but

still involve unrelated regions such as eyes. PL converges

at it#60, revealing the discriminative patches around lower

nostril wing and upper mouth, the regions that zygomaticus

major muscle triggers for AU12.

Solving (9) involves the relational regularizer

Ψ(W2,X) and the augmented terms in Lp. For Ψ(·, ·),
the positive correlation PC(W2,X,P) is smooth in

W2, but the negative competition NC(W2,X,N ) is

not. Here we adopt Nesterov’s approximation [21] to

smooth the objective. Given a training sample xi and

its negative relation Ni, we denote WNi
as a D× |Ni|

matrix where each column contains wj and j ∈ Ni. Let

‖W⊤
Ni

xi‖1 =
∑

j∈Ni

∣

∣w⊤
j xi

∣

∣, we can write its dual

norm as ‖W⊤
Ni

xi‖1 = max|z|≤1〈W
⊤
Ni

xi, z〉, and smooth

NC(W2,X,N ) following [21]. See Algo. 2.

JPML is optimized by iterating patch learning (Algo. 1)

and multi-label learning (Algo. 2). Because the ADMM
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(b) Obj. value of Eq. (7) (c) Relation matrix in CK+ (d) Patch learning (e) JPML

Figure 6. Illustration of JPML on the CK+ dataset: (a) 1
DL

‖W
(t)
1 −W

(t)
2 ‖2F v.s. #iteration, (b) objective value in (7) v.s. #iteration, (c)

ground truth relation matrix (correlation coefficients between ground truth AU labels), (d) relation matrix at the initialization step (with

patch learning only), and (e) relation matrix computed by predictions of JPML. The difference of correlation coefficient between (c) and

(d) is 0.51, and that between (c) and (e) is 0.15, showing that JPML helps preserve the relations between AUs.

form in (7) is bi-convex, it is guaranteed to converge to

a critical point. Fig. 6 shows the convergence process of

JPML. In training, the maximum iteration is set as 30, while

JPML typically converges within 5 iterations. As can be

seen in (a), for each iteration of PL and ML, JPML man-

ages to keep the averaged error between W
(t)
1 and W

(t)
2

as low as 10−5. By adding positive correlations and nega-

tive competitions into patch learning, much more accurate

correlations closed to ground truth can be learned. In quan-

tities, the distance between predictions and ground truth de-

creased 3.4 times, as shown in Fig. 6(d) and (e). Note that

the entry of AUs (1,2) in Fig. 6(c)∼(e) is empty because in

CK+ AUs (1,2) always co-occur, leading to a zero variance

during the computation of correlation coefficient.

4. Experiments

4.1. Settings

Datasets: We evaluated the effectiveness of JPML in

three datasets that include both posed and spontaneous fa-

cial behavior in varied contexts. Each database had been

FACS coded by well-experienced coders. Inter-observer

agreement in each was quantified using coefficient kappa,

which control for chance agreement between coders, and it

was maintained at a kappa of 0.80 or higher, which repre-

sents high inter-observer agreement.

(1) CK+ [18] is a leading testbed for facial expression

analysis. It consists of 593 sequences of posed facial actions

from 123 subjects. The first and the last frames of each

sequence were selected as negative and positive samples,

respectively. In all, 593 images with 10 AUs were used.

(2) GFT [23] consists of 720 participants recorded dur-

ing group-formation tasks. Previously unacquainted partic-

ipants sat together in groups of 3 at a round table for 30

minutes while getting to know each other. We used 2 min-

utes of video from 50 participants. For each participant,

we randomly sampled 100 positive frames and 200 negative

frames for training purposes.

(3) BP4D [33] contains 2D/3D videos of spontaneous

facial expressions in young adults during various emotion

inductions while interacting with an experimenter. We used

328 2D videos from 41 participants. For each video, we ran-

domly sampled 50 positive frames and 100 negative frames

for training purpose.

Because severely skewed base rates attenuate estimates

of classifier performance, only AU occurring more than

3% to 5% of the time were included for analysis. Across

datasets, 10 to 11 AU met this criterion. Even though AU

with very low base rates were omitted, skew nevertheless

varied considerably. To control for the effects of skew on

AU detection, test statistics were normalized for skew us-

ing the procedure of [12]. By normalizing for skew we

were able to reliably compare results within and between

datasets. Table 2 summarizes the skew factor defined as the

ratio of the number of negative samples to the number of

positive ones.

