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Fig. 1: An overview of the functionalities provided by IntraFace (IF)

Abstract— Within the last 20 years, there has been an
increasing interest in the computer vision community in au-
tomated facial image analysis algorithms. This has been driven
by applications in animation, market research, autonomous-
driving, surveillance, and facial editing among others. To date,
there exist several commercial packages for specific facial
image analysis tasks such as facial expression recognition, facial
attribute analysis or face tracking. However, free and easy-
to-use software that incorporates all these functionalities is
unavailable.

This paper presents IntraFace (IF), a publicly-available
software package for automated facial feature tracking,
head pose estimation, facial attribute recognition, and facial
expression analysis from video. In addition, IFincludes
a newly develop technique for unsupervised synchrony
detection to discover correlated facial behavior between
two or more persons, a relatively unexplored problem in
facial image analysis. In tests, IF achieved state-of-the-art
results for emotion expression and action unit detection
in three databases, FERA, CK+ and RU-FACS; measured
audience reaction to a talk given by one of the authors;
and discovered synchrony for smiling in videos of parent-
infant interaction. IF is free of charge for academic use at
http://www.humansensing.cs.cmu.edu/intraface/.

I. INTRODUCTION

Facial expression has been a focus of research in human

behavior for over a century [12]. It is central to several

leading theories of emotion [16], [32] and has been a focus

of heated debates about issues in emotion science. In part

because of its importance and potential uses, as well as its

inherent challenges, automated facial expression analysis has

been of keen interest in computer vision and machine learn-

ing. The last twenty years has witnessed dramatic advances

in face detection, facial feature detection and tracking, face

recognition, facial expression transfer, and facial attribute

estimation. Emerging applications include surveillance [14],

marketing [31], drowsy driver detection [29], parent-infant

interaction [19], social robotics [3], telenursing [10], ex-

pression transfer for video gaming [23], animating avatars

in multi-person games [24], interpersonal coordination [24],

and subtle expression detection [20].

To meet the needs of these diverse applications, several

consumer packages for facial image analysis have recently

been introduced. Consumer software for facial expression

analysis is available from companies such as Emotient1

(previously CERT [27]), FaceReader2, and NVSIO3, among

others. Commercial services for facial expression analysis are

available as well, including Affectiva4 and RealEyes5. These

products and services can be difficult to use, publication of

comparative results may be restricted, and the products pro-

hibitively expensive for research applications. Furthermore,

the code typically is closed; that is, users cannot modify

it. For these and related reasons, it is typically difficult to

compare and evaluate performance across different packages

and services. To facilitate the use of facial image analysis

software in the research community, we present IntraFace

(IF), a publicly available software package that includes

state-of-the-art algorithms for feature tracking, head pose

estimation, facial attribute recognition, multi-person face

detection and analysis, facial expression recognition, and

facial synchrony detection from video or camera input. IF is

available for non-commercial use without charge.

Figure 1 illustrates the functionalities provided by IF. Fig-

ure 2 illustrates a specific application of IF which is to mea-

sure audience demographics and reaction. In the example, IF

detects and tracks multiple persons and reveals moments of

attention and emotion reaction for realtime feedback to the

speaker. When multiple faces are tracked as in this example,

IF is able to detect facial synchrony as well. That is, it is

able to find video segments that contain correlated facial

behavior. For instance, in Figure 2, we would be interested

in finding the moments when all members of the audience

1http://www.emotient.com/
2http://www.noldus.com/human-behavior-research

/products/facereader
3http://www.nviso.ch/
4http://www.affdex.com/
5http://www.realeyes.me/



Fig. 2: Automatic output of IntraFace to measure audience

reaction while attending a talk,“Common Sense for Research

(and Life),” by one of the authors.

may be laughing, serious, or looking away.

Unsupervised or weakly-supervised discovery of syn-

chrony from facial behavior has been a relatively unexplored

problem in computer vision and facial image analysis. Be-

cause a naive exhaustive search approach to synchrony detec-

tion has a quadratic computational complexity with duration

of the video, synchrony discovery has been impractical for

other than specialized use. IF eliminates this limitation by

using an efficient branch and bound (B&B) algorithm to

tackle synchrony detection. IF can be applied to video of

variable lengths for synchrony detection. The current imple-

mentation supports dyadic (two-person) synchrony detection

(DSD). Future releases will extend synchrony detection to

three or more persons.

