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Road Curb Detection and Localization
with Monocular Forward-view Vehicle Camera

Stanislav Panev, Francisco Vicente, Fernando De la Torre and Véronique Prinet

Abstract—We propose a robust method for estimating road
curb 3D parameters (size, location, orientation) using a calibrated
monocular camera equipped with a fisheye lens. Automatic curb
detection and localization is particularly important in the context
of Advanced Driver Assistance System (ADAS), i.e. to prevent
possible collision and damage of the vehicle’s bumper during
perpendicular and diagonal parking maneuvers. Combining 3D
geometric reasoning with advanced vision-based detection meth-
ods, our approach is able to estimate the vehicle to curb distance
in real time with mean accuracy of more than 90%, as well as
its orientation, height and depth.

Our approach consists of two distinct components – curb de-
tection in each individual video frame and temporal analysis. The
first part comprises of sophisticated curb edges extraction and
parametrized 3D curb template fitting. Using a few assumptions
regarding the real world geometry, we can thus retrieve the curb’s
height and its relative position w.r.t. the moving vehicle on which
the camera is mounted. Support Vector Machine (SVM) classifier
fed with Histograms of Oriented Gradients (HOG) is used for
appearance-based filtering out outliers. In the second part, the
detected curb regions are tracked in the temporal domain, so as
to perform a second pass of false positives rejection.

We have validated our approach on a newly collected database
of 11 videos under different conditions. We have used point-wise
LIDAR measurements and manual exhaustive labels as a ground
truth.

Index Terms—curb detection, parking assistance, monocular
camera, HOG, SVM, template fitting, tracking.

I. INTRODUCTION

OVER the last few years, the automotive industry has been
focused on developing autonomous driving vehicles to

reduce accidents and increase independence. As an interme-
diate step toward fully autonomous vehicles, the importance
of active safety technologies, such as adaptive cruise control,
blind spots warning, and automatic park system, has increased.
Those features rely for most on sensor-based technologies,
that try to understand the host vehicle’s surrounding, i.e. to
detect dynamic and static obstacles within a certain range. For
example, moving objects, such as pedestrians and vehicles, can
be detected to warn drivers to be cautious. Automatic detection
of road signs can be used to control or adjust vehicles speed.
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Fig. 1. Our system estimates the relative position, orientation and size
of a curb w.r.t. a host vehicle, by the means of a monocular forward-
viewing fisheye camera, advanced geometrical reasoning, temporal analysis
and machine learning.

Curbs or sidewalks (in addition to road surface markings)
are clues that are exploited in positioning systems. Often they
indicate the boundary of parking areas. Technologies that can
accurately detect and estimate curb location and height are
embedded in any assist/autonomous parking systems: they
enable to predict the vehicle-to-curb distance, hence to avoid
a potential collision between the curb and the vehicle, cause
of damages on tires and bumpers. The constraints put on
such systems are very high: near-zero false negative detection,
distance and height estimation with centimeter accuracy.

The challenges to build such systems are at least two-fold.
First, curbs are objects of small size. This compels to use
sensors of very high resolution to capture data where the object
of interest covers a sufficiently large region. Second, curb
shapes and appearance textures can vary drastically (depending
on weather condition, pavement material, painting, etc.). This
requires the development of advanced recognition techniques,
capable to robustly classify an object as a curb or not.

Most common techniques in the literature tackle mainly the
first issue, i.e. 3D detection, using active sensors (LIDAR,
laser range finders, etc.) or camera stereo-vision systems.
Those approaches assume that the curb’s shape is in itself
a discriminative and robust feature. They are likely to fail
in poor SNR conditions (e.g. bad weather) or when facing
damaged curbs. To our knowledge, few work attempted to
couple 3D geometry with vision-based appearance models, so
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as to improve robustness and accuracy.
In this paper, we describe a system intended to assist the

drivers and reduce the risk of running over obstacles, such
as the curbs, in the everyday parking activities. Thereby, pre-
venting unwanted damages and accidents. A single monocular
wide-angle camera is used as an input device, which is one
of the most economically efficient solutions nowadays. The
cost of such sensors sometimes can be several magnitudes
lower than the price of the more complex devices, such as
LIDARs and stereo cameras. Our system works in real time,
while maintaining high detection rate and curb parameters esti-
mation accuracy. It relies on geometric reasoning, simple hand-
crafted features (image edges and Histograms of Oriented
Gradients – HOG), model-based machine learning techniques
(Support Vector Machines – SVM) and temporal filtering. Our
Inverse Perspective-compressing Mapping (IPcM) technique
approaches the curb edge detection in a sophisticated scale-
invariant manner, without the need of maintaining large multi-
scale image space in order to reliably handle the broad varia-
tions of the curb size in the image. All that allowed us to come
up with an CPU-based implementation giving our system high
level of flexibility. For example, the current setup consists of
a single front-mounted fisheye camera, which is applicable to
perpendicular and diagonal forward parking scenarios. Just by
attaching few more cameras to the system that cover the lateral
and rear perimeters around the vehicle, will extend the system
applicability to perpendicular reverse and in-line parking.
The aforementioned advantages also would let our system to
operate on a single computing platform in conjunction with
algorithms designed to solve more challenging tasks based on
deep models, such as motion planning and control. Thus, each
subsystem occupies separate processing unit - CPU and GPU.

II. RELATED WORK

The research of the curb detection algorithms can be
figuratively organized according to the types of the sensors
employed. Undoubtedly, the LIDARs are among the most
popular active sensors. They provide 3D point cloud data based
on laser scanning and range measurements. In [1], for exam-
ple, the authors voxelize the LIDAR data for computational
efficiency and detect those containing ground points, based on
the elevation information and plane fitting. The candidate curb
points are selected using three spatial cues. Employing short-
term memory technique along with a parabolic curb model and
RANSAC they remove the false positives. For temporal curb
tracking a particle filter is used. In [2] the curb is modeled as
parabola and Integral Laser Points features are used for speed
up. Instead of temporal filters and spline fitting methods, in
[3] a robust regression method to deal with occluding scenes,
called Least Trimmed Squares (LTS), is used in combination
with Monte Carlo localization. In [4] instead of extracting
features, the LIDAR scan lines are processed directly. Initial
curb point candidates are determined by Hough transform and
then iterative Gaussian Process Regression is used to represent
the curb models. In [5] the parabola model is employed as
well, but the tracking technique is based on Kalman filter in
combination with GPS/IMU data.

Another active sensor which provides 3D point cloud data
is the Time-of-Flight (ToF) camera. It extracts the depth
information from a 3D scene based on the phase shifts of
light signals caused by the different times they travel in space
to bounce off the objects and return back to the camera. In [6]
the authors take advantage of the ToF camera’s high frame rate
to improve the results by space-time data accumulation using
grid based approach. For estimating ego-motion parameters
they employ Kalman filter. In [7] CC-RANSAC method is
used for improved plane fitting into the raw point cloud data.

The laser range finders (LRF) are active sensors from the
LIDARs family, but instead of providing 3D point cloud data,
they usually scan just a single line and estimate the distances of
each measurement point along it. The curb detection algorithm
in [8] is accomplished in two steps. Firstly, the authors detect
the potential curb positions in the LRF data, then they refine
the results by employing Particle filter. In [9], LRF data
captured sequentially is used to build local Digital Elevation
Maps (DEM) and Gaussian process regression is at the final
curb detection stage. A set of 3 LRF sensors is used in [10].
Peak detection is accomplished on the results of derivative-
based distance method described there and then they merge
the data from the individual sensors.

A popular passive sensor is the stereo camera. Similar
to the LIDARs, it provides 3D point cloud data which has
higher resolution, but usually contains more noise. DEMs are
often used for efficient representing the 3D data in the area
of curb detection. In [11], edge detection is applied to the
DEM data to highlight the the height variations. The noise
from the stereo data is reduced significantly by creating multi-
frame persistent map. Hough accumulator for lines is built
with the persistent edge points. Each curb segment is refined
using the RANSAC approach to fit optimally the 3D data
of the curb. In [12], a 3D environment model is utilized. It
consists of various primal entities, such as road, sidewalk,
etc. The 3D data points are assigned to the different part of
the model using temporally integrated Conditional Random
Fields (CRF). In [13], temporal integration of the DEM data
is also used, but in combination with least squares cubic spline
fitting. The algorithm described in [14] presents an interesting
idea of combining the 3D point cloud data with the intensity
information from the stereo camera. First, they extract model-
based curb features from the 3D point cloud and validate them
by using the intensity image data. The curbs are presented
as 3D polynomial chains. The approach described in [15]
is based on the curvature of the 3D point could data. It is
estimated by applying the nearest neighbor paradigm. The
method’s performance is evaluated by applying it to both –
stereo camera and LIDAR data.

