
Pixel Codec Avatars

Shugao Ma Tomas Simon Jason Saragih Dawei Wang
Yuecheng Li Fernando De La Torre Yaser Sheikh

Facebook Reality Labs Research
{shugao, tsimon, jsaragih, dawei.wang, yuecheng.li, ftorre, yasers}@fb.com

Abstract

Telecommunication with photorealistic avatars in virtual
or augmented reality is a promising path for achieving au-
thentic face-to-face communication in 3D over remote phys-
ical distances. In this work, we present the Pixel Codec
Avatars (PiCA): a deep generative model of 3D human
faces that achieves state of the art reconstruction perfor-
mance while being computationally efficient and adaptive to
the rendering conditions during execution. Our model com-
bines two core ideas: (1) a fully convolutional architecture
for decoding spatially varying features, and (2) a rendering-
adaptive per-pixel decoder. Both techniques are integrated
via a dense surface representation that is learned in a
weakly-supervised manner from low-topology mesh track-
ing over training images. We demonstrate that PiCA im-
proves reconstruction over existing techniques across test-
ing expressions and views on persons of different gender
and skin tone. Importantly, we show that the PiCA model
is much smaller than the state-of-art baseline model, and
makes multi-person telecommunicaiton possible: on a sin-
gle Oculus Quest 2 mobile VR headset, 5 avatars are ren-
dered in realtime in the same scene.

1. Introduction
Photorealistic Telepresence in Virtual Reality (VR) as

proposed in [10, 26], describes a technology for enabling
authentic communication over remote distances that each
communicating party feels the genuine co-location pres-
ence of the others. At the core of this technology is the
Codec Avatar, which is a high fidelity animatable human
face model, implemented as the decoder network of a Vari-
ational AutoEncoder (VAE). Imagine a two-way communi-
cation setting. At the transmitter end, an encoding process
is performed: cameras mounted on transmitter’s VR head-
set capture partial facial images and an encoder model en-
codes the captured images into latent code of the decoder
in realtime. At the receiver end a decoding process is per-
formed: upon receiving the latent code over the internet,

Figure 1. An multi-person configuration for teleconference in VR.
At normal interpersonal distances [20], the head occupies only
a subset of pixels in the display, where the amount of coverage
largely depends on distance to the viewer. Roughly half of the
head is not visible from any viewing angle due to self occlusion.
Our method avoids wasting computation on areas that do not di-
rectly contribute to the final image. In first row we show the gen-
erated and rasterized geometry, along with texture maps showing
visible pixels from the corresponding views; in the second row we
show the rendered avatars and the percentage of pixels they cover
over the entire image.

the decoder decodes the avatar’s geometry and appearance
so that the transmitter’s realtime photorealistic face can be
rendered onto the VR display.

Multi-person communication via Photorealistic VR
Telepresence will enable applications that are in great need
in the modern society, such as family re-union over far phys-
ical distances in which each member genuinely feels the
co-location presences of the others, or collaboration in re-
mote working where team members can effectively com-
municate face-to-face in 3D. However, rendering with the
decoder model proposed in [10] does not scale well with
the number of communicating parties. Specifically, a full

ar
X

iv
:2

10
4.

04
63

8v
1

 [
cs

.C
V

]
 9

 A
pr

 2
02

1

texture of fixed resolution 1K×1K is decoded at each frame
despite the distance of the avatar to the viewer and visibility
of different facial regions. This leads to significant waste
of computation when the avatar is far away, for which case
the rendered avatar only consists a small number of pixels
(Fig. 1), resulting in a large number of pixels in the decoded
texture map unused. Also, most of the time half of the head
is not visible due to self-occlusion, so the pixels in the de-
coded texture map for the occluded part are also unused.
For a 2K display such as the one in Quest2, rendering more
than 4 avatars amounts to computing more pixels than that
of the display. This is obviously limiting, e.g. family re-
union of more than 4 persons or team collaboration of more
than 4 members are common place.

To solve this issue and scale the rendering to the number
of persons in the VR telepresence, we should compute only
the visible pixels, thus upper bounding the computation by
the number of pixels of the display. Recent works in neural
rendering such as the defferred neural rendering[24], the
neural point-based graphics[2], the implicit differentiable
rendering [27], use neural network to compute pixel values
in the screen space instead of the texture space thus comput-
ing only visible pixels. However, in all these works, either
a static scene is assumed, or the viewing distance and per-
spective are not expected to be entirely free in the 3D space.
However, for telepresence, the ability to animate the face in
realtime and render it from any possible viewing angle and
distance is crucial.

In this paper, we present Pixel Codec Avatars (PiCA) that
aims to achieve efficient and yet high fidelity dynamic hu-
man face rendering that is suitable for multi-person telep-
resence in VR on devices with limited compute. To avoid
wasteful computation in areas of the face that do not con-
tribute to the final rendering, PiCA employs per-pixel de-
coding only in areas of the image covered by a rasteriza-
tion of the geometry. Similar to recent advances in im-
plicit neural rendering [11, 17, 21], this decoder relies on
a rich face-centric position encoding to produce highly de-
tailed images. We employ two strategies to generate such
encodings efficiently. First, we make use of the spatially-
shared computation of convolutional networks in texture
space to produce spatially varying expression- and view-
specific codes at a reduced resolution (256×256). This is
complemented by a pre-computed high resolution (1K×1K)
learned non-parametric positional encoding, that is jointly
rasterized into screen space similarly to [24]. To achieve
an even higher resolution result, we further compliment the
signal with 1D positional encodings at 10K resolution, in-
dependently for the horizontal and vertical dimensions of
the texture domain. Together, these maps enable the model-
ing of sharp spatial details present in high resolution facial
images. Because the best encoding values for the UV coor-
dinates are directly learned from data, a low 8-dimensional

encoding is sufficient to recover high frequencies. This is
in contrast to existing positional encoding schemes (e.g.
[11]) that achieve high details using sinusoidal functions,
but require increasing the dimensionality by 20×, with cor-
responding computational costs. Secondly, in contrast to
other works such as [24, 2, 27], we do not employ convo-
lutions in screen space, but instead apply a shallow MLP at
each contributing pixel. This has the advantage of avoiding
visual artifacts during motion and stereo inconsistencies, as
well as challenges in generalizing to changes in scale, rota-
tion and perspective, all of which are common in interactive
immersive 3D media.