In testing, IF achieves state-of-the-art results for facial ex-

pression detection on the FERA, CK+ and RU-FACS datasets

in both within-dataset and cross-dataset scenarios. In addition

to these results, we present two case studies for the use

of IF: (1) CrowdCatch, an application to measure audience

reaction. IF to provide a speakers with both on- and offline

feedback; and (2) DSD, an application to detect synchronous

facial behavior in videos of parent-infant interaction. For

instance, we are able to detect the moments when the mother

and the infant both smile.

II. FACIAL FEATURE TRACKING

This section describes our approach to facial feature

detection and tracking in videos. For the notation convention,

see the footnote6.

A. Single face tracking

Facial feature detection and tracking in IF is implemented

using the Supervised Descent Method (SDM) [35]. SDM

is a supervised method that learns to optimize non-linear

least squares problems. SDM learns generic descent maps in

6Bold capital letters denote a matrix X; bold lower-case letters denote
a column vector x. xi represents the ith column of the matrix X. Xij

denotes the scalar in the ith row and the jth column of the matrix X. All
non-bold letters represent scalars. xj denotes the scalar in the jth element
of x. In∈R

n×n is an identity matrix.

(a) x∗ (b) x0

Fig. 3: (a) Manually labeled image with 66 landmarks. Blue

outline indicates face detector. (b) Mean landmarks, x0,

initialized using the face detector.

a supervised manner, and is able to overcome many draw-

backs of second order optimization schemes, such as non-

differentiability and expensive computation of the Jacobians

and Hessians. Here, we give an overview of SDM in the

context of facial feature detection and tracking. A detailed

theoretical analysis and test results can be found in [36].

Given an image d ∈ ℜm×1 of m pixels, d(x) ∈ ℜp×1

indexes p landmarks in the image. h is a non-linear feature

extraction function (e.g., HoG) and h(d(x)) ∈ ℜ128p×1

in the case of extracting HoG features. During training,

we assume that the ground truth p landmarks (in our case

p = 49) are known, and we will refer to them as x∗ (see

Figure 3a). Also, to mimic the testing scenario, we ran the

face detector on the training images to provide an initial

configuration of the landmarks (x0), which corresponds to an

average shape (see Figure 3b). In this setting, face alignment

can be framed as minimizing the following function over ∆x:

f(x0 +∆x) = ‖h(d(x0 +∆x))− φ∗‖
2
2, (1)

where φ∗ = h(d(x∗)) represents the HoG values at the

manually labeled landmarks. In the training images, φ∗ and

∆x are known.

Applying Newton’s method to optimize Eq. (1) yields the

following update

∆xk = −2H−1J⊤
h (φk−1 − φ∗), (2)

where Jh is the Jacobian matrix of h and H is the Hessian

matrix of f evaluated at xk−1. However, two problems

arise: first, HoG is a non-differentiable image operator,

so in order to use Newton’s method we have to perform

expensive numerical methods to approximate the Jacobians

and Hessians. Second, φ∗ is unknown in test time. To address

these two issues, SDM rewrites Eq. (2) as a generic linear

combination of feature vector φk−1 plus a bias term bk−1

that can be learned during training,

∆xk = Rk−1φk−1 + bk−1. (3)

Using training examples, SDM will learn a sequence of

Rk,bk such that the succession of xk converges to x∗ for

all images in the training set.
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Fig. 4: An illustration of IF on multiple face tracking. Faces

belong to the same person are identified and tracked across

different scenes. “N/A” indicates the frames where the face

is not present or the tracker fails to track the person.

B. Multiple face tracking and identification

A video is likely to contain multiple subjects and changes

in scenes. Tracking and maintaining person identities across

scenes is therefore a challenging task. To facilitate face

tracking in this type of videos, IF provides a functionality

of multiple face tracking and identification, which aims to

track and tell whether the subject has been seen or not.