All the sensor types used in the algorithms above directly
provide some kind of 3D information, either point cloud or
line-wise. However, monocular cameras data lacks completely
from depth information. Thus, extracting curbs using them is
a challenging task, usually founded on preliminary constraints
and assumptions. In [16] the image is divided in regular
grid of cells. Then 3D reconstruction is applied by pixel-
wise image labeling based on CRFs. Besides the camera, the
vehicles CAN-bus data is employed as well in [17]. Then two
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Fig. 2. System paradigm: the intersection between the spatial and temporal
information cues is used ot minimize the uncertainty of curb parameters
estimation.

complementing methods are applied: localizing borders using
texture based area classification with local binary patterns
(LBP) features and Harris features tracking using Lucas-
Kanade tracker to extract 3D information. The curb detection
system described in [18] is closely related to our approach.
It also involves use of a fisheye camera and incorporates
Histogram of Oriented Gradients (HOG) features. Unlike our
approach, they preserve the original camera image. Hence,
their curb model is polynomial. The temporal filtering is based
on Kalman filter.

III. SYSTEM DESCRIPTION

A. Algorithm summary

The objective of our system is to acknowledge the presence
of a curb close to the vehicle, along its forward motion path,
and to help identifying if it is an immediate thread to the
vehicle’s integrity by estimating its position, orientation and
size relative to the vehicle. These parameters constitute the
system state vector x, described later in Section III-B. The
system tracks just one curb at a time, as only the closest to
the vehicle one is significant.

Fig. 2 illustrates graphically the paradigm our system is
founded on. Its shape likens inverse pyramid, situated in the
Time/Entropy plain. Pyramid tip points to the moment of time t
which corresponds to the last captured camera frame (image).
The width of its layers (and their coloring) depicts overall
entropy rate in terms of the state vector x estimation. The
paradigm is inspired by the idea of the attentional cascade
presented in [19], but instead of boosted classifiers we use
various filtering techniques. The direction of processing flow is
from the top to the bottom and each stage is purposed to reduce
system’s state entropy until the uncertainty is low enough that
a reasonable inference for the values of curb parameters can
be made.

The cascade consists of two major layers which handle the
information from space and time perspectives. Immediately
after a new image is delivered by the camera at time t, it is
fed to the “Spatial domain” pyramid layer, which consists of
three sub-layers. The first one searches for individual curb’s
primitive structural elements in the image. As such, we engage
curb’s edges, since they are 3D lines. Projecting them onto
the camera’s image plane won’t take away their straightness,
because of the linearity of the perspective transform. There-
fore, curb’s edges can be detected just by performing line
detection in the image. This part of our algorithm is described
in Section III-E1.

Next, we raise the level of generalization up by utilizing
curb’s geometry itself, i.e. the configuration of its primitive
structural elements (points, edges, faces) that constitute its 3D
structure. Here, our algorithm relies on the prior knowledge
of curb’s geometry and the 3D to 2D correspondence in
order to estimate which compositions of image lines could
probably represent a projection of a 3D curb-like body. All
the successful guesses mold the initial hypothesis set of curb
candidates. Its outlying members are meant to be rejected by
the next layers of our paradigm pyramid. Detailed description
is presented in Section III-E2.

The last operation in the spatial domain shifts the focus
from curb’s geometry to its appearance in the image. Here
we perform object detection to validate every curb candidate
by the means of sophisticated Machine Learning techniques.
More information can be found in Section III-E3.

The purpose of our system is to estimate curb parameters
while vehicle is in motion. Luckily, it is a considerably mas-
sive object with predictable kinematics. Hence, the evolution
of curb’s parameters (system state) in the “Time domain”
follow smooth trajectories, with no abrupt discontinuities. In
other words, our system deals with environment which obeys
temporal continuity. Thus, from all the curb candidates we
can select only those which comply with it and also make
reasonable predictions for system’s future states. Our Curb
tracking technique is described in Section III-F.

The most bottom layer of the pyramid represents the resid-
ual uncertainty which our system, as a non-ideal one, cannot
resolve and bring the entropy to the theoretical value of 0, i.e.
100% confidence about curb parameters estimates. Our goal
is to minimize it and in Section IV we present results which
demonstrate the promising performance of our system.

B. Geometrical considerations and definitions

Here we describe the fundamental assumptions and con-
straints our algorithm is based on.

1) Road: We consider the road as a perfectly flat structure.
Although, the real roadways are not ideally planar due to
technological slopes or deformations caused by exploitation,
their surface curvature is smooth enough to allow us make such
an assumption considering the size of our system’s working
area (Curb Detection Domain, defined below in III-B4) and the
amount deviation from the perfect plane within it. The road
plane is denoted as ΠG ∈ R3 and its projection in camera
image as πG ∈ R2 (Fig. 1).
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a) curb appearance in image
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Fig. 3. Curb elements, shape and definitions.

2) Camera: The camera is mounted in the middle of
vehicle’s front and points upon vehicles forward movement
direction. Camera’s projection center (focal point) OC is
elevated above the road at a fixed distance HC and this
is where camera’s coordinate frame OCxCyCzC originates
(Fig. 1). During parking vehicle’s speed is relatively low,
therefore we can neglect the actuation caused by vehicle’s
suspension system. Furthermore, for the sake of simplicity and
computational efficiency we define that camera’s plane xCzC

is parallel to the road plane ΠG (Fig. 1).
3) Curb: We define the curbs as rectangular prismoidal

rigid structures, which determine road plane borderlines. They
are usually significantly elevated above the road surface and
often specify the boundaries between the road and sidewalk,
for example. We also assume that the curbs have negligibly
small fillets (roundings) of the corners, which results in clear
and abrupt brightness transitions (edges) in the camera images.

Our algorithm uses curb’s edges as primal features. They
are straight, easily detectable and can help us to drastically
reduce curb detection time. We would like also to note that
if a curb appears in the image, three of its horizontal edges
and two faces defined by them will always be presented in it
(Fig. 3a and b). Let E1, E2 and E3 ∈ R3 be the three lines
depicting curb’s lower front (base), upper front and rear edges,
respectively (Fig. 1). Accordingly, e1, e2 and e3 are their R2

projections in the image (Fig. 3b).
Curb detection and localization aim to the estimation of four

basic curb parameters: DU – the distance between the curb and
camera, ΘU – the rotation angle of the curb about vertical
axis, HU and EU – curb’s height and depth, respectively. To
precise the definition of DU we introduce the notion of curb’s
reference point PU (Fig. 1), which is the intersection between
the plane yCzC and E1 – curb’s base edge. Then DU can
be described as the distance between PU and the orthogonal
projection of the origin OC on the road plane O

{G}
C . As a

consequence of our system’s simplified geometrical configu-
ration (see above), DU is equal to the z-coordinate of PU

in camera’s frame OCxCyCzC. ΘU can be defined as the
angle between camera’s axis xC and the edges E1,2,3, HU

is the distance between E1 and E2, respectively, EU is the
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Fig. 4. System’s Curb Detection Domain (CDD) (cyan) – shape and
dimensions.

distance between E2 and E3 (Fig. 1). Semantically, we split
curb’s parameters in two groups – essential and secondary.
DU, ΘU and HU are considered as essential, because they
provide enough information to determine the safe-clearance
between the curb and vehicle. EU is considered secondary
and it is used for an additional information cue to improve
system’s reliability during operation.

We define system’s state vector as follows

x =
[
DU,ΘU, HU, EU

]>
, (1)

and it holds all the curb parameters. Their estimation is
accomplished by the means of a 3D parametric template
(shown in Fig. 3c). Similar to the curb, it consists of two
orthogonal rectangular faces and three edges Ê1, Ê2 and
Ê3 which correspond to the curb’s ones. Consequently, their
projections in the image plane are ê1, ê2 and ê3, respectively.
The template has the same set of parameters as the curb and
they are organized in the template’s state vector

x̂ =
[
D̂U, Θ̂U, ĤU, ÊU

]>
. (2)

Detailed description of the fitting procedure is presented in
Section III-E2.