Our other main insight is that the complexity of view-
dependent appearance in prior work stems mostly from in-
adequate geometric models of the face. Recent work into
implicit scene modeling (i.e. NeRF [11]) has demonstrated
that complex view dependent effects such as specularity can
be adequately modeled using a shallow network given good
estimates of the scene’s geometry. Inspired by these results,
our construction involves a variational geometry decoder
that is learned in a self-supervised manner, using image and
depth reconstruction as a supervisory signal. The resulting
mesh acquired from this decoder contains more accurate
geometry information, substantially simplifying the view-
dependent texture generation task, allowing for the use of
lightweight pixel-wise decoding.

Contributions: Our contributions are as follows:

• We propose Pixel Codec Avatar, a novel light weight
representation that decodes only the visible pixels on
the avatar’s face in the screen space towards enabling
high fidelity facial animation on compute-constrained
platforms such as mobile VR headsets.

• We make the two major technical innovations to
achieve high quality decoding with a small model:
learned positional encoding functions and fully con-
volutional dense mesh decoder trained in a weakly-
supervised fashion.

2. Related Works

2.1. Deep 3D Morphable Face Models

3D Morphable Face Models (3DMFM) are a generative
model for 3D human faces. The early works explore ways
to represent human facial deformations and appearance with
linear subspace representations. Blanz et al. [4] models
shape and texture of human faces as vector spaces and gen-
erates new faces and expressions as linear combinations of
the prototype vectors. Since then, blendshape models have
been extensively studied and applied in animation - [9] pro-
vides a good overview of such methods. To achieve highly
expressive models, a large number of blendshapes need to

be manually created and refined, e.g. the character of Gol-
lum in the movie Lord of the Rings had 946 blendshapes
taking over a year’s time to create [12].

In recent years, deep learning techniques, especially gen-
erative models such as Variational Auto-Encoder (VAE) [8]
and Generative Adversarial Networks (GAN) [7] have been
actively studied for creating non-linear 3D Morphable Face
Model analogues. Tewari et al. [23] propose a deep con-
volutional architecture for monocular face reconstruction,
learned from morphable models. Lombardi et al. [10] pro-
pose to jointly model face shape and appearance with a
VAE: the encoder encodes the facial mesh and texture into
latent code with fully connected layers and convolutional
layers respectively, and the decoder decodes back the facial
mesh and view direction conditioned texture with fully con-
nected layers and transposed convolutional layers respec-
tively. This model has been referred to as a Codec Avatar
by several subsequent works [26, 6, 15, 14] which animate
this model using visual and/or audio sensory data. Tran et
al. [25] also use an autoencoder to model geometry and tex-
ture, but train the model from unconstrained face images
using a rendering loss. Bagautdinov et al. [3] uses a com-
positional VAE to model details of different granularities
of facial geometry via multiple layers of hidden variables.
Ranjan et al. [13] directly applies mesh convolution to build
a mesh autoencoder while Zhou et al. [28] extends this idea
and jointly models texture and geometry with mesh convo-
lution, leading to a colored mesh decoder.

Generative Adversarial Network (GAN) is also explored.
Among the first works that use GAN models to build
3DMFM, Slossberg et al. [18] build a GAN model that gen-
erates realistic 2D texture image as well as coefficients of a
PCA based facial mesh model. Abrevaya et al. [1] maps
mesh to geometry image (i.e. equivalent to position map
in this paper) and builds a GAN model of the mesh that
has decoupled expression and identity codes, and the de-
coupling is achieved with auxilary expression and identity
classification tasks during training. Shamai et al. [16] also
maps mesh into geometry image and builds GAN models
using convolutional layers for both geometry and texture.
Cheng et al. [5] proposes GAN model of facial geometry
with mesh convolution.

The most distinctive feature of PiCA against the pre-
vious 3DMFM is that the pixel decoder decodes color at
each pixel given underlying geometry that is generated and
rasterized to screen space, hence adaptive resolution and
computational cost is achieved. In contrast, in all previ-
ous methods, texture is either modeled as a 2D texture map
[10, 25, 18] thus fixing the output resolution, or is modeled
at mesh vertices [28, 16], thus mesh density determines the
rendering resolution. Another advantage is that our method
explicitly models the correlation between geometry and tex-
ture in the per-object decoding step, which is lacking in

most previous 3D DFMM models.

2.2. Neural Rendering

Our method is also related to recent works on Neu-
ral Rendering and [22] provides a good survey of recent
progress in this direction. In particular, Thies et al. [24] pro-
pose deferred neural rendering with a neural texture, which
in spirit is close to our work: neural textures, i.e. a feature
output from a deep neural net, is rasterized to screen space
and another neural net, i.e. the neural renderer, computes
colors from it. However, their work does not target realtime
animation or dynamics, and the usage of a heavy U-Net for
rendering the final result is not possible in our setting. Aliev
et al. [2] proposes neural point-based graphics, in which
the geometry is represented as a point cloud. Each point is
associated with a deep feature, and a neural net computes
pixel values based on splatted feature points. While be-
ing very flexible in modeling various geometric structures,
such point-cloud based methods are not yet as efficient as
mesh-based representations for modeling dynamic faces,
for which the topology is known and fixed. Yariv et al.
[27] models the rendering equation with a neural network
that takes the viewing direction, 3D location and surface
normals as input. Mildenhall et al. [11] proposes a method
for synthesizing novel views of complex scenes and mod-
els the underlying volumetric scene with a MLP: the MLP
takes a positional encoded 3D coordinate and view direction
vector and produces pixel values. A closely related idea
is presented in [17], where a MLP with sinusoidal activa-
tion functions is used to map locations to colors. The spec-
tral properties of mapping smooth, low-dimensional input
spaces to high-frequency functions using sinusoidal encod-
ings was further studied in [21]. Our method is inspired by
these methods in using the Pixel Decoder to render image
pixels, but we make innovations to adapt these ideas for the
problem of creating high-quality 3DMFM with lightweight
computations, including a learned positional encodings and
a dense geometry decoder.