First, we detect the differences in camera views and scene

changes. Second, for each scene, we detect and track each

face using our face tracker, and represent each track of a face

as a tracklet. Finally, we associate person identities across

different scenes.

Scene change detection: We detect scene changes by

computing changes between consecutive frames. We first

divide each frame into 32×32 blocks and compute the dif-

ference between edges and color histogram in corresponding

blocks between two consecutive frames. If the differences are

bigger than a threshold, we consider that the block belongs to

different scenes. If more than 25% of the blocks are classified

as belonging to different categories, we consider that the

frames belong to different scenes.

Face association across different scenes: We detect and

track each face within the same scene until the single face

tracker is lost. Then, each set of tracked frames is grouped

into a face tracklet (similar to [18]). Given several face

tracklets from several scenes, we used a subspace distance

measure to identify persons across tracklets. For each face

tracklet i, we selected a predefined number of frames and

vectorized them in a feature matrix Mi. Each column of

Mi contains HoG features at the landmarks for one frame.

Ui contains the principal components of Mi that preserve

95% of the energy. The distance between the ith and the jth

tracklet is defined as the average subspace distance between

tracklets [33]:

di,j =
||Mj −UiU

⊤
i Mj ||

2
F

||Mj ||2F
+
||Mi −UjU

⊤
j Mi||

2
F

||Mi||2F
.

Two tracklets are associated to the same person if their

average distance is lower than a threshold. Figure 4 illustrates
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Fig. 5: Pipeline for facial attribute recognition.

TABLE I: Attribute Classification Results

Category Attribute F1 score

East Asian 0.913
Caucasian 0.930
African-American 0.894

Ethnicity

Indian 0.934

Gender Male/female 0.961

Mustache 0.942
Facial hair

Beard 0.960

No glasses 0.970
Eyeglasses 0.942Eyewear
Sunglasses 0.963

an example where several subjects have been tracked and

associated over time.

III. FACIAL ATTRIBUTE RECOGNITION

This section describes the facial attribute recognition al-

gorithm used in IF to recognize ethnicity, gender, facial hair

and eyewear on faces. These attributes can be classified

efficiently using a linear SVM with HoG features [11].

Figure 5 illustrates our pipeline. First, facial landmarks are

extracted using the SDM tracker, and then the image is

normalized w.r.t. scale and rotation. Then HoG features are

extracted at each landmark and concatenated in a vector x.

Finally, a linear SVM classifier is learned for each one of

the attributes. We trained our attribute classifiers using the

PubFig dataset [25], which contains approximately 60,000

labeled images. The training set is composed of 40,000

randomly selected samples, and the rest of the samples are

used as test set. Table I shows the F1 scores obtained by

our simple but effective attribute classifiers.

IV. FACIAL EXPRESSION ANALYSIS AND AU DETECTION

Psycholigists have classified human facial expression us-

ing two main categories: eight universal expressions [16] (see

Figure 6) and a more anatomical descriptions called Action

Units (AUs), defined by the Facial Action Coding System

(FACS) [17] (see Figure 7). See [8], [13], [15], [30], [34]

for a recent review of taxonomies and existing methods in

facial expression analysis.

Automatic Facial Action unit detection (AFA) confronts a

series of challenges. These include facial variations in pose,

scale, illumination, occlusion, and individual differences in

facial morphology (e.g., heavy versus delicate brows, smooth

versus deeply etched wrinkles) and behavior. To compen-

sate for these variations, in IF, we adopted a transductive

learning approach, Selective Transfer Machine (STM) [6],



Fig. 6: Basic emotions. From left to right: happiness, sadness,

anger, fear, surprise, disgust, contempt, and embarrassment.

Fig. 7: Facial Action Units (AUs) of upper and lower face

to personalize a generic maximal-margin classifier. STM

simultaneously learns a classifier while re-weighting the

training samples that are most relevant to the test subject. In

this paper, we further evaluate the method proposed in [6].