A curb detection in the image frame at time t is considered
as successful, if at least its essential parameters are estimated
correctly. Therefore, we need to determine at least the position
and orientation of E1 and E2 w.r.t. the camera from their
projections e1 and e2, respectively.

4) Curb detection domain and image’s curb searching re-
gion: From a practical point of view, we define the rectangular
area of the road plane directly in front of the vehicle as
Curb Detection Domain (CDD) (Fig. 4). In essence, CDD
determines system’s domain of definition (or operation) w.r.t.
DU ∈ [Dmin, Dmax]. Dmax is chosen to be 500 cm, whereas
Dmin is calculated from camera’s vertical Field of View (FoV)
bottom boundary. In our setup its value is ≈28.7 cm. The
CDD’s side limit Wmax is derived from FoV as well and is
rounded to 130 cm. The total area covered by the our system’s
CCD is ≈12.25 m2. The four sides of CDD are defined by
the lines BN, BF, BL and BR. Their projections in the image
are respectively bN, bF, bL and bR.
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a) original fisheye camera image

b) rectified fisheye camera image

CSR
500 cm

130 cm 130 cm

πG

bL bR

Fig. 5. The original (a) and rectified (b) versions of an image from the
forward-view vehicle fisheye camera. cyan dashed line – Curb Detection
Domain (CDD), orange dashed line – boundaries of the rectified camera
image, blue solid line – exemplar position of Curb Searching Region (CSR).

In order to reduce the amount of data being processed
for each frame and eliminate the influence of outliers, we
introduce the notion of Curb Searching Region (CSR) in the
image (Fig. 5b). It defines the image area used for extracting
curb features. Its size and position are variable and determined
by the expected curb location at the time of current camera
frame. Essentially, it represents the projection in the image of
a CDD subregion which has the same width, but significantly
shorter length. Its initial position is set at the far end of CDD
and in Curb tracking mode (see Section III-F) the system
updates its position accordingly.

C. System calibration

All images from the camera are rectified before any further
processing to eliminate the radial distortions introduced by
the fisheye lens (Fig. 5). Otherwise, curb detection would be
much more complex, involving second or higher order curves
detection and fitting. We employ the fisheye camera model
described in [20] to estimate camera’s intrinsic parameters
in an offline calibration procedure using a planar target. In
the rest of this paper, by the notion “image” we refer to the
rectified version of the original image, unless anything else is
explicitly stated.

The next step is, assuring that the camera extrinsic param-
eters follow the geometric definitions above (Section III-B).
We don’t estimate those parameters through a calibration pro-
cedure. Instead, we set some of them manually. For instance,
camera tilt angle should be set to zero. To achieve that, we
employ a simple four-steps calibration procedure, illustrated in
Fig. 6-top. A point target (marker) mounted on a stand (tripod),
whose height is adjustable, is used. Repeating the these steps
3-4 time ensures that camera orientation will easily converge
to the desired state. Not only the correct orientation of the
camera is set during this process, but we also get an accurate

ĤC

Road plane ΠG

HC

3. Move the target
as far as possible.

1. Place the calibration
target as close to the
camera as possible.

Camera

4. Adjust camera
tilt angle, such that

target center and
the principal point

conicide again.

2. Set target height, such
that its center coincides
with the camera principal
point in the image.

Camera

LIDAR

∆

Printed
large-scale ruler

2. Position an artificial obstacle at
various test distances from the
camera and collect the
measurements from the LIDAR and
the ruler. The mean deviation of
both mearurement sources gives the
the unknown distance ∆.

1. Fit printed planar
ruler (represented by

cyan circles) to its
virtual model

projection (red
crosses) in the

camera image by
sliding the ruler back

and forth.Ruler’s origin

OC

OC

O
{G}
C Virtual ruler (top view)

Fig. 6. System geometry calibration: (top) Assure that camera optical axis
is parallel to the road plane by the means of point calibration target with
adjustable height. This procedure give us also an accurate estimate of camera
elevation HC . (bottom) Estimate the distance offset ∆ between the camera
and LIDAR measurements.

estimate of the distance HC → ĤC , which is the distance
from target center to the ground and can be measured with a
ruler.

Fig. 6-bottom illustrates our technique to estimate the hori-
zontal offset between camera and LIDAR origins – ∆, which
is needed when evaluating system distance measurement ca-
pabilities. The peculiarity here is that the position of camera
coordinate frame origin OC is hard to be measured. Therefore,
we came up with a technique to estimate its position implicitly.
More precisely, we do not measure its actual position, but the
position of its projection on the road plane O{G}C . Thanks to
our geometric setup this is sufficient to estimate ∆. We use
a 3D model of a planar large-scale ruler with a regular grid
(10 cm per division). First, we create a virtual 3D model of it,
which is coplanar with the road plane ΠG, its origin coincides
with O

{G}
C and its measurement axis is parallel to zC. Then

we project this virtual model of the ruler to camera plane and
overlay its projection in the image. Next, we take a printed
version of the same ruler model with the same scale, lay it
in front of the camera and fit it to the overlaid projection
of its virtual analog. When finished, we know that the origin
of the printed ruler corresponds to the origin of the virtual
one and, consequently, to O

{G}
C . Afterwards, we use a test

obstacle to initiate measurements from the LIDAR and the
camera, through the ruler (see Section III-D). By averaging the
differences of those pairs of measurements we can calculate
∆.
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D. Measuring distances with a monocular camera

The plane yCzC of camera’s coordinate frame is illustrated
in Fig. 7. Let P ∈ R3 is a point from the road plane with
coordinates P =

[
xP, yP, zP

]>
=
[
xP, HC, DP

]>
in camera’s

coordinate frame. Its projection onto the image plane is the
point p =

[
xp, yp, 1

]> ∈ P2 w.r.t. the frame originating at the
principal point c. The relation between their coordinates is

p =
KcP

DP
, (3)

where Kc =

fx 0 0
0 fy 0
0 0 1

, fx and fy are camera’s focal

lengths along its xC and yC axes, respectively. From (3) we get
yp =

fyHC

DP
, which means that yp depends only on DP, since

fy and HC are practically constants. Furthermore, if we invert
the equation, we can calculate the distance DP of every point
P from the road plane just by using the vertical coordinate yp

of its projection p from the image. Hence, for curb’s reference
point PU (Fig. 1) can be rewritten

DU =
fyHC

yU

, (4)

where yU is the vertical coordinate of PU’s projection in the
image.

E. Detect curb candidates in an image

Here we describe our approach for detecting a curb in the
image. The algorithm is inspired by the paradigm for boosted
attentional cascade presented in [19], but instead of using a
cascade of boosted classifiers with gradually increasing com-
plexity, our cascade consists of various filtering techniques.

hU = 27 px

hU = 70 px

hU = 205 px

DU = 260.2 cm DU = 106.2 cm DU = 40.4 cm

a) Original images of a curb with depicted edges

e1

e2

e3

e1

e2

e3

e1

e2

e3

e1

e2

e3

e1

e2

e3

e1

e2

e3

b) Our technique for curb scale-invariant image remapping – Inverse
Perspective-compressing Mapping, applied to the curb images from a)

e1

e2

e3
e1
e2

e3e1

e2 ≈ e3

c) Classical Inverse Perspective Mapping
applied to the curb images from a)

Fig. 9. A set of three curb images taken at three different distances DU

from the same video sequence. They demonstrate the issues related to edge
detection and our approach to solve them.

Thus, the amount of data being processed is greatly reduced
by rejecting image regions which do not contain curb features.
As result, only positively classified curb candidates are left for
further temporal analysis.

Fig. 8 illustrates our curb detection pipeline, which consists
of three consecutive operations:

1) Curb scale-invariant edges extraction: As we have
already mentioned earlier, the primary features which we
exploit are the curb’s edges (Fig. 3). The straight lines in the
image are extracted by the well known combination of Hough
transform (HT) [21] and the Canny edge detector [22] applied
to the camera images. Also, as we have already described
in Section III-B3, the least sufficient condition to perform
successful curb detection in the image at time t is that both
curb’s edges projections e1 and e2 are correctly detected. They
define curb’s frontal face projection in the image on which we
are going to emphasize here.