Pre-processing: IntraFace [7] was used to track 49 fa-

cial landmarks. Tracked landmarks were registered to a ref-

erence face using similarity transform. Appearance features

were extracted using SIFT descriptor [36] at frame level, re-

sulting in 49×128-D features for each image. To take full

advantage of the datasets, we divided GFT and BP4D into

10 splits of independent participants. Because CK+ only

contains 593 images, 5 splits were adopted.

Evaluation metrics: To report objective results, we used

two metrics to compare performance, F1-Norm (frame-

based) and F1-Event (segment-based). F1-Norm [12] is

computed as the normalized F1 score with a skew factor:

F1-Norm = 2s·R·P
s·R+P

, where R is recall, P is precision, and

s is the skew factor. F1-Norm skew-normalizes the stan-

dard F1 metric and enables comparison both within and

between datasets. On the other hand, F1-Event [8] serves

as a segment-based metric defined as the harmonic mean

between event-based recall ER and event-based precision

EP : F1-Event = 2·ER·EP
ER+EP

. For each method, we computed

the averaged metric over all AUs (denoted as AA.), and aver-

aged over only the AUs with relationships (denoted as AR.).

Comparative methods: To investigate the benefits of



Table 2. Skew on each AU within different datasets

AU 1 2 6 7 10 12 14 15 17 23 24

CK+ 1.5 2.3 2.4 3.1 20.8 3.1 9.2 8.9 1.8 6.6 6.6

GFT 10.1 8.3 2.1 1.5 1.5 2.0 0.6 9.7 2.7 4.9 8.4

BP4D 3.8 4.9 1.2 0.8 0.7 0.8 1.1 4.9 1.9 5.0 5.5

JPML, we compared it with methods that omit patch- and

multi-label learning and with approaches that use patch- or

multi-label learning but not an integration of both.

For baseline without PL or ML, we trained Linear SVMs

(LSVM) [11] on individual AU. As a baseline for feature

learning, we used L1-regularized logistic regression (LL1)

[11]. All use features without considering patches.

For PL, we used several patch selection methods. These

were self-defined patches (similar to [5, 36]) with binary

SVMs, termed as SP-SVM, in comparison to our automatic

patch selection. Patches were defined according to FACS

and patch indexes in Fig. 1(c): landmarks #1∼#10 are as-

signed to AUs 1, 2, and 7; #11∼#30 for AU6; #11∼#19 for

AUs 11 and 14, #32∼#49 for all AUs around lips. Patches

on eyebrows were selected for training classifiers on AUs 1,

2 and 7; patches on eyes and nose for AU 6; patches around

nose for AUs 11 and 14; patches around lips for all AUs

around mouth. In addition, we compared two state-of-the-

art patch learning methods, Structure Preserving Sparse De-

composition (SPSD) [24] and Active Patch Learning (APL)

[34]. For SPSD, because GFT and BP4D do not contain

expressions labels, we used one layer to learn AU dictio-

nary, and K-SVD [20] to learn AU atoms on fixed patches.

Note that the original APL [34] was defined on emotion

bases using uniform segmentation on face images. In our

experiments, we implemented APL using patches centered

at landmarks and algorithm in Algo. 1.

For ML, we compare with MT-MKL [32] using RBF and

polynomial kernels with the implementation provided by

the authors. Because MT-MKL involves computing mul-

tiple kernel matrices, it is computationally prohibitive for

large datasets such as GFT and BP4D, and was carried out

only on CK+. Following [32], we employed 3 AU groups

overlapped with this study: AUs (1,2), (6,12), and (15,17).

According to parameters in Algos. 1 and 2, α is cross-

validated within {10−3, 10−4, 10−5}, η1=10−4, γ=2000,

µ=10−4, η2=2000, β1=10−3, and β2=10−4.

4.2. Results

Tables 3∼5 show the results on CK+, GFT, and BP4D,

respectively. AUs without relationships are underlined. We

excluded these AUs for ML and JPML and denoted theirs

results as “−”. For CK+, because each video starts from

a neutral face to a particular peak expression, we evaluated

with only F1-Norm. For GFT and BP4D consisting of spon-

taneous videos, we used both F1-Norm and F1-Event to

capture the imbalance nature of AU detection and the abil-

Table 3. Comparisons on the CK+ dataset. Bracketed numbers

stand for the best performance; bold numbers for the second best.