Denote the training set as Dtr = {xi, yi}
ntr

i=1 that contains

ntr training images xi and their labels yi ∈ {+1,−1}, and

Xtr,Xte the sets of training and test images respectively. We

adapt the STM formulation that minimizes the objective:

g(f, s) = min
f,s

Rf (D
tr, s) + λΩs(X

tr,Xte), (4)

where Rf (D
tr, s) is the SVM empirical risk defined on the

decision function f , and training set Dtr with each instance

weighted by s ∈ R
ntr . Each entry si corresponds to a positive

weight for a training sample xi. Ωs(X
tr,Xte) measures

the mismatch between the training and the test distributions

in a reproducing kernel Hilbert space H induced by some

nonlinear feature mapping ϕ(·):

Ωs(X
tr,Xte)=

∥

∥

∥

∥

∥

∥

1

ntr

ntr
∑

i=1

siϕ(x
tr
i )−

1

nte

nte
∑

j=1

ϕ(xte
j )

∥

∥

∥

∥

∥

∥

2

H

. (5)

The lower the value of Ωs, the more similar the training and

the test distributions are. λ > 0 is a tradeoff that balances

the risk and the distribution mismatch. The goal of STM is

to jointly optimize the decision function f as well as the

selective coefficient s, such that the resulting classifier can

alleviate person-specific biases.

TABLE II: Emotion recognition on the CK+ dataset

AUC

Emotion SVM KMM T-SVM DA-SVM IF

Anger 95.1 85.3 76.1 – 96.4

Contempt 96.9 94.5 88.8 – 96.9

Disgust 94.5 81.6 84.2 – 96.0

Fear 96.6 92.7 84.9 – 95.5
Happy 99.4 93.9 86.7 – 98.9
Sadness 94.5 76.0 78.7 – 93.3
Surprise 97.3 64.5 81.8 – 97.6

Avg 96.3 84.1 83.0 – 96.4

TABLE III: Emotion recognition on the FERA dataset

AUC

Emotion SVM KMM T-SVM DA-SVM IF

Anger 31.1 66.5 70.4 78.8 78.6
Fear 31.9 81.4 64.5 83.9 85.5

Joy 90.2 33.5 78.9 71.1 95.0

Relief 20.4 74.8 76.8 87.9 88.4

Sadness 73.4 80.2 77.1 74.7 84.8

Avg 49.4 67.3 73.5 79.3 86.5

Given that the loss functions in Rf (D
tr, s) are convex

sub-differential (e.g., squared loss, logistic loss, Huber loss),

STM in (4) becomes a standard bi-convex problem, and

(4) can be simply solved by alternating between f and

s using Newton’s method or conjugate gradient. Once the

optimization is done, the classification of test images is

performed by applying the learned classifier f .

A. Baseline for personalized facial expression recognition

With IntraFace, we set up a baseline for facial expression

recognition on three major benchmarks: CK+ [28], FERA

Challenge [34] and RU-FACS [2]. We reported our results in

terms of F1 score and Area Under the ROC Curve (AUC)

on two tasks: basic emotion recognition and facial Action

Unit (AU) detection. All experiments were conducted in a

cross-subject scenario, which is also known as leave-one-

subject-out, i.e., training and test subjects were indepen-

dent in all iterations. To carry out a credible experiment,

we compared IF with generic methods and state-of-the-art

transductive approaches, including a linear SVM [5], Kernel

Mean Matching (KMM) [21], Transductive SVM (T-SVM)

[9], and Domain Adaptation SVM (DA-SVM) [4]. The same

features and training/test images were used for all methods.

Below we describe each task in turn.

1) Basic emotion recognition: Similar to [34], we utilized

all available frames for each algorithm. We only report AUC

for this task because each video has only a single emotion

label instead of frame-by-frame labeling, which makes F1
score meaningless. For CK+, 327 videos were given 7

basic and discrete emotions: Anger, Contempt, Disgust, Fear,

Happy, Sadness, and Surprise. For FERA, 289 portrayals

were asked to perform one of the five emotional states:

Anger, Fear, Joy, Sadness, and Relief. We evaluated on the

training set that includes 155 videos portrayed by 7 actors



TABLE IV: AU detection on the CK+ dataset

AUC F1 Score

AU SVM KMM
T-

SVM
DA-
SVM

IF SVM KMM
T-

SVM
DA-
SVM

IF

1 79.8 68.9 69.9 72.6 88.9 61.1 44.9 56.8 57.7 62.2

2 90.8 73.5 69.3 71.0 87.5 73.5 50.8 59.8 64.3 76.2

4 74.8 62.2 63.4 69.9 81.1 62.7 52.3 51.9 57.7 69.1

6 89.7 87.7 60.5 94.7 94.0 75.5 70.1 47.8 68.2 79.6

7 82.1 68.2 55.7 61.4 91.6 59.6 47.0 43.8 53.1 79.1

12 88.1 89.5 76.0 95.5 92.8 76.7 74.5 59.6 59.0 77.2

15 93.5 66.8 49.9 94.1 98.2 75.3 44.4 40.4 76.9 84.8

17 90.3 66.6 73.1 94.7 96.0 76.0 53.2 61.7 81.4 84.3

Avg 86.1 72.9 64.7 81.7 91.3 70.0 54.7 52.7 64.8 76.6

with 3∼5 instances of each emotion per actor.

Tables II and III show the results. In Table II, DA-SVM is

omitted because it failed to converge due to insufficient test-

ing data in CK+. One can see that a generic SVM performed

fairly well, because in CK+ the positive (peak expressions)

and negative samples (neutral faces) are relatively easy to

separate. KMM and T-SVM performed sub-optimally, be-

cause they lack the refinement of instance weights, and thus

are unable to correct badly estimated weights for learning

the final classifier. This effect is particularly obvious when

test data is insufficient as in this experiment. On the other

hand, our method considers the labels for weight refinement

and performed comparably.

The FERA dataset served as a more challenging bench-

mark for evaluating emotion recognition performance. See

Table III for the results. Because each test video consists of

tens of frames, DA-SVM was able to converge in most cases.

The generic SVM performed poorly due to large variations

in this dataset, such as head movements and spontaneous

expressions. Without the ability to select meaningful training

samples, the generic classifier suffered from the individ-

ual differences. Other cross-domain methods alleviated the

person-specific biases and produced better results. Overall

our method achieved the most satisfactory performance.

Comparing Tables II and III, one can observe that when the

data grows larger and more complex, the improvement of IF

becomes more clear.

2) Facial AU detection: Tables IV∼VI show AUC and F1
scores on three datasets using IF. A linear SVM served as the

baseline generic classifier. Note that KMM fails to perform

better than the baseline on all datasets. An explanation

is because KMM did not consider label information and

produced less accurate sample weights. T-SVM performed

similarly to SVM in FERA and RU-FACS, but worse than

SVM in CK+. This may be because the samples in CK+

are more distinct than consecutive frames in FERA and

RU-FACS. IF achieved 91% AUC, which is slightly better

than the best published results (90.5% [1]), although the

results are not directly comparable. Unlike IF, which used

a penalized SVM, T-SVM did not consider re-weighting

for training instances and used the losses from the training

data. Hence it could not correct the weights for irrelevant

samples, such as noise or outliers. On the other hand, DA-

SVM extends T-SVM by progressively labeling test patterns

TABLE VII: Cross-dataset AU detecttion: RU-FACS→FERA

AUC F1 Score

AU SVM KMM
T-

SVM
DA-
SVM

IF SVM KMM
T-

SVM
DA-
SVM

IF

1 44.7 48.8 43.7 56.9 63.2 46.3 46.4 41.8 46.1 50.4

2 52.8 70.5 52.1 52.3 74.0 47.4 54.2 38.6 45.4 54.6

4 52.7 55.4 54.2 52.7 58.6 57.1 57.1 40.2 42.9 57.4

6 73.5 55.2 77.1 79.9 83.4 60.7 55.2 52.8 56.3 72.7

12 56.8 60.1 70.9 76.1 78.1 67.7 67.7 63.5 62.6 71.5

15 55.1 52.1 59.3 60.2 58.6 31.5 32.8 29.7 26.4 41.1

17 44.3 41.1 39.1 46.2 52.7 27.3 27.1 24.3 24.6 31.4

Avg 54.3 54.8 56.6 60.6 66.9 48.3 48.6 41.6 43.5 54.2

and removing labeled training patterns. Not surprisingly, DA-

SVM shows better performance than KMM and T-SVM

because it used relevant samples for training resulting in a

better personalized classifier. Similar to T-SVM, DA-SVM

did not update the re-weightings using label information.