3. Pixel Codec Avatar
The Pixel Codec Avatar is a conditional variational auto-

encoder (VAE) where the latent code describes the state of
the face (e.g., facial expression) and the decoder produces
realistic face images (see Fig.2) conditioned on a viewing
direction. At runtime, latent codes can be produced using
a face tracker to estimate the facial expression (e.g., from
cameras mounted on a VR headset [10, 26, 6]), and the esti-
mated code can be used to decode and render realistic face
images. At training time, a variational encoder is used to
produce the latent codes using multiview training data, sim-
ilarly to Lombardi et al. [10] (see Fig. 3(a)). The decoder
distributes computation across two phases: the Per-Object
Decoding produces the dense mesh and a small map of view

Figure 2. A Pixel Codec Avatar renders realistic faces by decoding the color of each rasterized or raycast pixel using a shallow SIREN
[17] that takes as input a local expression code, z, the 3D coordinates in object space, x, and the positional encoded surface coordinates,
u, (Section 4). This particular combination allows the feature dimensions and network size to remain small and computationally efficient
while retaining image fidelity (Section 6). The local expression codes and geometry are decoded using fully convolutional architectures
from a global latent code and the viewing direction (Section 3), and require only small resolutions of 256×256. Learnable components (in
blue) are supervised on multiview images, depth, and tracked coarse mesh.

conditioned expression codes (Left of Fig.2), and the Per-
Pixel Decoding computes the on-screen facial pixel values
after determining visibility through rasterization or raycast-
ing. We use a pixel decoder f in this second step:

c = f(p), p = [z,x,u] (1)

where c is the decoded RGB color for a facial pixel, and
p is the feature vector for that pixel which is concatena-
tion of the local facial expression code z, the encoded face-
centric 3D coordinates x, and the encoded surface coordi-
nates (UV) u. We parameterize f as a small SIREN (see
Fig. 2) and we describe the encoding inputs in Section 4.
The right side of Fig.2 illustrates the Per-Pixel Decoding.
We outline the major components:

Encoder (see Fig. 3)(a)) encodes the average texture, com-
puted over unwrapped textures of all camera views, and a
tracked mesh into a latent code. Note this tracked mesh is
coarse, containing 5K vertices, and doesn’t contain vertices
for tongue and teeth. We only assume availability of such
coarse mesh for training because face tracking using dense
mesh over long sequences with explicit teeth and tongue
tracking is both challenging and time consuming. Requiring
only coarse mesh in training makes our method more prac-
tical. In Lombardi et al. [10], the 3D coordinates of mesh
vertices are encoded using a fully connected layer and fused
with texture encoder; in contrast, we first convert the mesh
into a position map using a UV unwrapping of the mesh.
Joint encoding of the geometry and texture is then applied,
and the final code is a grid of spatial codes, in our case an
8x8 grid of 4 dimensional codes.

Geometry Decoder takes the latent code as input and de-
codes a dense position map describing face-centric 3D co-

Figure 3. (a) The encoder. (b) The basic block in the geometry
decoder and expression decoder.

ordinates at each location. The architecture is fully convo-
lutional, and the basic building block is shown in Fig. 3(b).
We convert the position map to a dense mesh by sampling
at each vertex’s UV coordinates, and rasterize it to deter-
mine visible pixels. In our experiments, the position map is
256×256 and the extracted dense mesh has 65K vertices.

Expression Decoder uses the latent code and the viewing
direction to decode a low resolution, view-dependent map
of local codes. It consists of the decoder block in Fig. 3(b)
and the output map is 256×256 in our experiments.

Pixel Decoder decodes the color at each facial pixel given
p. Specifically, rasterization determines whether a screen
pixel corresponds to a visible mesh point, and, if so, the
triangle id and barycentric coordinates of the mesh point.
This allows us to compute the encoding inputs p from the
expression map, the vertex coordinates, and the UV coordi-
nates of the triangle. Inspired by the pixel-wise decoding of

images in Sitzmann et al. [17], the pixel decoder is designed
as a SIREN. However, we use a very lightweight network
by design, with 4 layers and a total of 307 parameters. We
utilize effective encoding in u to produce facial details with
such a light model, described in Section 4.

4. Positional Encodings for Pixel Decoders
While neural networks and MLPs in particular can repre-

sent functions of arbitrary complexity when given sufficient
capacity, lightweight MLPs tend to produce low-frequency
outputs when given smoothly varying inputs [17, 21, 11].
Thus, given only the smooth face-centric coordinates and
surface coordinates as input, a lightweight pixel decoder
tends to produce smooth output colors for neighboring pix-
els, leading to a loss of sharpness in the decoded image. In-
stead, we encode information about such spatial discontinu-
ities at the input of the Pixel Decoder using two strategies:
a low resolution local expression code z for dynamics, and
a learned non-parametric positional encoding u of surface
coordinates for detail. These complement the mesh coor-
dinate input x, which encodes face-centric xyz coordinates
using a two-layer SIREN.

