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Abstract: Continuous in-home monitoring of Parkinson’s Disease (PD) symptoms might allow
improvements in assessment of disease progression and treatment effects. As a first step towards
this goal, we evaluate the feasibility of a wrist-worn wearable accelerometer system to detect PD
tremor in the wild (uncontrolled scenarios). We evaluate the performance of several feature sets and
classification algorithms for robust PD tremor detection in laboratory and wild settings. We report
results for both laboratory data with accurate labels and wild data with weak labels. The best
performance was obtained using a combination of a pre-processing module to extract information
from the tremor spectrum (based on non-negative factorization) and a deep neural network for
learning relevant features and detecting tremor segments. We show how the proposed method is
able to predict patient self-report measures, and we propose a new metric for monitoring PD tremor
(i.e., percentage of tremor over long periods of time), which may be easier to estimate the start and
end time points of each tremor event while still providing clinically useful information.

Keywords: in-the-wild supervision; Parkinson’s disease; tremor detection; wearable accelerometers

1. Introduction

Parkinson’s Disease (PD) is a chronic neurodegenerative disorder that can cause a variety of motor
symptoms [1]. While these symptoms can be controlled through medication, the long-term use of
these drugs can cause side effects, such as dyskinesia (involuntary muscle movements). To limit these
side effects, physicians aim to prescribe the minimum dosage necessary to manage the symptoms and
periodically adjust the dosage as the disease progresses. Physicians typically measure disease severity
by using the Unified Parkinson’s Disease Rating Scale (UPDRS) [2], but the UPDRS is inherently
subjective and is only conducted every three to six months, when patients meet with their physician.
Patient diaries allow patients to record information about their PD state between clinic visits [3].
However, frequently recording detailed entries is burdensome, and symptoms can be difficult to
recall accurately.

A better way to track PD symptoms would be a fully autonomous system capable of continuously
monitoring and analyzing motions during everyday life (Figure 1). With no need for input from the
patient, such a system could have high temporal resolution and low subjectivity. However, many

Sensors 2020, 20, 5817; doi:10.3390/s20205817 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9659-5464
https://orcid.org/0000-0002-2193-5847
https://orcid.org/0000-0001-6437-9003
http://dx.doi.org/10.3390/s20205817
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/20/5817?type=check_update&version=3


Sensors 2020, 20, 5817 2 of 23

challenges remain in developing algorithms for automated PD symptom detection. For example, it is
difficult to distinguish PD symptoms, such as tremor, from normal activities of daily living, such
as brushing teeth. Furthermore, there is high variability between patients, both in their symptom
manifestations and daily activities. Robust feature sets and machine learning (ML) algorithms should
be able to perform with high accuracy despite this variability.
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Figure 1. Automated tremor detection with wearable sensors during everyday activities.

Additional challenges arise when aiming to maintain high symptom detection performance
in natural living environments (i.e., in the wild). Labels of symptom events are typically obtained
by referencing video data in laboratory data collections. In wild settings, however, video data are
generally not available, meaning that accurate labels (exact start and end of each symptom) cannot be
obtained. At best, weak labels (presence, absence, or the approximate amount of a symptom within a
time segment) can be provided by participants of the data collections. Weakly supervised algorithms,
such as multiple-instance learning, explicitly account for weak labels, and tend to perform better
than standard, fully supervised learning algorithms in these scenarios [4]. In summary, collecting
data, labeling them, and learning from such data are all more challenging in wild environments.
However, such work is necessary because, as established by [5], the performance of algorithms trained
on laboratory data does not necessarily translate to wild data.

In this work, we analyze several feature sets and algorithms for PD tremor detection in both
laboratory and wild conditions. In particular, we compare a standard baseline feature set and four
new feature extraction methods, some inspired by traditional speech processing techniques and
others learned automatically through Convolutional Neural Networks (CNNs). Each feature set is
followed with either a Random Forest (RF) or Multi-Layer Perceptron (MLP) classifier to distinguish
the various performance contributions of features versus algorithms. We compare the performance of
our best feature set and algorithm combination with the three most relevant systems described in the
literature: [4,6,7]. We also compare our method with [4] (best among [6,7]) in the ability to reproduce
patient self-reports, the current standard for in-home symptom monitoring. Finally, we propose a new
metric for monitoring PD tremor (percentage of tremor time measured over longer periods), which is
easier to detect than specific tremor events. This new metric provides information about the symptom
prevalence, and it could be used by the physician to adjust the dosage of the medication. Note that
this work focuses on symptom detection, as opposed to severity estimation, to reduce the scope of
the problem of learning in the wild. Additionally, of the many PD symptoms, PD tremor is chosen
because motor symptoms are easier to detect with wearable devices, and tremor is the most prevalent
PD motor symptom [8].