Let RU is curb’s frontal face vertical spatial sampling rate
in the image

RU =
hU

HU
=

fy
DU

( px
cm

)
, (5)

where hU is the curb’s frontal face projection height in the
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image. Essentially, RU provides information about how many
sampling locations (pixels) are used by the camera to represent
every centimeter of a vertical line from curb’s frontal face,
which is located at the distance DU from the camera. As a
consequence from (5), RU is a non-constant function with
respect to DU, which is demonstrated graphically in Fig. 9a.
The figure shows three sample images of the same curb taken
at 3 different distances DU. It is obvious that hU (marked
in the figure) varies significantly. In particular, based on our
system’s setup the ratio

RU(DU = Dmin)

RU(DU = Dmax)
=
Dmax

Dmin
≈ 17.5, (6)

i.e. the projection of a curb taken at the distance DU = Dmin
will contain about 17.5 times more pixel information than the
projection of the same curb taken at a distance DU = Dmax.

Our system relies on detecting curb’s edges. Principally,
edge detection aims in finding the points of discontinuity in the
image brightness by incorporating either its first- or second-
order derivatives. The Canny edge detector, for example, uses
first-order operators, such as Sobel [23], [24], Scharr [25], Pre-
witt [26] or Roberts cross [27] to estimate brightness gradient
magnitude and direction. Having such a significant variation of
RU, though, results in volatile gradient magnitude over curb’s
edges projections, thus inconsistent curb detection. In order to
overcome this problem, we have derived an image remapping
technique – Inverse Perspective-compressing Mapping (IPcM),
which aims to equalize the spatial sampling rate of the curb in
the image (Fig. 9b). After warping the image, the detection of
curb’s edges tends to be much more steady and robust through
the entire CDD. Also, the original trapezoidal shapes of CDD
and CSR in the image are transformed into rectangles. Detailed
explanation about the derivation of our technique can be found
in Appendix A.

The classical Inverse perspective mapping (IPM) normalizes
the spatial sampling rate of the road and any other parallel to it
plane (Fig. 9c), but not for the orthogonal frontal curb’s face,
as can be seen on the figure. Notably, hU is still dependent
on DU and varies considerably. The difference is that after
the transformation their relation is proportional. Moreover, the
IPM transform introduces an additional issue, which can be
easily acknowledged from the figure. The output image suffers
from gradually increasing interpolation smoothing, mainly
along its vertical axis. It is caused by the irregular density of
camera pixels sampling locations in the 3D scene (the density
of the points Pi in Fig. 21 is variable).

Let L = {li}NL1 be the set of straight lines in the image
at time t, detected by applying edge detection to the IPcM
remapped image and then transforming the lines back to
the original image space. NL is the size of the set and
li =

[
ai, bi

]> ∈ R2 are vectors representing the individual
lines from the set by their parametric form: ai – slope and bi –
intercept. This procedure is expected to produce significant
amount of outliers. That’s exactly what we are aiming at. The
purpose of the following processing blocks of the flow diagram
(Fig. 8) is rejection of everything, which is not associated with
the curb. As the curb edges are expected to be among the
longest ones in the CSR (extending through its full width), we

can reduce the processing time by using just the six lines with
the highest voting scores from HT (NL ∈ [0, 6]). The other
types of edges from different geometric shapes, which could
possibly be presented in the image (from sidewalk pavement,
tiles, etc.), usually have much shorter length, hence lower
voting scores.

Finally, we examine the detected lines as a set of points in
their parametric space and try to find clusters. We consider
every cluster as a noisy representation of a single edge. Thus,
all the members in a cluster are replaced by its mean.

2) Forming curb candidates set: We construct two new
sets – G2 and G3, which contain all possible combinations of
2- and 3-tuples, respectively, of non-intersecting lines li from
L, i.e.

G2 =

{(
g

(j)
21 ,g

(j)
22

)
j

}
=
{

(lp, lq)j

}
:

p, q = 1 . . . NL, p 6= q, bp > bq

l(h)
p × l(h)

q /∈ It, 1

j = 1 . . . NG2
, NG2

≤
(
NL
2

) (7)

and

G3 =
{(

g
(k)
31 ,g

(k)
32 ,g

(k)
33

)
k

}
=
{

(lp, lq, lr)k
}

:

p, q, r = 1 . . . NL, p 6= q 6= r, bp > bq > br

l(h)
p × l(h)

q /∈ It, 1

l(h)
p × l(h)

r /∈ It, 1

l(h)
q × l(h)

r /∈ It, 1

k = 1 . . . NG3
, NG3

≤
(
NL
3

)
,

(8)

where l
(h)
p,q,r are the homogeneous representations of the lines

lp,q,r, It is the camera’s image at time t and NG2,3
are the

sizes of the two sets. The lines in every tuple are sorted in
ascending order of their vertical placement in the image, i.e.
in descending order of lines’ intercept parameter bi2.

A tuple of three lines is sufficient to estimate all of the
four curb template parameters (2), rather than the 2-lines case,
where we omit EU in favor of estimating the other three more
important parameters: D̂U, Θ̂U and ĤU. In order to shorten
our presentation we are going to describe the triplet case
only, because it is more general, complex and G2 could be
considered as a special case subset of G3.

The next step is fitting the curb template’s projection in the
image to each individual triplet in G3. Every line from k-th
triplet is explicitly related to a specific curb’s edge, because
they will always appear in the image in the same vertical order.
Therefore, g

(k)
31 represents e1, g

(k)
32 → e2 and g

(k)
33 → e3. The

objective of the fitting is to estimate the optimal values of the

parameters x̂k =
[
D̂

(k)
U , Θ̂

(k)
U , Ĥ

(k)
U , Ê

(k)
U

]>
, such that curb’s

1Due to the properties of the perspective projection, the relative position
and orientation of the camera, the road plane and the curb and their shapes,
it is impossible that any of the lines e1, e2 and e3 have common points
in the image It. Therefore, all the 2- and 3-tuples members of G2 and G3,
respectively, which contain intersecting lines are rejected.

2Note that the vertical image axis v points downwards.
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k-th triplet from the set G3

Curb template fitted to
k-th lines triplet from G3

a) Estimating the positions of k-th triplet target control points
(depicted by the crosses)

b) Fitting curb template by minimizing the distance between the target
(the crosses) and curb template (the circles) control points

g
(k)
31

g
(k)
32

g
(k)
33

Camera’s principal point c is the center of perspectivity, as well.

l
(k)
Rv l

(k)
Rvl

(k)
Rh l

(k)
Rh

p̂U

p
(k)
31

p
(k)
34

p
(k)
32

p
(k)
33

p
(k)
36

p
(k)
35

c

bRbL bF

Fig. 10. Curb template fitting. First, the position of the target control points for
k-th line triplet from G3 (depicted by the crosses) are estimated by following
a reasoning based on the principles of the perspective transform and the
simplified curb geometry defined in Section III-B3. Second, 3D curb template
is fitted to every line tuple by minimizing the distance between its control
points (depicted by circles) and the target control points through adjusting
templates parameters x̂.

template edges projections in the image e1,2,3 are aligned to
their corresponding lines from the triplet g31,32,33 in the best
possible way.