Facial Expression Positional Encodings The global ex-
pression code, i.e. output of the Encoder, is decoded to a
low resolution map of local expression codes (bottom left of
Fig.2) and is further rasterized to the screen space (bottom
middle in Fig.2). This leads to a low dimensional encoding
z of local facial expression at each pixel position. We find it
crucial to use the local expression codes for decoding high
fidelity facial dynamics.

Facial Surface Positional Encodings The local expression
codes are too low resolution to capture high-frequency de-
tails. We therefore additionally provide the pixel decoder
with a positional encoding u of the facial surface coor-
dinates (u, v) at each pixel. While generic positional en-
codings such as sinusoids [11] may achieve highly detailed
reconstructions, they require a large number of frequency
levels and therefore high dimensionality, incurring compu-
tational cost. Instead, we dramatically reduce the dimen-
sionality of the input features by designing a learned non-
parametric positional encoding function,

u = [muv(u, v), mu(u), mv(v)] (2)

where muv jointly encodes both u and v; mu and mv en-
codes u and v respectively. We directly model muv , mv

and mu as non-parametric functions that retrieve a low-
dimensional encoding from a learned encoding map given
(u, v). Specifically, muv retrives a 4 dimensional vector
from a 1024×1024×4 encoding map at position (u, v) us-
ing bilinear interpolation; and, similarly, mu and mv re-
trieve 2-dimensional vectors from two separate 10000x1
maps respectively. All three maps are jointly learned with

the rest of the model. Intuitively, muv , mu, and mv are
piece-wise linear functions with 1K×1K breakpoints in 2D,
and 10K breakpoints in 1D respectively, and the break-
points’ values in the maps contain spatial discontinuity in-
formation on the face surface, learned directly from the
data. We use 1D encoding functions mu and mv in addi-
tion to the 2D encoding function muv as a cost-effective
way to model higher resolution while avoiding a quadratic
increase in model parameters. Empirically, we found that
the combination of the two generates better reconstructions
than using either one in isolation (Section 6.2).

5. Joint Learning with a Dense Mesh Decoder
The geometry used for pixel decoders needs to be ac-

curate and temporally corresponded to prevent the pixel
decoders from having to compensate for geometric mis-
alignments via complex view-dependent texture effects. To
achieve this, we learn the variational decoder of geometry
and expression jointly with the pixel decoder.

We use a set of multiview images, Ict , (i.e., image from
camera c at frame t), with calibrated intrinsics Kc and ex-
trinsics, Rc|tc. For a subset of frames we compute depth
maps Dc

t using multiview stereo (MVS). Additionally, we
use a vision-based face tracker to produce a coarse mesh
Mt represented as a position map to provide rough tempo-
ral correspondences. Note, however, that the input tracked
mesh is low resolution, lacking detail in difficult to track ar-
eas like the mouth and eyes (Fig. 4(c)). Intuitively, the more
accurate the geometry is, the easier and better the pixel de-
coder may decode the pixel’s color. Therefore, our geome-
try decoder generates a position map G of a dense mesh of
∼65K vertices, including the mouth interior, without direct
supervision from a tracked dense mesh (Fig. 4(d)).

For each training sample, we compute an average texture
Tavg
t by backprojecting the camera images onto the coarse

tracking mesh, similarly to [10]. The texture and the posi-
tion map computed from the coarse mesh are used as input
to the convolutional encoder, E(·), Fig. 3(a), to produce the
latent code Z=E(Tavg

t ,Mt) ∈ R8×8×4, where the chan-
nel dimension is last. Additionally, we compute the cam-
era viewing direction as RT

c tc normalized to unit length,
in face-centric coordinates. We tile this vector into an 8x8
grid V∈R8×8×3. The geometry and expression decoders in
Fig. 2 produce the geometry and local codes,

G = Dg(Z), E = De(Z,V), (3)

where G∈R256×256×3 is a position map, and
E∈R256×256×4 is a map of expression codes. The
position map is sampled at each vertex’s UV coordinates to
produce a mesh for rasterization. Rasterization assigns to a
pixel at screen position s its corresponding uv coordinates
and face-centric xyz coordinates, from which the encoding

(a) Camera

Image

(c) Input

Mesh

(d) Learned

Dense Mesh
(e) Render

(b) Input

Depth

� �� � ��
Figure 4. We supervise on (a) images, (b) depth, and (c) a coarse
tracking mesh of 7K vertices, from which we learn a corresponded,
dense face mesh (d) at a higher resolution of 65K vertices, even
in places where the coarse tracked mesh provides no information.
The final render (e) can represent difficult-to-track expressions,
e.g., involving the tongue.

p is derived as described in Sect. 4. The final pixel color is
decoded producing a rendered image, Îct(s)=f(p). At each
SGD step, we compute a loss

L = λiLI +λdLD+λnLN +λmLM +λsLS +λklLKL ,
(4)

where LI=||Ict−Îct ||2 measures image error, and
LD=||(Dc

t−D̂c
t) � WD||1 measures depth error, where

WD is a mask selecting regions where the depth error
is below a threshold of 10mm. We additionally use a
normal loss, LN=||(N(Dc

t)−N(D̂c
t))�WD||2 where

N(·) computes normals in screen space and encourages
sharper geometric details. The remaining terms are regu-
larizations: LM=||(S(G)−S(Mt))�WM ||2, where S(·)
is a function that samples the position map at the vertex
UVs, penalizes large deviations from the coarse tracking
mesh using a mask WM to avoid penalizing the mouth area
(where the tracked mesh is inaccurate). LS is a Laplacian
smoothness term [19] on the dense reconstructed mesh.
These terms prevent artifacts in the geometry stemming
from noise in the depth reconstructions, images with no
depth supervision, and noisy SGD steps. Implementation
details for the smoothness term and on how differentiable
rendering is used to optimize these losses can be found in
the supplemental materials. LKL is the Kullback-Leibler
divergence term of the variational encoder.