Moreover, it does not always guarantee convergence to a

correct solution. In our experiments, we faced the situation

where DA-SVM failed to converge due to a large amount

of samples lying within the margin bounds. In contrast, IF

adopts a biconvex formulation, and is therefore guaranteed

to converge to a critical point.

Our approach allows more than just subject adaptation.

We performed an extra experiment to show that IF can

be naturally extended for cross-dataset adaptation. Table

VII shows the results of training on RU-FACS and testing

on FERA. One can see that transductive approaches out-

performed a generic SVM because a generic SVM does

not model the biases between datasets. That is, under the

cross-dataset scenario, the training and test distributions are

likely different, which prevents SVM from transferring the

knowledge from one dataset to another. In these cross-dataset

experiments, we can clearly see the advantages of IF over a

generic SVM classifier.

V. DYADIC SYNCHRONY DISCOVERY

Among possible elicitors of human emotion, social inter-

actions may be the most powerful. In particular, dyadic inter-

actions, such as coworkers, friends, romantic partners, family

members and children, become one of the richest source of

spontaneous emotion. See Figure 9 for an example of mother-

infant interaction. IF provides a software to automatically

discover correlated dyadic facial behaviors in the context of

social interactions. We refer to this new problem as Dyadic

Synchrony Discovery (DSD).

Problem formulation: Given a set of synchronized videos

containing two interactive faces, we run IF and detect

and track facial landmarks on the faces. The shape fea-

tures are stacked into two matrices: A = [a1, . . . ,an] and

B = [b1, . . . ,bn], where {ai}
n
i=1 and {bj}

n
j=1 contains

vectorized shape features in our experiments. A[b1, e1] =
[ab1 , . . . ,ae1 ] denotes the subsequence of A that begins from

frame b1 and ends in frame e1 (similarly for B[b2, e2]).
The problem of DSD consist on searching over all possible

subsequences and find the one that maximize the correlation



TABLE V: AU detection on the FERA dataset

AUC F1 Score

AU SVM KMM
T-

SVM
DA-
SVM

IF SVM KMM
T-

SVM
DA-
SVM

IF

1 71.5 43.3 72.2 83.3 84.3 56.5 48.5 60.3 59.1 68.1

2 73.9 51.0 74.3 76.8 73.3 56.9 50.2 58.5 57.1 65.5

4 58.5 53.5 42.8 66.6 60.0 43.5 39.8 36.9 46.3 43.3

6 80.4 60.2 81.1 91.1 87.7 63.7 58.7 63.8 72.7 71.6

7 66.9 59.4 70.8 76.9 75.4 63.1 63.5 63.7 68.3 66.2

12 77.7 58.8 74.8 74.5 84.7 79.1 68.4 77.6 75.5 82.1

15 55.5 58.7 67.2 67.5 67.8 33.4 35.2 35.2 41.3 39.3

17 59.8 51.8 63.8 66.5 63.3 32.0 27.8 36.2 42.0 35.9

Avg 68.0 54.6 68.4 75.4 74.5 53.5 49.0 54.0 57.8 59.0

TABLE VI: AU detection on the RU-FACS dataset

AUC F1 Score

AU SVM KMM
T-

SVM
DA-
SVM

IF SVM KMM
T-

SVM
DA-
SVM

IF

1 72.0 74.0 72.0 77.0 83.9 40.8 37.7 37.4 35.5 55.3

2 66.6 58.6 71.1 76.5 82.4 35.7 32.2 36.2 34.1 52.6

4 74.8 62.2 50.0 76.4 82.4 25.2 14.5 11.2 35.3 30.4

6 89.1 88.8 61.6 60.3 93.1 58.3 39.2 33.1 42.9 72.4

12 86.7 87.0 86.7 84.4 92.3 61.9 63.0 62.6 71.4 72.3

14 71.8 67.8 74.4 70.4 87.4 31.3 25.8 25.8 40.9 51.0

15 72.5 68.8 73.5 58.1 86.1 32.3 29.5 32.3 34.9 45.4

17 78.5 76.7 79.5 75.7 89.6 39.5 35.6 44.0 46.5 55.3

Avg 76.5 72.3 71.1 72.3 86.3 40.6 37.3 40.6 42.7 54.3

Algorithm 1: Dyadic Temporal Commonality Discovery

input : A synchronized video pair A,B; minimal

discovery length ℓ; commonality period T

output: Optimal intervals r⋆=[b1, e1, b2, e2]