2. Related Work

Many researchers have explored the use of machine learning to automatically detect PD motor
symptoms with wearable sensor[9–11], considering several motor symptoms at the same time in
several cases [12]. Despite this strong interest, there are no commercial systems that provide a good
user experience or sufficient accuracy to complement doctor assessments. Several challenges remain,
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such as overall accuracy in daily life, clinically meaningful metrics, and detection of symptoms in
a new subject for whom there are no training data. This section reviews related work on different
feature sets, classification algorithms, and in-the-wild monitoring systems in general.

2.1. Feature Sets

A large number of feature sets have been proposed for PD detection. The vast majority rely on
time domain features (such as the mean, range, or cross-correlation) [13,14], frequency domain features
(such as the dominant frequency, energy content in a particular band, or signal entropy) [15,16], or a
combination of the two [17–20]. Some authors have shown that features that are traditionally used for
speech processing (e.g., Mel frequency, Cepstral coefficients) are also effective for classifying human
motion from accelerometer data [21,22]. In this work, we evaluate whether these speech processing
features can improve PD tremor detection accuracy. Furthermore, given the strong performance of
CNNs in a variety of applications, we also evaluate the performance of features learned by a CNN for
tremor detection.

2.2. Classification Algorithms

Researchers have experimented with a wide variety of standard ML algorithms, such as decision
trees [14], support vector machines (SVMs) [17], random forests (RFs) [23], hidden Markov models [15],
and dynamic neural networks [13]. Some studies compared several of these algorithms [24].
More recently, researchers have explored the efficacy of deep learning techniques for automated
UPDRS testing [25] or bradykinesia detection [26,27]. In this work, we evaluate the performance of a
full CNN architecture for tremor detection, as well as that of a Multi-Layer Perceptron (MLP) when
hand-crafted features are used.

2.3. In-the-Wild Monitoring Systems

There is substantial literature on systems to explore PD symptom detection. However, the
majority of related work evaluates and compares algorithm performance on data collected and labeled
in laboratory settings. A smaller body of work specifically addresses symptom detection in the wild.

Zhan et al. [28] presented a smartphone-based monitoring platform that measures PD symptoms
actively (i.e., data recorded during specific tests at certain times during the day) and passively
(i.e., data recorded continuously in the background). The target of this work was not to monitor
PD symptoms, but to discriminate treatment from baseline in order to monitor medication response
remotely. Only the data recorded during specific tests were used for this analysis. Labels were
generated by clinic visits at home on a weekly basis for three months.

Lipsmeier et al. [29] used a smartphone app to collect data from Parkinson participants and
healthy controls during active motor tests (performed six times daily). The smartphone was also used
during the day (passive monitoring) to compute the time spent walking and sit-to-stand transitions.
The goal was to obtain digital biomarkers calculating the correlation between some features and the
MDS-UPDRS (Movement Disorders Society UPDRS) values obtained every two weeks.

Both [28] and [29] required participants to perform specific activities multiple times per day;
symptom severity (MDS-UPDRS value) was then estimated from data collected during these activities.
However, performing these tests several times per day can be burdensome for patients, leading to
issues in compliance. PD monitoring through passive, continuous monitoring in the wild where the
system automatically detects symptoms could have a better acceptance. However, neither [28] nor [29]
collected labels of symptom occurrences, making it difficult to use such data to train an algorithm for
continuous monitoring. Indeed, in both studies, passive data were only used to separate Parkinson’s
patients from healthy controls. This paper focuses on continuous PD tremor detection under natural
living conditions, without requiring users to behave in any specific way. Algorithms for this application
need labeled data collected in the wild for training and validation.
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KinesiaTM, developed by Great Lakes NeuroTechnologies Inc., is a commercial system for
continuous tremor monitoring. However, detailed results on in-home PD tremor detection have
not been published. In an in-home study for essential tremor detection [30], the algorithm output was
correlated with their automated tremor assessment test [31], but not compared to a human-labeled
ground truth. More recently, the group has published results for continuous assessment of levadopa’s
response by monitoring PD symptoms in laboratory settings [6].

Researchers at the University of Newcastle have collected data in laboratory and home
settings [7,32]. Data from all patients were mixed together and then split into training and testing sets
using either seven-fold or leave-one-day-out cross-validation. Note that including data from a test
patient during training does not provide person-independent results.

Das et al. [19] is one of the first to use weakly supervised learning algorithms on weakly labeled
in-home data. However, the in-home dataset was very small, with only two PD patients, and
hence did not allow for leave-one-subject-out cross-validation (LOSO). This work was followed
by Zhang et al. [4], where multiple weakly supervised learning algorithms were compared on a
larger dataset collected in a laboratory setting under LOSO. The authors also proposed a “stratified”
modification to multiple-instance learning, which demonstrated higher performance than standard
multiple-instance learning in the context of PD tremor detection. In [5], the authors compared the
performance of several algorithms on laboratory and wild data. The results indicated that performance
can differ significantly between laboratory and wild data, highlighting the importance of training and
validating on wild data for applications where algorithms are expected to perform in the wild.