The above procedure recovers detailed geometry in the
decoded dense mesh that is not captured in the input tracked
meshes. Especially note-worthy is the automatic assign-
ment of vertices inside the mouth to the teeth and tongue,
as well as hair, see Fig. 6 for examples.

6. Experiments

Experiment Setting We evaluate our model on 6 identities
on 5 different viewing directions: front, upward, downward,
left and right (see example images in the supplemental ma-
terial). We capture multiview video data for each identity
using two face capture systems: Subject 1-4 are captured

Model Front Up Down Left Right

S1

Baseline 23.03 20.78 18.13 16.32 18.97
Full 21.39 19.71 17.52 15.52 18.00

No-UV 22.16 20.38 18.28 16.27 18.57
Coarse 21.64 20.04 17.84 16.02 18.69

S2

Baseline 19.53 20.90 16.62 15.44 13.52
Full 18.31 19.96 16.36 14.28 12.14

No-UV 19.34 20.52 17.61 15.40 13.29
Coarse 19.88 21.62 17.97 15.97 13.92

S3

Baseline 24.41 22.83 16.54 16.09 16.81
Full 23.11 22.22 16.04 15.29 15.64

No-UV 23.95 22.99 16.42 15.86 16.12
Coarse 23.94 23.04 16.44 15.81 16.79

S4

Baseline 7.26 6.03 7.34 7.15 7.76
Full 6.81 5.78 7.33 7.05 7.63

No-UV 7.20 6.13 7.40 7.32 8.05
Coarse 7.19 6.02 7.48 7.21 8.25

S5

Baseline 9.20 10.87 7.24 7.27 6.54
Full 8.74 10.37 7.16 7.09 6.53

No-UV 9.06 10.96 7.39 7.46 6.76
Coarse 9.09 10.64 7.49 7.49 6.56

S6

Baseline 6.86 6.53 5.85 5.66 5.29
Full 6.22 6.06 5.39 4.97 4.95

No-UV 6.86 6.72 5.85 5.90 5.62
Coarse 6.54 6.33 5.69 5.29 5.16

Table 1. MSE on pixel values of the rendered images against the
ground truth images on test set, evaluated on 5 views. Baseline is
the model in [10]; Full is our model PiCA (Fig.2), No-UV is PiCA
variant that is not using surface coordinates; Coarse is PiCA vari-
ant that decodes coarse mesh (7K vertices). Full PiCA model con-
sistently outperform others on all tested identities over all views.

Model Front Up Down Left Right

S1

Full 21.39 19.71 17.52 15.52 18.00
NERF-PE 21.85 20.10 17.86 15.90 18.61
UV-NoPE 21.45 19.93 17.70 15.98 18.53

2D-PE 21.56 19.85 17.97 15.98 18.80
1D-PE 21.40 19.67 17.60 15.70 18.29

S2

Full 18.31 19.96 16.36 14.28 12.14
NERF-PE 18.99 20.35 17.35 15.19 13.18
UV-NoPE 19.17 20.51 17.53 15.40 13.29

2D-PE 19.05 20.23 17.47 15.02 13.02
1D-PE 19.30 20.61 17.64 15.43 13.39

S6

Full 6.22 6.06 5.39 4.97 4.95
NERF-PE 6.41 6.16 5.60 5.29 5.14
UV-NoPE 6.59 6.53 5.68 5.33 5.24

2D-PE 6.28 6.00 5.48 5.26 5.09
1D-PE 6.58 6.39 5.68 5.26 5.21

Table 2. Ablation on usage of UV coordinates: encoding with
learned encoding maps (Full), directly using UV (UV-NoPE), en-
coding with sinusoidal functions [11] (NERF-PE), joint encoding
only (2D-PE) and separate encoding only (1D-PE)

with 40 cameras with 50mm focal length, while Subject 5
and 6 are captured with 56 cameras at 35mm focal length.
We use images of size 2048×1334 for training and testing.
The data of each identity consists of expressions, range of
facial motion, and reading sentences. We randomly select
expressions and sentence readings as testing data, leading to

18cm (2.7M) 65cm (0.9M) 120cm (0.2M)

DSP Step Baseline 44.76 ms 44.76 ms 44.76 ms
PiCA 2.16 ms 2.16 ms 2.16ms

GPU Step Baseline 2.67 ms 2.47 ms 1.94 ms
PiCA 8.70 ms 3.27 ms 2.70 ms

Table 3. Runtime performance on the Oculus Quest 2, measured at
3 different avatar distances (the numbers in parenthesis are avatar
pixels to render). Note that 60-120cm are typical interpersonal
distances [20], while 18cm would be considered intimate.

Figure 5. The MSE distribution over test expressions, sorted in de-
creasing order for the Full model: x-axis is expressions and y-axis
is MSE. We can see that the performance of our model is similar
or better than the baseline across expressions for all identities.

∼12K frames for training and ∼1K frames for testing per
identity. The total number of images is roughly the num-
ber of frames multiplied by the number of cameras. All
models are trained with batchsize 4, at learning rate 0.001,
for 400000 iterations. The weights for different loss terms
in Eq. 4 for λi, λd, λn, λm, λs and λkl are set to 2, 10,
1, 0.1, 1 and 0.001 respectively. We report Mean Squared
Error (MSE) between rendered image and original image
on rasterized pixels on testing data as the evaluation metric
for reconstruction quality. Note that the results of different
identities are not directly comparable due to different cam-
era settings and subject appearance such as facial skin tone
and hair style.