1 L← T + ℓ; // The largest possible searching period

2 Q← empty priority queue; // Initialize priority queue Q

3 for t← 0 to (n−L) do

4 R← [1 + t, L+ t, 1 + t, L+ t]; // Diagonal regions

5 Q.push(bound(R), R); // Fill in Q

6 end

7 R← Q.pop(); // Initialize R

8 while |R| 6= 1 do

9 R→ R′ ∪ R′′; // Split into 2 disjoint sets

10 Q.push(bound(R
′
), R

′
); // Push R′ and its bound

11 Q.push(bound(R
′′
), R

′′
); // Push R′′ and its bound

12 R← Q.pop(); // Pop top state from Q

13 end

14 r⋆ ← R; // Retrieve the optimal rectangle

of facial behavior. We formulate DSD as an integer program-

ming over two intervals [b1, e1]⊆ [1, n] and [b2, e2]⊆ [1, n]:

max
b1,e1,b2,e2

corr
(

ϕA[b1,e1], ϕB[b2,e2]

)

, (6)

s.t. ℓ ≤ ei − bi, ∀i ∈ {1, 2},

T ≤ |b1 − b2|,

where ϕx is a feature mapping for a sequence x, corr(·, ·)
is a correlation measurement between two feature vectors, ℓ

controls the minimal length for each subsequence to avoid

the trivial solution of both lengths being zero, and T is the

size of temporal neighborhood where commonalities can oc-

cur. Note that, although the given video pair is synchronized,

dyadic commonalities can appear in a slightly shifted time

period, e.g., the baby starts to smile after the mother smiles

for a few seconds. The second constraint thus allows DSD

to discover commonalities within a temporal window of T

frames. A naive approach for solving (6) is to search over

all possible locations for (b1, e1, b2, e2). However, it leads to

an algorithm with computational complexity O(n4), which

is prohibitive for regular videos with thousands of frames.

Algorithm: Inspired by the Branch and Bound (B&B)

approach for general temporal commonality discovery [7],

we adapt a similar algorithm that discovers the global opti-

mum of (6). Given the knowledge that dyadic commonalities

only occur within a temporal neighborhood between two

videos, we only need to search for a small number of

regions in the temporal search space. Specifically, instead of

exhaustively pruning the search space to a unique discovery

(e.g., [7], [26]), we constrain the space before the search

begins. That is, denote L = T + ℓ as the largest possible

period to search, we fill in the priority queue Q with the valid

regions {[1 + t, L+ t, 1+ t, L+ t]}n−L
t=0 and their associated

bounds [7]. Because these regions lie sparsely along the

diagonal in the 2-D search space, we are able to significantly

reduce the searching from O(n4) to O((n − T − ℓ)T 2). r
denotes a rectangle in the 2-D search space as a candidate

solution (b1, e1, b2, e2). A rectangle set in the search space,

i.e., R = [B1, E1, B2, E2], indicates a set of parameter

intervals, where Bi = [bloi , b
hi
i ] and Ei = [eloi , e

hi
i ], i ∈

{1, 2} are tuples of parameters ranging from frame lo to

frame hi. Because correlation can be equivalently translated

into distances under some constraints, e.g., maxx,y x
⊤y ≡

minx,y ‖x − y‖22 given x and y are unitary, we follow a

similar Branch-and-Bound (B&B) strategy as [7] to solve (6)

with a guaranteed global optimum. Algorithm 1 summarizes

the proposed DSD algorithm.

VI. CASE STUDIES

This section describes two case studies using IF. The first

one, CrowdCatch, shows how IF can be used to measure

the emotional reaction of an audience. The second case

study illustrates how to use the proposed DSD to find

patterns of correlated facial behavior in videos of parent-

infant interaction.