We evaluate the similarity of two R2 lines by calculating the
Euclidean distance between two pairs of corresponding points
laying on each of them, which we call control points. Hence,
to fit the template to a triplet of lines we need to use six pairs
of control points. In order to define their position, we need
to introduce the planes ΠL and ΠR and their projections in
the image πL and πR (Fig. 10a). They intersect ΠG in BL

and BR and ΠL,R ⊥ ΠG. Now curb template’s control points
are defined by intersecting its edge lines Ê1,2,3 with ΠL and
ΠR, which results in two R3 point triplets: (P̂1, P̂2, P̂3) and
(P̂4, P̂5, P̂6) – Fig. 11. The calculation of their coordinates
in camera’s coordinate frame is significantly simplified due to
systems geometrical setup, namely

P̂1 = [ −Wmax, HC, D̂U + ∆D1 ]>

P̂2 = [ −Wmax, HC − ĤU, D̂U + ∆D1 ]>

P̂3 = [ −Wmax, HC − ĤU, D̂U + ∆D1 + ∆D2 ]>

P̂4 = [ Wmax, HC, D̂U −∆D1 ]>

P̂5 = [ Wmax, HC − ĤU, D̂U −∆D1 ]>

P̂6 = [ Wmax, HC − ĤU, D̂U −∆D1 + ∆D2 ]>

,

(9)
where

∆D1 = Wmax tan Θ̂U

∆D2 =
ÊU

cos Θ̂U

. (10)

Afterwards, we can estimate their projections in the image as

xC

OC

ΘU

DU

fx

C
ur

b
D

et
ec

tio
n

D
om

ai
n

c

c x

E
U

zC

Vehicle
(top view)

Curb
template

P̂U

P̂3P̂1,2

P̂4,5 P̂6

∆D1 ∆D2

ΠG

Fig. 11. Top view of the vehicle, camera and curb template, showing the
location of the control points P̂m : m = 1, . . . , 6.

follows
p̂m(x̂) = KP̂m, (11)

where m = 1 . . . 6 and K =

fx 0 cx
0 fy cy
0 0 1

 is the camera

matrix, cx and cy are camera’s principal point c coordinates
along the horizontal and vertical axes, respectively. It should
be noted that since K, wmax and HC are constants, p̂m is
function only of the curb parameters vector x̂.

The estimation of k-th triplet control points3 positions in the
image is demonstrated in Fig. 10a. It follows the presumptions
of template’s control points location in the image and incor-
porating the properties of perspective projection. Firstly, we
intersect g

(k)
31 with bL,R and thus estimate the control points

p
(k)
31 and p

(k)
34 (depicted with cyan crosses in the figure).

p
(k)
31 = bL × g

(k)
31 and p

(k)
34 = bR × g

(k)
31 . (12)

We know that curb’s front face is vertical, i.e. parallel to
camera’s image plane. Therefore, we find p

(k)
32 and p

(k)
35 by

intersecting g
(k)
32 with the two vertical lines l

(k)
Lv and l

(k)
Rv from

the figure which pass through p
(k)
31 and p

(k)
34 , i.e.

p
(k)
32 = l

(k)
Lv × g

(k)
32 and p

(k)
35 = l

(k)
Rv × g

(k)
32 . (13)

In Fig. 10 these control points are depicted by magenta crosses.
Camera’s principal point c is the vanishing point (center

of perspective), where the projections in the image of all R3

lines parallel to zC converge. Hence, the lines l
(k)
Lh and l

(k)
Rh in

Fig. 10a that constitute the projections of the intersections of
curb’s top face and the planes ΠL,R will pass through it and
we can estimate the positions of the last two target control
points p

(k)
33 and p

(k)
36 as follows

l
(k)
Lh = c× p

(k)
32 and l

(k)
Rh = c× p

(k)
35 , (14)

p
(k)
33 = l

(k)
Lh × g

(k)
33 and p

(k)
36 = l

(k)
Rh × g

(k)
33 . (15)

3We will call them target control points.
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a
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1
2
a

a

1
2
a

a

Fig. 12. Sampling square uniformly distributed windows along the frontal
face projection of a curb template in the IPcM image to extract HOG features
vector.

They are depicted by the green crosses in the figure.
After we have derived the equations of all control points in

the image, we can define the objective function, which we are
going to optimize in order to fit the curb template’s projection
in the image to the lines of k-th triplet from G3. First, let the
distance r(k)

3m between two corresponding control points in the
image be the L2-norm for their difference, i.e.

r
(k)
3m(x̂) =

∥∥∥p(k)
3m − p̂3m(x̂)

∥∥∥
2
, (16)

where m = 1 . . . 6. Then, we construct the error vector

r
(k)
3 (x̂) =

[
r

(k)
31 , r

(k)
32 , . . . , r

(k)
36

]>
(17)

and the curb template’s parameters that produce the best fit to
the k-th triplet are determined as follows

x̂
(k)
3 = arg min

x̂

αD

∥∥∥r(k)
3 (x̂)

∥∥∥
2

≡ arg min
x̂

αD

6∑
m=1

[
r

(k)
3m(x̂)

]2, (18)

where αD = D̂U

Dmax
is a normalization term, which regularizes

the dependence between the template’s re-projection error in
the image and the distance D̂U. As the minimization of L2-
norm of a vector is equivalent to minimizing the sum of
its squared elements and we have closed form differentiable
solution for r

(k)
3 , we can incorporate Levenberg-Marquardt op-

timization algorithm [28], [29]. Fig. 10 illustrates an example
of a successfully optimized (fitted) curb template.

After fitting the curb template to all the line tuples in G2

and G3, we build the curb candidates set

X̂ =
{

x̂
(1)
2 , x̂

(2)
2 , . . . , x̂

(NG2
)

2 , x̂
(1)
3 , x̂

(2)
3 , . . . , x̂

(NG3
)

3

}
. (19)

The next task is rejecting the outliers from X̂ . The first
level of filtering is described in the next section, where curb
candidates are rejected based on their appearance in the image
at time t. Afterwards, among the “survivals” only the ones,
whose parameters follow the prediction, based on temporal
analysis of the previous frames, are selected. This procedure
is described in Section III-F.

blur HOG

blur HOG

blur

3
2
×

3
2

px
3
2
×

3
2

px

b) Negative sample (road/asphalt)

a) Positive sample (curb) HOG block size
8 × 8 px

Fig. 13. Classification samples and their HOG representations.

3) Appearance-based curb candidates filtering: It is very
unlikely that a trustworthy curb detection could be accom-
plished by employing only the straight curb’s edges from the
image, since they are not informative enough. I.e. relying only
on the curb’s geometry won’t bring down the entropy to levels
that the algorithm can reliably discriminate between curb and
non-curb shapes. At this stage we try to reject the outliers in X̂
by exploiting curb’s appearance in the image. Thus, we have
built an object detector based on a Support Vector Machine
(SVM) and Histograms of Oriented Gradients (HOG) features
[30].

Curbs occupy areas in the image, which have the shape
of thin, mostly horizontal, stripes. They are characterized by a
couple of distinctive transitions of pixels’ brightness along the
vertical axis, caused by the differences in reflecting/scattering
properties of the individual curb’s surfaces. In the case of curb
detection in images the HOG is a suitable descriptor, becuase
it accounts the direction of that transitions and a machine
learning algorithm can be trained to discriminate among curb
and non-curb image patterns. Moreover, HOG is also popular
with its computational efficiency.

We extract the HOG features from the IPcM image, because
the vertical size of the curb is invariant to DU. Fig. 12
illustrates our sampling approach. Seven uniformly distributed
square windows are sampled along curb template frontal face.
Only the two frontal curb edges are needed to accomplish
that operation. The size of the patches is determined by the
distance between the two edge lines in vertical direction (on
the figure, depicted by a). Each window is scaled down to
a fixed size of 32× 32 px – Fig. 13. In order to eliminate
the influence of the high-frequency components, we apply a
smoothing Gaussian filter to the windows before calculating
their HOG features. In the end, the pixel information of each
of them is converted to 288-dimensional HOG feature vector,
which is fed to the pre-trained linear SVM classifier [31].
Fig. 13 illustrates examples of a positive (a) and a negative (b)
windows. Even an unexperienced human eye can easily notice
the considerable difference between the gradient histograms of
the two samples.

We define our classification problem in a Multiple Instance
Learning manner. The set of the seven feature vectors sampled
form the same curb template from X̂ form a bag of instances
B. We define two types of bags – positive (B+) and negative
(B−). If the majority of the instances in a bags are positive,
then that bag is considered positive. And respectively, if the
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2. Detect curb
candidates

3. Update
prediction

samples set

4. Estimate
prediction

lines

1. Predict curb
parameters

Prediction
samples set Pt−1

Prediction lines
(lD, lΘ, lH , lE)t−1

Smoothed curb
parameters x̄t−1

Prediction
samples set Pt

Prediction lines
(lD, lΘ, lH , lE)t

Smoothed curb
parameters x̄t

Time

Outputs

X̃t

x
(t−1)
t

x
(t−1)
t

Fig. 14. Flow diagram of the “Curb tracking” mode.

majority of the instances are negative, then the bag is also
negative. Thus, our classifier will be more robust against
outliers in the bags. In other words, instances, which represent
a curb, but are sampled from a regions which contain vertical
cracks or joints, is expected to be placed far from the other
instances of the same class in the feature space. The curb
candidates from X̂ that are approved by this classification
procedure form the final in-frame curb candidates set

X̃ = {x̃1, x̃2, . . . , x̃N} , (20)

where N ≤ NG2 + NG3 is its size. Note that if X̃ = ∅, the
curb detection is unsuccessful and thus, we accept that such
frames does not contain curbs.