6.1. Overall Performance

The baseline model has 19.08M parameters and PiCA
has 5.47M. In particular, the pixel decoder of PiCA only
has 307 parameters. When rendering 5 avatars (evenly
spaced in a line, 25cm between neighboring pair) in the
same scene on a Oculus Quest 2, PiCA runs at ∼50 FPS
on average, showing the possibility of multi-way telep-
resence call. In Table 1 and Fig. 5 we report quantita-
tive comparisons which show PiCA consistently achieves
better reconstruction across all tested identities, expres-
sions and views, despite a 3.5× reduction in model size
and much faster computation (Table 3). Specifically, Ta-
ble 1 compares the reconstruction quality over 5 views, av-
eraged over all testing expressions. Fig. 5 plots MSE values
of Full and Baseline over all testing expressions (sorted in
decreasing order of Full’s results). Qualitative examples are

shown in Fig. 6 and we invite the readers to see more high
resolution results in supplemental materials. Example re-
sult frames for both our Full model (left) and the baseline
model (right) are shown, and we also show local regions at
higher resolution for closer inspection. Overall, both mod-
els produce very realistic looking faces. Our model pro-
duces sharper results in many facial regions, especially the
selected regions showing teeth, tongue, and hair.

6.2. Ablation Studies

UV Positional Encoding Many details of the facial surface
is represented as discontinuities in color values in neigh-
boring pixels, e.g. a skin pixel adjacent to a hair pixel.
We model such discontinuities with learned encoding maps
such that the encoding function is piece-wise linear with the
map entries as the learned breakpoint values (Section 4). In
this section, we study the benefit of this proposed method.
We train a PiCA variant No-UV that does not use UV co-
ordinates for decoding pixel values. In Table 1 one can see
that Full PiCA model consistently outperforms the No-UV
variant, showing clear advantage of using encoded UV co-
ordinates. We Further compare our approach with directly
using UV without encoding, and encoding UV with sinu-
soidal functions [11]. We train two additional PiCA variants
UV-NoPE that uses UV without any encoding, and NERF-
PE that encodes UV using the encoding function of [11] (a
40-dimensions code compared to 8-dimensions for Eq. (2)).
The comparison results are shown in Table 2. The Full
model consistently outperforms both variants over all tested
views and subjects, proving the effectiveness of encoding
UV with learned encoding maps. We also ablate on our en-
coding scheme: we train a PiCA variant 2D-PE that only
performs 2D joint encoding (muv in Eq. (2)) and 1D-PE
that only performs 1D separate encodings (mu,mv). The
comparison results are shown in Table 2. The Full PiCA
model combining both joint encoding and 1D encodings
outperforms these two variants, showing that the two en-
coding methods are complementary and by combining both
we can achieve consistent performance improvement.
Dense Mesh Decoder In Fig. 6, we show depth images
alongside the rendered images. The dense mesh gener-
ated by our model contains more geometry information and
the corresponding rendered images are sharper: in partic-
ular, one may inspect the teeth, tongue and hair regions.
In Fig. 7 we compare novel viewpoint rendering results of
Full and Baseline at a viewing position that is very close
to the mouth: there are no such views in our training set.
While the baseline results look like a pasted plane inside
the mouth, ours look more realistic thanks to the more ac-
curate geometry in the generated dense mesh e.g. at teeth,
tongue and lips. For quantitative study, we train a PiCA
model variant Coarse which decodes coarse meshes of the
same topology used in [10]. In Table 1, we evaluate it on

Figure 6. Example rendered faces comparing our Full model (left) with the baseline [10] (right). For each example, we show the rendered
full face and the depth image, and close looks for two facial regions. The visual qualities of rendered images are good for both models,
while our model produce sharper details at teeth, tongue and hair. The depth images show more geometry details generated by our model.

Figure 7. Rendering at a novel viewing position, much closer to the
mouth than any training views. Two example frames are shown
with the rendered depth as well: left column is PiCA Full, and
right is the Baseline model [10], best viewed when magnified.

the test set, and the results show it being consistently infe-
rior to the Full PiCA model, illustrating the benefit of the
dense geometry decoder in the Pixel Codec Avatar.

6.3. Runtime Performance on Mobile SoC

We present runtime performance on a Oculus Quest 2
VR headset 1 in Table 3. We measure the time spent on
both the DSP (Digital-Signal-Processing unit) and the GPU
steps - note the two steps are pipelined at runtime. There is
20× reduction for DSP time from Baseline to PiCA. Over-
all, Baseline runs at∼22 FPS, while PiCA hits the Quest 2’s

1The baseline model and the geometry and expression decoders of
PiCA are 8-bit quantized to execute on the DSP, with small quality drops.

maximum framerate at 90 FPS. While the baseline model
always decodes entire texture map of the avatar head at fixed
resolution, PiCA decodes only visible regions with resolu-
tion adaptive to the distance of the avatar. Further more,
PiCA allows a pipelined decoding process balanced in com-
putation load distribution on a mobile SoC: while the per-
object decoding needs to be done on the DSP for the convo-
lution operations, the lightweight pixel decoder can be im-
plemented in the highly optimized fragment shader so that
the per-pixel decoding can be done on the GPU. In con-
trast, for the baseline model the decoding computation of
the mesh and the texture needs to be done entirely on the
DSP and the GPU only performs the final rendering given
decoded texture and mesh.

7. Conclusion and Future Work

We present the Pixel Codec Avatar as a high quality
lightweight deep deformable face model, as a potential tech-
nology for enabling multi-person telecommunication in vir-
tual reality on a mobile VR headset. This work only focuses
on the decoder and we can follow the method in Wei et al.
[26] to build the encoder for the telepresence communica-
tion system. Achieving high fidelity low latency telepres-
ence communication by improving the encoder and decoder
models is the main direction for future work.

A. Appendices

A.1. Encoder and Decoder Architectures

Encoder The encoder consists of three major components:
the tex-head, geom-head and the tex-geom-encoder. The
tex-head has two blocks of conv+leakyrelu, where the conv
for both layers have kernel size 4, stride 2. The first one
has 512 output channels, and the second has 256 chan-
nels. The geom-head has one block of conv+leakyrelu
where the conv has kernel size 1, stride 1 and output chan-
nel number 256. The output of tex-head and geom-head are
both 256x256x256, and are concatenated and passed to tex-
geom-encoder, which has 5 blocks of conv+leakyrelu. The
kernel size and stride are all 4 and 2 for all conv, while the
output channel numbers are 128, 64, 32, 16 and 8 respec-
tively. The output of tex-geom-encoder is further passed to
two separate 1x1 conv layers to produce mean and variance.
leakyrelu always having leaky threshold set to 0.2.