F1-Norm

AU
SP-

SVM SPSD LSVM LL1
MT-
MKL ML APL JPML

1 61.8 44.4 85.8 83.4 73.0 89.0 86.4 [90.0]

2 63.9 47.9 90.9 87.4 87.8 92.7 86.6 [93.0]

6 61.7 34.2 75.3 [76.2] 61.9 70.7 70.5 74.2

7 60.0 50.8 [70.8] 70.0 – 61.6 62.8 66.7

12 65.5 47.4 [80.7] 80.0 73.3 75.2 76.6 [80.7]

14 66.3 59.9 67.7 67.7 – – [69.5] –

15 65.8 53.4 67.5 66.7 67.8 61.9 79.2 73.6

17 60.4 62.2 80.5 80.5 68.3 80.3 80.0 [83.5]

23 66.2 65.0 69.3 69.8 – 69.7 83.5 74.3

24 68.3 65.8 71.1 71.4 – 67.5 75.9 65.9

AA. 64.0 52.3 76.0 75.3 – – [77.1] –

AR. 63.7 51.5 76.9 76.2 72.0 74.3 77.0 [78.0]

ity to preserve temporal consistency. Below we discuss the

results from three perspectives: patch Learning, multi-label

learning and the proposed joint framework JPML.

Patch learning: This paragraph attempts to answer the

question: does APL help improve performance compared to

standard feature learning and patch learning methods? Out

of three datasets, we evaluated 32 AUs with F1-Norm, and

22 AUs with F1-event. In general, APL outperforms fea-

tures learning (LL1 and LSVM) in 26/32 AUs for F1-Norm,

and 14/22 AUs for F1-event. Compared to patch learning

approaches (SP-SVM and SPSD) that use uniformly dis-

tributed patches, APL outperforms in 30/32 AUs with F1-

Norm and 17/22 in F1-event. One explanation is that our

APL uses patches around facial landmarks, and thus better

adapts to appearance changes on spontaneous expressions.

In particular, as can be seen in Tables 3∼5, APL performs

more effectively when applied to lower face AUs, which

typically involves larger motions on mouth regions. In sum-

mary, we justify that APL is more reasonable than standard

feature learning and patch learning with fixed patches.

Multi-label learning: This paragraph discusses the

benefits of considering relations between AU labels using

multi-label learning. Closest to our work is MT-MKL that

assumes classifiers within the same AU group behave simi-

larly. On the contrary, our ML (Sec. 3.3) considers positive

correlation as well as negative competition on labels (in-

stead of classifiers), and thus more naturally fits the problem

in hand. In Table 3, averaging F1-Norm over the 6 AUs we

implemented for MT-MKL, ML outperforms against MT-

MKL by 8.8%. In Tables 4 and 5, we have seen that ML

consistently outperforms standard binary classifiers (LL1,

LSVM, SPSD and SP-SVM), showing that relations be-

tween AU labels are essential to assist AU detection.

JPML: APL and ML alone have shown good perfor-

mance over three datasets. This paragraph focuses on the



Table 4. Comparisons on the GFT dataset. Bracketed numbers indicate the best performance; bold numbers indicate the second best.

F1 Norm F1 Event

AU SPSVM SPSD LSVM LL1 ML APL JPML SPSVM SPSD LSVM LL1 ML APL JPML

1 29.9 33.0 53.0 52.0 [66.7] 44.1 58.0 17.8 12.2 [20.6] 17.8 11.5 11.5 15.9

2 60.2 34.7 51.3 45.1 [64.4] 43.6 63.2 [21.2] 12.9 19.6 16.8 12.5 16.6 15.0

6 [77.2] 34.8 74.7 75.2 57.3 77.2 [79.6] 46.6 21.6 33.2 42.3 25.5 50.3 [50.8]

7 56.5 40.3 72.7 70.5 67.6 [73.6] [73.6] 41.3 25.3 38.2 34.4 34.3 47.9 [54.7]

10 74.6 41.8 75.8 77.5 – [78.6] – 45.6 30.7 41.2 37.9 – 50.2 –

12 77.1 76.2 79.2 80.2 67.1 81.3 [84.1] 47.9 48.6 47.9 48.4 15.3 [53.6] 46.7

14 64.1 68.9 68.5 [70.4] – 66.7 – 42.1 49.0 42.1 55.0 – [60.6] –

15 47.2 30.1 45.8 65.3 66.3 [67.1] 66.2 16.4 10.6 39.1 [39.7] 17.8 18.9 37.9

17 51.8 32.8 47.6 46.8 67.1 [74.5] 72.0 33.8 22.9 38.3 38.9 27.1 [48.7] 38.8

23 49.7 35.9 38.8 43.5 [66.9] 63.9 60.0 25.9 18.0 35.4 28.4 28.6 35.0 [37.6]

24 51.1 35.3 56.6 59.2 67.1 79.0 [79.3] 18.7 12.9 27.3 25.0 26.7 19.2 [35.5]

AA. 56.5 42.3 59.8 55.4 – [67.1] – 31.1 23.4 34.2 34.6 – [36.3] –

AR. 53.6 39.4 57.0 51.3 65.6 65.9 [70.7] 38.3 19.7 32.5 32.0 22.1 32.7 [37.0]

Table 5. Comparisons on the BP4D dataset. Bracketed numbers indicate the best performance; bold numbers indicate the second best.