F. Tracking the curb through the time

Here we present our scheme for curb tracking in the time
domain at frame-to-frame basis. The reasoning here is based
on the assumption that curb false candidates are result of faulty
lines detection that occur, because of the noisy output from
the Canny operator and false positive classification by the
HOG+SVM. To the first reason contributes the significant local
contrast in the small details produced by the HDR camera we
use. Therefore, we can assume that those faulty detections
don’t follow a predictable and smooth pattern in the time
domain.

We have prior knowledge regarding the nature of curb
parameters evolution (1). Namely, we know that HU and EU

are constants and DU and ΘU evolve smoothly over time, since
the vehicle is a physical object whose motion is continuous
function of time. Thus, we model them as autoregressive
processes.

The temporal filtering we apply has two alternating modes:
• Collecting initial prediction set
• Curb tracking

During the first one, the successful curb candidates set X̃t
of the current frame at time t is appended to a finite length

buffer C. When the critical minimum for tracking is reached
(5 consecutive successful frames), curb parameters prediction
lines are estimated and then the mode is switched to “Curb
tracking”. I.e. C =

{
X̃t, X̃t−1 . . . X̃t−4

}
, where X̃t−n 6= ∅ :

n = 0, . . . , 4.
The prediction lines are used to predict the future system

state and to smooth the measurements of the current state,
by taking into account the previous system states. We assume
that within a short span of time (for example 7 frames) the
evolution curves of the curb parameters have mainly linear
character. Each curb parameter has its individual prediction
line – (lD, lΘ, lH , lE)t. Their parameters are estimated by
linear regression applied to the corresponding elements of the
curb candidate vectors x̃ of every possible combination of
5 candidates

(
x̃

(t)
i , x̃

(t−1)
j , x̃

(t−2)
k , x̃

(t−3)
l , x̃

(t−4)
m

)
: x̃

(t−n)
i ∈

X̃t−n, n = 0, . . . , 4, i = 1, . . . , N (t), j = 1, . . . , N (t−1), k =
1, . . . , N (t−2), l = 1, . . . , N (t−3), m = 1, . . . , N (t−4), sam-
pled from C. The combination, which has minimal fitting error,
is chosen to be the prediction samples set Pt at time t.

Now, let’s assume that system processing mode at the
current time t is “Curb tracking”. The flow chart diagram
from Fig. 14, presents it graphically. The first operation is
predicting system state at time t

∗
xt =

[
∗
D

(t)
U ,

∗
Θ

(t)
U ,

∗
H

(t)
U ,

∗
E

(t)
U

]>
, (21)

based only on the information from the previous frames –
(lD, lΘ, lH , lE)t−1. This gives us information for the approx-
imate position of the curb in the current frame and length and
position of CSR can be updated accordingly before detecting
the curb candidates in the second operation.

Then the current frame’s prediction set Pt is obtained by
selecting the closest to the prediction ∗

xt curb candidate from
X̃t and appending it to Pt−1. The last step is estimating
the prediction lines set for the current frame (lD, lΘ, lH , lE)t
and the smoothed (filtered) version of the curb state x̄t,
which supposedly contains much less noise than the individual
measurements.

IV. EXPERIMENTAL RESULTS

A. Video dataset

We have collected a dataset, which consists of 11 videos
captured with a monocular forward-view fisheye HDR camera
in typical forward perpendicular parking situations during the
bright part of the day in a natural lighting environment –
Table I. All but one videos contain a single sidewalk curb. Only
video sequence 8 has two perpendicular curbs presented in the
CCD. Two distinct weather conditions were presented at the
time of data collection – clear/sunny, which is characterized
with sharp deep shadows and bright highlights creating unreal
edges in the image, and shadow (overcast), which is charac-
terized with soft shadows that smoothly grade to highlights.
In sequences 2, 3, 8, 11 the front bottom curb edge is fully or
partially obstructed by tree leaves and different kind of debris.
Camera frame rate is approximately 21 fps and the original
resolution is 1920× 1080 pixels.
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TABLE I
DATASET DETAILS

Vid.
seq.

#

Curb
height
(cm)

Curb
depth
(cm)

Weather
conditions

Curb/road
physical

properties

Frames
count‡

1 11.1 20.6 Clear Co./As.∗ 702/374
2 13.3 20.6 Clear Co./As.∗ 665/344
3 10.6 20.6 Clear Co./As.∗ 626/378
4 16.2 15.9 Shadow Co./As.∗ 519/332
5 14.6 16.4 Shadow Co./As.∗ 497/321
6 10.5 20.6 Clear Co./As.∗ 580/345
7 10.8 20.3 Shadow Co./As.∗ 545/318
8 9.8 21.6 Shadow Co./As.∗ 521/341
9 11.4 20.8 Shadow Pa./St.† 486/291

10 9.8 20.3 Shadow Pa./St.† 412/308
11 13.7 20.8 Clear Co./As.∗ 555/360
∗ Concrete/Asphalt
† Painted/Strained
‡ Total number of frames in the sequence/Number of the frames with

curb presented in the CCD

The distance DU ground truth (GT) data is collected by the
means of a point-wise LIDAR sensor. The height HU and the
depth EU of the curb are measured manually with a ruler. No
direct ground truth measurements are made of curb’s rotation
angle ΘU. It has been implicitly estimated through manually
fitted template to the curb appearances in the video frames.
The maximum labeling distance is 5 m.

B. Performance

Our curb detector has been implemented as a Python-
language program. Most of the image processing procedures
are accomplished by open source libraries, such as OpenCV
[32] and LibLinear [31]. The overall processing performance
is evaluated at average 11 − 12 fps for Full HD images and
by considering the fact that no graphical processor (GPU)
optimization is used. In other words, there are opportunities
for further significant improvements of the execution speed.

Figures 15 and 16 present a visual example of our system’s
processing procedures in real situation. More specifically, the
time of execution t equals to frame number 223 of video
sequence 4 from our dataset. The vehicle is approaching a side-
walk curb and the system has already collected sufficient tem-
poral data and the current working mode is “Curb tracking”.
Both figures correspond to the intra-frame (spatial) and inter-
frame (temporal) curb detection, described in Sections III-E
and III-F, respectively.

As described in Fig. 14, first of all the system predicts
curb parameters ∗

xt at time t. That process is visualized in
Fig. 16, where the prediction lines from frame t− 1 are used
to extrapolate all elements of the vector ∗xt (21) independently.
Knowing the approximate location of the curb, the system
determines CSR’s size and position, such that curb’s frontal
face is centered in CSR IPcM remapped region (Fig. 15a
and b). The next step is extracting the straight lines from it
(Fig. 15c) supposing that most of them are going to represent
curb edges. The lines are inversely transformed from IPcM
remapped image to original space and the lines set Lt is
constructed (Fig. 15d). As can be observed in the figure, the
system has detected 4 lines, 3 of which represent the three

Input rectified image at time t = 223 frame from video sequence 4

Forward IPcM
remapping

Straight lines
detection

Inverse IPcM transform
and construct lines set
Lt = {l1, l2, l3, l4}

Construct
line triplets

set G(t)
3

l4

l3

l2

l1

(l1, l2, l3)1 → x̂
(1)
3

(l1, l2, l4)2 → x̂
(2)
3

(l1, l3, l4)3 → x̂
(3)
3

(l2, l3, l4)4 → x̂
(4)
3

Fit 3D 3-edges curb template
to each line triplet from G(t)

3

Validate curb candidates

X̃t = {x̂(3)
3 , x̂

(4)
3 }

4 lines detected @ time t

Applying forward IPcM
transform to curb templates’

edges and extract HOG
features from square patches

equidistantly distributed
along templates frontal faces

Predicted label for x̂
(1)
3 : 	

Predicted label for x̂
(2)
3 : 	

Predicted label for x̂
(3)
3 : ⊕

Predicted label for x̂
(4)
3 : ⊕

x̂
(3)
3

x̂
(4)
3

Towards temporal curb tracking

The in-frame curb detection procedure managed to
reject all, but 2 curb candidates. As can be observed,
the real one is among them. The next step is temporal

filtering, where one of these two candidates will be
chosen by analysing the evolution of system’s state

though the past.