Per-Object Decoder This decoder decodes the local ex-
pression code and the dense mesh from the latent code
which is of dimension 8x8x4. It consists the geometry de-
coder, containing 5 blocks of the building block showing
in Fig. 3b in the main text, with output channel numbers
32, 16, 16, 8, 3 respectively. The output size is 256x256x3,
from which the dense mesh can be retrieved using the uv
coordinates of the mesh vertices. The expression decoder
takes the concatenated latent code and view direction as in-
put, which is of size 8x8x7, and it contains 5 building blocks
as showing in Fig. 3b as well, with output channel numbers
32, 16, 16, 8, 4 respectively. Note in both cases the first
conv in the block in Fig. 3b has a per-channel per-spatial
location bias parameter, following [10].

Pixel Decoder The entries in the 2D and 1D encoding maps
in the pixel decoder are initialized to have uniform dis-
tribution in the range [-1, 1]. The 3D coordinate input
(x,y,z) are first converted to a 4-dimensional vector via a
two layer SIREN with output channel numbers 4 and 4 re-
spectively, and then it is concatenated with the encoded uv
(8-dimension) and the local expression code to form a 16
dimensional input to the final SIREN. The final SIREN has
4 layers with output channel numbers 8, 8, 8, 3 respectively
to compute the RGB color at a pixel.

A.2. Geometric Smoothness

To recap, G ∈ Rw×w×3, with w=256, is a decoded po-
sition map describing the geometry, and S(·) : Rw×w×3 →
RNV ×3 is a function that bilinearly interpolates the position
map at the vertex uv locations to produce face-centric xyz
locations for the set of NV mesh vertices, where NV is the
number of vertices in a fixed mesh topology. Our geometric
smoothness regularization term LS combines two common

gradient-based smoothness energies,

LS = λg [||Dx(G)||2 + ||Dy(G)||2] (5)
+ λl||WLL(S(G)−Vµ)||2, (6)

where we identify:

Gradient Smoothness. Linear operators D∗ compute the
x and y derivatives of the position map using finite differ-
ences. These terms prevent large changes across neighbor-
ing texels in the position map itself.
Mesh Laplacian. The linear operator L ∈ RNV ×NV

represents the mesh Laplacian discretized using cotangent
weights [19] computed on the coarse neutral input mesh.
Here, Vµ ∈ RNV ×3 is a mean face mesh used as a reg-
ularization target. The diagonal matrix WL ∈ RNV ×NV

weights the regularization on hair and mouth vertices at 1.25
and the remaining vertices at 0.25. This regularization pre-
vents the differential mesh coordinates (as computed by the
mesh Laplacian) from deviating excessively from the regu-
larization target.

The regularization target Vµ is initialized with the coarse
neutral mesh geometry. However, because the coarse ge-
ometry lacks detail in the mouth, hair, and eye regions, us-
ing it as a regularization target tends to oversmooth these
areas. Therefore, we update the target on the fly during
training using exponential smoothing, obtaining a slowly-
changing, moving average estimate of the mean face geom-
etry at dense resolutions. At every SGD iteration, we update
Vµ as follows:

Vµ ← (1− λµ)Vµ + λµ
1

B

B∑
b=1

S(Gb), (7)

where λµ = 1e−4 and b ∈ {1. . .B} iterates over samples
in the SGD batch. No SGD gradients are propagated by the
update in Eq. (7).

In our experiments, we set λl = 0.1 and λg = 1.

A.3. Differentiable Rasterizer
We use a differentiable rasterizer for computing the

screen space inputs given dense mesh and local expression
code map, as illustrated in Fig.2 in the main text. Note that
the geometry information affects the final decoded image
via two gradient paths: one is in the rasterization, and the
other is as input to the pixel decoder. We empirically found
that allowing gradient from the image loss to pass to the
geometry decoder from both paths leads to unstable train-
ing and geometry artifacts, so we disable the second gradi-
ent path mentioned above to achieve stable training. Intu-
itively, this is to enforce that the geometry decoder should
focus on producing correct facial shape, instead of coordi-
nating with the pixel decoder to produce correct color val-
ues.

References
[1] Victoria Fernandez Abrevaya, Adnane Boukhayma, Stefanie

Wuhrer, and Edmond Boyer. A decoupled 3d facial shape
model by adversarial training. October 2019.

[2] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry
Ulyanov, and Victor Lempitsky. Neural point-based graph-
ics. arXiv preprint arXiv:1906.08240, 2019.

[3] Timur Bagautdinov, Chenglei Wu, Jason Saragih, Pascal
Fua, and Yaser Sheikh. Modeling facial geometry using com-
positional vaes. June 2018.

[4] Volker Blanz and Thomas Vetter. A morphable model for the
synthesis of 3d faces. page 187–194, 1999.

[5] Shiyang Cheng, Michael Bronstein, Yuxiang Zhou, Irene
Kotsia, Maja Pantic, and Stefanos Zafeiriou. Meshgan: Non-
linear 3d morphable models of faces, 2019.

[6] Hang Chu, Shugao Ma, Fernando De la Torre, Sanjia Fi-
dler, and Yaser Sheikh. Expressive telepresence via modular
codec avatars. 2020.

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. 27:2672–2680,
2014.

[8] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. 2014.

[9] J. P. Lewis, K. Anjyo, T. Rhee, M. Zhang, F. Pighin, and Zhi-
gang Deng. Practice and theory of blendshape facial models.
2014.