F1 Norm F1 Event

AU SPSVM SPSD LSVM LL1 ML APL JPML SPSVM SPSD LSVM LL1 ML APL JPML

1 22.9 27.6 40.6 35.6 [58.6] 56.0 55.5 9.5 10.6 13.0 11.7 14.9 17.1 [17.5]

2 15.8 15.8 32.1 24.1 56.9 60.2 [62.7] 7.6 7.6 11.5 10.3 14.0 16.0 [17.2]

6 45.5 54.6 59.4 75.2 62.9 75.0 [75.7] 21.9 27.9 17.2 21.1 15.6 [32.7] 30.0

7 44.1 56.0 55.7 [70.5] 66.7 64.3 66.7 22.9 30.5 20.5 23.6 17.1 [33.7] 26.3

10 50.1 55.6 63.0 [74.3] – 72.9 – 29.7 32.8 22.0 34.1 – 41.0 –

12 46.5 54.9 62.5 82.0 67.1 [82.3] 81.4 28.4 30.6 23.4 25.0 20.5 [41.3] 31.6

14 44.2 52.7 51.5 61.2 – 66.0 – 19.3 28.3 23.5 29.3 – 29.8 –

15 13.2 40.5 49.6 56.3 66.0 [68.4] 65.9 23.4 22.9 23.9 18.6 20.4 13.1 [30.1]

17 42.3 46.9 40.3 63.4 66.7 [69.2] 65.3 19.3 21.9 21.2 25.6 20.8 [33.5] 29.4

23 11.3 23.9 42.1 57.2 67.1 [68.0] 65.2 19.4 19.6 [21.8] 19.0 20.6 16.2 [27.7]

24 7.3 47.3 21.3 69.5 66.7 [78.1] 77.3 17.7 18.4 19.0 [23.1] 20.4 13.2 [26.4]

AA. 29.3 42.1 47.1 59.5 – [68.7] – 18.9 21.8 19.7 23.1 – [24.6] –

AR. 25.3 39.4 44.8 57.7 64.3 [68.5] 68.4 15.9 19.9 19.0 21.1 18.3 22.2 [26.2]

discussion of JPML that jointly considers patch selection

and AU relations. In all, JPML achieves the best or sec-

ond best for 22/27 AUs in F1-Norm and for 12/18 AUs

for F1-event. In Table 3, JPML performs the best for AUs

(1,2,12,15), and improves about 1.3% and 5.0% than APL

and ML respectively for F1-norm. It improves more than

7.3% and 7.8% for F1-Norm, and 13% and 67% for F1-

event than APL and ML respectively. In Tables 4 and 5,

as more spontaneous expression are involved, the improve-

ment becomes more obvious. Since the ratio of training and

test samples in BP4D is a little small in this paper and sam-

ples in BP4D is much more complex than GFT, the results

in Table 5 is smaller than ones in Table 4 in average. In all,

JPML method achieved the highest overall scores in five

comparisons on three datasets. In BP4D, APL is slightly

higher than JPML. In no cases, the other approaches match

or exceed APL and JPML. This suggests that our patch-

based approach is more powerful, and further boost the per-

formance with additional ML. In addition, there are some

interesting observations in our results. JPML yields bet-

ter improvement in AUs with larger skew (e.g., AU1 and

AU2 in GFT and BP4D), as shown in Table 2. To summa-

rize, JPML validates the effectiveness of jointly learning the

patches and AU relations, showing that iterating the ML and

the APL process is beneficial.

5. Conclusion

This paper proposes a joint patch and multi-label learn-

ing (JPML) for facial AU detection. Active patches for each

AU are selected more specificity by group sparsity learning.

Jointly with patch learning, positive correlations and neg-

ative competitions among AUs are introduced to model a

discriminative multi-label classifier. Compared with patch

learning based and multi-label learning based algorithms

separately, JPML obtained the best predictions across three

datasets. According to the conclusion of results in exper-

iments, imbalance data learning and video-based learning

algorithm should be studied in the future work.
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