(cropped)Predicted
curb state

∗
xt

c)

a)

b)

d)
e) f)

g)

Fig. 15. Demonstration of system’s spatial domain processing procedure for
detecting 3-edges curb candidates in frame #223 from video sequence 4 of
our dataset.
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Fig. 16. Demonstration of system’s temporal domain processing procedure
for detecting 3-edges curb candidates in frame 223 of video sequence 4.

curb edges – l1, l3 and l4. The line l2 is an outlier, which is
going to be rejected during the following processing stages.
Next, the set G(t)

3 is constructed from all possible combinations
of Lt line triplets4. In the current example they are four
(Fig. 15e). Into each of them 3D curb templates are fitted
and their state vectors x̂

(i)
3 , i = 1 . . . 4 constitute 3-lines curb

candidates set X̂t. Three of these four candidates are false –
caused by l2. In the following validation procedure the seven
uniformly distributed square windows are sampled along each
template’s frontal face. HOG features are extracted from them
and grouped into bags: B(t)

1 , B(t)
2 , B(t)

3 , B(t)
4 . Each bag contains

the HOG feature vectors sampled from the same template. In
Fig. 15f with green and red colors are depicted the positive and
negative labels, respectively, assigned by the classifier. From
the figure, it is obvious that bags B(t)

1 , B(t)
2 and B(t)

3 have
very convincing labels, whereas the classifier is “uncertain”
about B(t)

4 and the assigned label is falsely positive, since the
majority if bags members have positive labels. At the end of
this procedure, the in-frame curb candidates set X̃t consists of
two members (Fig. 15g), which are going to be a subject to
temporal filtering – Fig. 16.

Among all curb candidates in X̃t, the one closest ot the pre-
diction ∗

xt is chosen. As curb parameters are heterogeneous5,
the system compares each one independently, in application-

4 Current example is related to 3-edges curb candidates detection for brevity.
The procedure for 2-edges ones (G2) is similar and simpler, as curb candidates
depth estimations are skipped.

5Their nature, magnitude and range are different.

TABLE II
CURB DETECTION LEAVE-ONE-VIDEO-OUT CLASSIFICATION RATE.

Video sequence # Accuracy F 1 score
1 99.7% 0.997
2 99.1% 0.989
3 93.6% 0.926
4 97.4% 0.986
5 97.4% 0.819
6 83.9% 0.901
7 96.2% 0.974
8 81.7% 0.871
9 90.5% 0.940

10 91.6% 0.956
11 81.7% 0.798

Average: 91.4% 0.923

wise importance ascending order6. In Fig. 16 we can see that
x̂

(3)
3 is much closer to

∗
D

(t)
U , than x̂

(4)
3 is. Moreover, x̂

(4)
3 is

undeniable outlier, since the distance to
∗
D

(t)
U is way longer

than the width of a 99% confidence interval, which proves
that it has not been drawn from the same distribution as the
prediction samples in Pt−1 and x̂

(3)
3 . Even if we propagate

the temporal analysis deeper to the next most important
parameter – HU, we can clearly see the x̂

(3)
3 almost coincides

with
∗
H

(t)
U and x̂

(4)
3 is quite far away. The situation with

the rotation angle ΘU is similar. The only exclusion is the
observation for the curb’s depth EU (Fig 16). x̂

(4)
3 is evidently

closet to the prediction
∗
E

(t)
U than x̂

(3)
3 is, but the system cannot

make strong inference, because both candidates are deviated
less than±3σEU from the prediction line. We can conclude that
the only inlier is x̂

(3)
3 at time t. Then, Pt is created by updating

Pt−1 though appending x̂
(3)
3 and removing the “oldest” sample

in order to preserve its fixed length.
Demonstration videos of our system can be found in [33].

C. Detection rate evaluation
The initial operation on every newly captured camera frame

is curb candidates detection. In this section we evaluate the ca-
pabilities of our system to correctly detect curbs in the image,
before estimating its parameters. The classification accuracy
(ACC) and F1 score are measured by incorporating Leave-
one-video-out cross validation technique for each individual
video sequence in our dataset. The results are summarized in
Table II.

ACC is calculated according to the following equation

ACC =
TP + TN

TP + TN + FP + FN
, (22)

where TP, TN, FP and FN are true positives, true negatives,
false positives and false negatives, respectively. The F1 score
is given by

F1 = 2 · precision · recall

precision + recall
, (23)

6 The main purpose of the current system is to avoid collisions between
the vehicle and obstacles, such as curbs. Therefore, we can assign figurative
importance level to each of curb parameters, from application point of view.
We consider DU as the most important parameter, because if the curb is
far enough, we know that a collision won’t occur, regardless the values of
the other curb parameters. If we cannot rely on DU to infer whether or not
the vehicle will collide, we should take into account HU . Therefore, it is
considered as the second most important parameter, etc.
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Fig. 17. Absolute (top) and relative (bottom) curb distance DU measurement errors with respect to LIDAR ground truth (GT) data (left) and manual labels
GT (right).

where

precision =
TP

TP + FP
, recall =

TP

TP + FN
. (24)

As can be observed in Table II, the majority of the videos have
accuracy greater than 90% and the average is about 91.40%.
Also F1 scores tend to maintain very high values as well.

D. Curb parameters estimation accuracy

In this section we evaluate system’s capabilities as a curb pa-
rameters measuring device. We use two metrics: an absolute –
Mean Absolute Error (MAE) and a relative – Mean Absolute
Percentage Error (MAPE). We show how these errors change
with respect to the GT distance DU. Therefore, we divide the
length of CDD in averaging intervals of 25 cm each. The
graphs shown here summarize the results of processing all
video sequences from the dataset.

Fig. 17 illustrates box plots of the absolute error of D̂U
estimates for our dataset. DU is the only parameter, which has
two sources of GT data – a point-wise LIDAR and manual
labels. Thus, the figure has information for both of them.
The LIDAR labels should be considered as the more accurate
baseline measurements, because they are realized through an
independent device, not by the camera. Hence, the error with
respect to them is greater than the one with respect to the
manual labels. Expectedly, the MAE errors and variances are
proportional to the distance between the vehicle and the curb.
On the other hand, MAPE errors tend to maintain relatively
uniform character through the entire length of CDD – below
8-9%. The only exception is the closest averaging interval –
DU ∈ [0, Dmin], where the curb is partially presented in the
camera frame and the system approximates its parameters
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Fig. 18. Absolute curb rotation angle ΘU measurement errors with respect
to the manual labels GT.

using a reduced set of edges (one or two). This can be
considered as completely anticipated result.

Fig. 18 illustrates the absolute errors of rotation angle
measurements with respect to the manually labeled curb
parameters. Similar ot the previous parameter’s measurement
statistics, the MAE and error variance of ΘU are proportional
to DU. Relatively high errors (especially at longer distances)
can be explained by the nature of perspective projection and
relative camera and curb positions and orientations. As the
camera is relatively close to the road plane, its optical axis
is parallel to it, its field of view is very large (fisheye), large
changes in curb rotation are going to have minimal effect in
its appearance in the image.

In Fig. 19 and Fig. 20 the absolute measurement errors of
HU and EU can be seen. The characters of both MAE errors
seem to be relatively uniform, unlike the one of DU and ΘU.
This demonstrates that these two parameters are less (or not)
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Fig. 19. Absolute (top) and relative (bottom) curb height HU measurement
errors with respect to manual labels GT.

dependent on the measurement distance DU.

V. CONCLUSION

In this paper we presented a system for vision-based
curb detection and its parameters estimation. We managed
to achieve high detection and curb parameters measurement
accuracies just by using a single fisheye camera and CPU com-
putations. Our algorithm is capable of successfully detecting
and tracking curbs at a distance of more than 4 m with mean
absolute error less than 9% for the curb distance estimates in
the Curb Detection Domain and not more than 1.5 cm mean
deviation for the curb height estimates. Robust tracking and
high detection rate are accomplished by implementing online
temporal analysis.