[10] Stephen Lombardi, Jason Saragih, Tomas Simon, and Yaser
Sheikh. Deep appearance models for face rendering. TOG,
37(4), 2018.

[11] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. 2020.

[12] Bay Raitt. The making of gollum. Presentation at U. South-
ern California Institute for Creative Technologies’s Frontiers
of Facial Animation Workshop, August 2004.

[13] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and
Michael J. Black. Generating 3d faces using convolutional
mesh autoencoders. September 2018.

[14] Alexander Richard, Colin Lea, Shugao Ma, Juergen Gall,
Fernando de la Torre, and Yaser Sheikh. Audio- and gaze-
driven facial animation of codec avatars. 2021.

[15] Gabriel Schwartz, Shih-En Wei, Te-Li Wang, Stephen Lom-
bardi, Tomas Simon, Jason Saragih, and Yaser Sheikh. The
eyes have it: An integrated eye and face model for photore-
alistic facial animation. ACM Trans. Graph., 39(4), 2020.

[16] Gil Shamai, Ron Slossberg, and Ron Kimmel. Synthesizing
facial photometries and corresponding geometries using gen-
erative adversarial networks. ACM Trans. Multimedia Com-
put. Commun. Appl., 15(3s), 2019.

[17] Vincent Sitzmann, Julien N.P. Martel, Alexander W.
Bergman, David B. Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation func-
tions. 2020.

[18] Ron Slossberg, Gil Shamai, and Ron Kimmel. High quality
facial surface and texture synthesis via generative adversarial
networks. September 2018.

[19] Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa,
Christian Rössl, and Hans-Peter Seidel. Laplacian surface
editing. pages 179–188, 2004.

[20] Agnieszka Sorokowska, Piotr Sorokowski, Peter Hilpert,
Katarzyna Cantarero, Tomasz Frackowiak, Khodabakhsh
Ahmadi, Ahmad M. Alghraibeh, Richmond Aryeetey,
Anna Bertoni, Karim Bettache, Sheyla Blumen, Marta
Błażejewska, Tiago Bortolini, Marina Butovskaya, Fe-
lipe Nalon Castro, Hakan Cetinkaya, Diana Cunha, Daniel
David, Oana A. David, Fahd A. Dileym, Alejandra del Car-
men Domı́nguez Espinosa, Silvia Donato, Daria Dronova,
Seda Dural, Jitka Fialová, Maryanne Fisher, Evrim Gul-
betekin, Aslıhan Hamamcıoğlu Akkaya, Ivana Hromatko,
Raffaella Iafrate, Mariana Iesyp, Bawo James, Jelena Jara-
novic, Feng Jiang, Charles Obadiah Kimamo, Grete Kjelvik,
Fırat Koç, Amos Laar, Fı́via de Araújo Lopes, Guillermo
Macbeth, Nicole M. Marcano, Rocio Martinez, Norbert
Mesko, Natalya Molodovskaya, Khadijeh Moradi, Zahrasa-
dat Motahari, Alexandra Mühlhauser, Jean Carlos Nativi-
dade, Joseph Ntayi, Elisabeth Oberzaucher, Oluyinka Oje-
dokun, Mohd Sofian Bin Omar-Fauzee, Ike E. Onyishi,
Anna Paluszak, Alda Portugal, Eugenia Razumiejczyk,
Anu Realo, Ana Paula Relvas, Maria Rivas, Muhammad
Rizwan, Svjetlana Salkičević, Ivan Sarmány-Schuller, Su-
sanne Schmehl, Oksana Senyk, Charlotte Sinding, Efty-
chia Stamkou, Stanislava Stoyanova, Denisa Šukolová, Nina
Sutresna, Meri Tadinac, Andero Teras, Edna Lúcia Tinoco
Ponciano, Ritu Tripathi, Nachiketa Tripathi, Mamta Tripathi,
Olja Uhryn, Maria Emı́lia Yamamoto, Gyesook Yoo, and
Jr. John D. Pierce. Preferred interpersonal distances: A
global comparison. Journal of Cross-Cultural Psychology,
48(4):577–592, 2017.

[21] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-
tures let networks learn high frequency functions in low di-
mensional domains. NeurIPS, 2020.

[22] Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann,
Stephen Lombardi, Kalyan Sunkavalli, Ricardo Martin-
Brualla, Tomas Simon, Jason Saragih, Matthias Nießner,
Rohit Pandey, Sean Fanello, Gordon Wetzstein, Jun-Yan
Zhu, Christian Theobalt, Maneesh Agrawala, Eli Shechtman,
Dan B Goldman, and Michael Zollhöfer. State of the art on
neural rendering, 2020.

[23] Ayush Tewari, Michael Zollöfer, Hyeongwoo Kim, Pablo
Garrido, Florian Bernard, Patrick Perez, and Theobalt Chris-
tian. MoFA: Model-based Deep Convolutional Face Autoen-
coder for Unsupervised Monocular Reconstruction. 2017.

[24] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-
ferred neural rendering: Image synthesis using neural tex-
tures. ACM Trans. Graph., 38(4), 2019.

[25] Luan Tran and Xiaoming Liu. Nonlinear 3d face morphable
model. June 2018.

[26] Shih-En Wei, Jason Saragih, Tomas Simon, Adam W.
Harley, Stephen Lombardi, Michal Perdoch, Alexander Hy-

pes, Dawei Wang, Hernan Badino, and Yaser Sheikh. Vr fa-
cial animation via multiview image translation. TOG, 38(4),
2019.

[27] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Ronen Basri, and Yaron Lipman. Multiview neu-
ral surface reconstruction by disentangling geometry and ap-
pearance. 2020.

[28] Yuxiang Zhou, Jiankang Deng, Irene Kotsia, and Stefanos
Zafeiriou. Dense 3d face decoding over 2500fps: Joint tex-
ture & shape convolutional mesh decoders. June 2019.