A. CrowdCatch

Public speaking, whether to groups small or large, is

necessary in a wide range of occupations and social contexts.

Speakers vary greatly in their preparation, prior experience,

and skill. For speaker training, review, and monitoring of

ongoing performance, real-time analysis of audience reaction

would be of great benefit. With IF it becomes possible

to automatically analyze emotion reactions from multiple

listeners and provide immediate or time-delayed feedback

to the speaker.
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attentiveness during a 45-minute talk on “Common Sense

for Research (and Life)”. (a)/(b) and (c)/(d) show the low-

est/highest amusement and attentiveness respectively. Check

the text for the content about the talk.

In this section, we illustrate how IF can give presenters

real-time feedback about audience attention and engagement.

In the application, IF reports the percentage of audience

members that are attentive to the speaker at any given

time. This capability makes possible timely insights into the

feelings of an audience and contingent corrections by the

presenter in response to such feedback.

We recorded a 45-minute presentation, “Common Sense

for Research (and Life),” by one of the authors to an

audience of 12 students. The setup was illustrated above

in Figure 2. Figure 8 illustrates the curves of attentiveness

and amusement from IF. To compute dynamic variation in

attention and amusement, continuous output of the pose and

smile detectors was averaged within each video frame among

all the participants. The large peak in Figure 8b corresponds

to the moment of the following joke: “Artificial intelligence

is no match for natural stupidity.” Figure 8d, shows a dissoci-

ation between attention and positive affect. The speaker has

just itemized a list of necessary but not necessarily enjoyable

tasks that budding academics must accomplish. In the latter,

the audience is attentive but perhaps less than enthusiastic

about undertaking such tasks for themselves.

B. Parent-infant interaction

Emotional moments are memorable, especially those be-

tween parents and infants. Existing evidence suggests that

infants show positive affect and well-coordinated contingent
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Fig. 9: An illustration of a mother-infant interaction during

a Face-to-Face (FF) session. y-axis denotes the projected

features onto the first principal component. Red framed

rectangles indicate the discovered dyadic smiling faces; gray

rectangles indicate other sampled frames.
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responsiveness with their parent(s). This experiment aims to

discover these positive patterns in an unsupervised fashion.

We performed this experiment on a mother and infant

dyad from the parent-infant dataset [22]. This dataset consists

of face-to-face interactions of ethnically diverse six-month-

old infants and their mother or father. All parents gave

their informed consent to the procedures. Parent and infant

were each recorded using hardware-synchronized cameras.

The face-to-face interactions consisted of three contiguous

episodes: three minutes of normal interaction (Face-to-Face:

FF) where the parent plays with the infant as they might do

at home, two minutes in which the parent remained oriented

toward the infant but was unresponsive (Still-Face: SF), and

three minutes in which the parent resumed normal play

(Reunion: RE). For the case study, we selected hardware-

synchronized video (5,684 frames) from the FF episode for

one mother and her baby.

Similar to [7], we extracted shape features that corre-

sponded to lip height, inner lips height, mouth width and

mouth angle (see Figure 10 for an illustration). Figure 9

depicts synchronized facial behaviors in the synchronized

videos. As shown in the figure, the red framed rectangles



indicate the discovered dyadic facial motions that correspond

to joint smiles on both the mother and the infant. This is

a moment of interest for parents during interactions with

their infants and of interest to developmental psychologists

that study such interactions. Recall that our algorithm is able

to detect the start and end of the segments with maximum

correlation using a user-specified time lag. In this case, T =
30, the infant’s series is shifted by one second. The decision

about time lag is informed by developmental literature on

infant responsiveness.

VII. CONCLUSION

This paper presents IntraFace, a publicly available

software package that integrates state-of-the-art algorithms

for facial feature tracking, head pose estimation, facial

attribute detection, synchrony detection, and facial

expression analysis of multiple people in a video.

This paper explores the new problem of synchrony

detection—finding correlated facial behavior— and

monitoring of audience attention and response to a

speaker. In quantitative tests and in case studies, IF

achieves state-of-the-art performance. IF is available at

http://www.humansensing.cs.cmu.edu/intraface/

free of charge for non-commercial use to meet diverse

applications in facial expression analysis.
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