Here we would like also to discuss the aspects of our
future activities, which should be considered as a part of
the efforts to improve our system capabilities. One of the
main shortcomings is the amount of diversity in the dataset
currently used. Along with the already available sunny and
cloudy daylight conditions, there should be considered also the
situations of rain, snow, twilight, night, etc. Another parameter,
which should be improved, is the variability of curb types
presented in the data. For example, parking curbs or curbs,
which consist of rounded edges, may cause problems due to
their specific geometry and it is important to test the system
performance against it. As our curb detection system relies
on detecting edges in the image, it is also relevant testing
the system on various types of the road and sidewalk. For
instance, introducing types, which include tiles or pavements.
That will introduce edges, which may confuse the detector. All
these consideration are going to be taken into account when
collecting the next datasets.
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Fig. 20. Absolute (top) and relative (bottom) curb depth EU measurement
errors with respect to manual labels GT.

The current system uses a single camera as an input device
and we have proved that it can perform considerably well.
Other types of sensors are often used as well. A common
practice is the employment of stereo-pairs, which provide
depth information as an additional cue. Another source of 3D
data is the LIDARs. Their main drawback is the cost, as it is
significantly higher than the one of the cameras. On the other
hand, they are active sensors, thus they do not rely on external
light sources, such as the sun, street lamps or head lights.
Having multiple sources of information requires an appropriate
methods to deal with them. A common approach towards
making decision in that cases is by fusing those streams of
information. In [34] is presented a technique for multi-modal
data fusion, which can serve as a method to combine the visual
and 3D data for more reliable curb detection.

APPENDIX
INVERSE PERSPECTIVE-COMPRESSING MAPPING

FOR CURB’S SCALE-INVARIANT EDGE DETECTION

In this section we are presenting the derivation of our
method for Inverse Perspective-compressing Mapping (IPcM),
whose purpose and application are described in Section III-E1
and illustrated in Fig. 9b. Its objective is minimizing (or
even completely eliminating) the dependence of curb’s spatial
sampling rate RU from the distance DU, through its entire
definition interval, i.e. RU(DU)

remapping−−−−−→ R̂U(DU) = const :
DU ∈ [Dmin, Dmax]. The condition to avoid the interpolation
is

R̂U ≤ min [RU(DU)] : DU ∈ [Dmin, Dmax]. (25)
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In order to preserve the largest amount of details in the image
we take into account the equation (5) and choose the highest
possible value R̂U = RU(Dmax).

The derivation of the remapping functions presented below
consists of two logical parts – forward and backward (inverse)
transforms

(u, v)︸ ︷︷ ︸
original

image space

f – forward−−−−−−→
transform

(ũ, ṽ)︸ ︷︷ ︸
remapped

image space

f̂ – inverse−−−−−−→
transform

(û, v̂)︸ ︷︷ ︸
(pseudo) original

image space

(26)

A. Forward transform (remapping)

This transformation defines the mapping of the image point
(pixel) coordinates from the original image to the new one.
It is important to note that we consider pixels as sampling
locations. i.e. points from the camera image plane with no
designated areas, contrary to the common understanding that
they are small regions. Thus, the remapping procedure in
essence is scaling of the distances between the pixels in an
appropriate way. Moreover, the camera’s pixels grid is regular
and square, i.e. all the inter-pixel distances are equal.

Fig. 21 depicts the theoretical foundations of our approach.
Every pixel from image plane defines a ray which originates
in OC – camera’s coordinate frame origin, and passes through
its location on the image plane. We will refer to these rays
as sampling rays and their intersection points with the road
plane – sampling points. Furthermore, due to our system’s
geometrical setup, all sampling points corresponding to the
pixels sharing the same row from the image will have the
identical zC coordinates, i.e. they will be equidistant w.r.t. the
camera’s coordinate plane xCyC. Thus, by “a sampling ray”

or “a sampling point” we will refer to all the rays and points
corresponding to the pixels from the same image row.

Let yi be a positive vertical coordinate of the pixels located
on the vi-th image row, i.e. vi > cy , where vi = yi+cy and i is
row index. Hence, yi will correspond to a sampling ray which
intersects the road plane in the sampling point Pi ∈ R3 at a
distance Di that can be calculated by the equation (4). Let D =
{Di} be a set, whose members are all the possible distances
Di defined by the camera. Also we define the longest sampling
distance D̂max, where D̂max = sup {Dj ∈ D : Dj ≤ Dmax}.
For the sake of simplicity we set the index i = 0 for the
image pixel row which corresponds to the distance D̂max, i.e.
y0 ↔ P0 ↔ D0 = D̂max.

Let si be the distance between the two sampling rays
corresponding to the pixel rows yi and yi−1 along vertical
direction, measured at the sampling point Pi (Fig. 21). Then
we get

si =
Di

fy
=

1

RU(Di)
, (27)

which shows that si ∝ Di. Hence, normalizing RU for all
sampling positions Di, which is our goal, is equivalent to
normalizing si and we do it by using the distance s0 at D0

as a reference and define the scaling factors Si, such that

Si =
si
s0

=
Di

D0
=
y0

yi
. (28)

On Fig. 21 we can see the geometrical interpretation of
the scaling process. Let’s imagine that a curb with height HU

slides along the axis zC on the ground. Hence, the height
of its projection in the image is going to change inversely
proportional to the distance DU (as we have already seen on
Fig. 9a), i.e. the farther the curb is, the smaller its projection
in the camera will be. We want to resolve that problem by
making curbs size in the image fixed for all the distances
DU ∈ [Dmin, Dmax]. Our approach to achieve it is virtually
”dragging” the curb along the sampling ray corresponding
to the point Pi from its location at the distance DU = Di

to a plane which is parallel to xCyC and passes trough the
point P0. Thus, the curb basically will always be at the fixed
distance DU = D0 w.r.t. the camera, thereby its size in the
image will be constant, and at the same time it will still
be projected in the image at the vertical position yi which
corresponds to the point of its real location Di.

Since we do not use any of the image information outside
it’s RoI, there is no need to spend processing time on remap-
ping it. That’s why, we choose that the y0 is mapped to the first
raw of the resulting image, i.e. ṽ0 = fv(y0) = 0 px, where
fv is the remapping function if the vertical point coordinates
only. Based on Fig. 21 for fv we can write

ṽn = fv(yn) =

n∑
i=1

Si =

n∑
i=1

y0

yi
= y0

n∑
i=1

1

y0 + i
. (29)

Obviously, fv has an opened form, which is inconvenient to
estimate its inverse. Fortunately, the sum term has the pattern
of harmonic series, with the difference that the sum is not
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infinite. However, it can be presented by a difference of two
harmonic series partial sums

fv(yn) ≈ y0

(
ỹn∑
k=1

1

k
−

ỹ0∑
k=1

1

k

)
≈ y0 (Hyn −Hy0

) , (30)

where

Hq = ln(q) + γ +
1

2q
− 1

12q2
+

1

120q4
− εq (31)

is the q-th harmonic number determined by expanding some
of the terms in the Hurwitz zeta function, γ is the Euler-
Mascheroni constant and εq ∈

(
0, 1

252q6

)
. ỹn and ỹ0 are

the floored values of yn and y0, respectively. In the general
case, cx and cy – the coordinates of the camera’s principal
point c, are real numbers. Hence, yn and y0 will also be
real which cannot be used as a limit of the sum operators in
(30). Therefore, we floor them by taking into account that the
produced error will be negligible. After the subtraction of Hyn

and Hy0 , γ is eliminated and the influence of the last 3 terms
in (31) from practical point of view is imperceptible. The term
1
2q is very well approximated by ln

(
q

q− 1
2

)
, estimated by the

Laurent series expansion. The estimated total approximation
error is less than 2 ·10−3 pixels and we get the final simplified
closed form expression for fv

ṽ = fv(v) = y0 ln

[
(v − cy)2

y0(v − cy − 1
2 )

]
− 1

2
(32)

Every line of the image is scaled symmetrically with the same
scale factor Si, i.e. the mapping function for the horizontal
direction has the following form

ũ = fu(u, v) = y0
u− cx
v − cy

+ cx (33)

B. Inverse transform

To derive the inverse transform we just inverse equations
(32) and (33) and we get

v̂ = gv(ṽ) =
m+

√
m(m− 2)

2
+ cy

û = gu(ũ, v̂) =
(ũ− cx)(v̂ − cy)

y0
+ cx

, (34)

where

m = y0 exp

(
ṽ + 1

2

y0

)
. (35)
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