Heijmans et al. [33] include a study for tremor detection using wearable sensors during daily life.
The proposed method compared the information collected from subjects’ questionnaires (weak labels)
using an Experience Sampling Method (ESM) app named PsyMateTM, with objective metrics computed
from inertial signals: logarithmic signal energy between 3.5 and 7.5 Hz, root mean square of the
low-pass-filtered (3 Hz) time series, dominant frequency and dominant energy ratio, amplitude range
of the raw time series, and maximum normalized cross-correlation and corresponding temporal offset
between all accelerometer and gyroscope channels. An Area Under the Curve (AUC) value of 73%
was reported.

Papadopoulos et al. [34,35] proposed a method for tremor detection using in-the-wild recordings
from a smartphone. This method included a multiple-instance learning approach for training a deep
neural network. This study obtained very good detection results, but the system was evaluated
considering postural tremor (the subject was holding the smartphone during a phone call). Other
types of tremors, like kinetic tremor, are more difficult to detect because tremors are mixed with
subjects’ movements.

In this work, we propose several new algorithms and feature sets, comparing them to previous
literature on both laboratory and wild data.

3. Methods

This section describes the gathered dataset, signal pre-processing steps, six proposed feature sets,
and our tremor detection algorithms. We consider both fully labeled and weakly supervised data.
Figure 2 shows a diagram of the different feature sets and classification algorithms that are evaluated
in the paper.
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Figure 2. Diagram of the computation framework.

3.1. Data Collection

Our dataset includes laboratory and in-the-wild three-axis (X, Y and Z) recordings from Axivity
AX3 accelerometers positioned on both wrists with a sampling rate of 100 Hz. Both data collections
were approved by the Carnegie Mellon University Institutional Review Board in accordance with the
Helsinki Declaration.

3.1.1. Laboratory Recordings (LAB)

We collected accelerometer data from 12 participants, aged 62–85 years, who were diagnosed
2–5 years prior with PD. Each participant performed various activities of daily living, such as making
a sandwich, writing, typing, and playing chess and cards, and completed several motor tasks taken
from Part III of the UPDRS [2]. We recorded frontal, left-side, and right-side views of each session to
minimize occlusion of both hands. Ground-truth labels for the presence or absence of tremor in the
accelerometer signals were obtained by manually segmenting periods of time with and without tremor
in both arms independently. This labeling process was carried out by referencing the video recordings.
The same person segmented all the data from all participants to ensure label consistency. This person
was specifically trained to segment tremor periods using the information from video cameras.
These ground-truth labels were used to train the machine learning algorithms. The participants
were selected because they reported tremor (although some did not show tremor during the session).
Table 1 shows the percentage of tremor time during laboratory sessions. Participants 1 and 6 did not
exhibit any tremor during the data collection and were thus excluded from this study. This dataset is
referred to as LAB data. Additionally, the motor tasks were evaluated by a medical expert according to
the UPDRS (see Table 2). This table includes evaluation of rest tremor (when the muscle is relaxed),
postural tremor (when holding a pose), kinetic tremor (when performing some actions or movements),
and specific movements like finger tapping, hand movements, and pronation/supination movements.
Note that, as this paper focuses on detection and not severity estimation, the UPDRS scores were not
used for training. However, they are provided to show the presence of other symptoms in order to
give a better sense of the classification challenge for this specific dataset. Furthermore, they will be
used to discuss the results in the experimental validation.
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Table 1. Laboratory session duration (s) and percentage of tremor time for left and right hands.

Participant Laboratory Session Duration (s) Left Hand Right Hand

2 4495 80% 41%
3 3351 59% 74%
4 3314 57% 37%
5 5284 39% 44%
7 5824 27% 19%
8 5478 9% 38%
9 5766 22% 8%

10 5070 8% 12%
11 3090 69% 26%
12 4480 2% 1%

Table 2. Unified Parkinson’s Disease Rating Scale (UPDRS) evaluations (provided by a medical expert).

Participant #

MDS-UPDRS Task

Resting Postural Kinetic Finger Hand Pron.
Tremor Tremor Tremor Tapping Mov Sup.
(3.17) (3.15) (3.16) (3.4) (3.5) (3.6)

L R L R L R L R L R L R

2 2 2 2 1 1 1 1 1 1 0 3 0
3 1 2 1 2 1 2 1 3 1 2 2 2
4 3 3 2 3 1 1 3 1 3 1 4 3
5 0 0 2 2 2 2 2 1 2 1 2 2
7 0 0 1 1 1 1 1 3 2 3 3 2
8 1 1 0 1 1 1 1 2 1 2 1 2
9 0 0 0 0 0 0 3 2 - 2 - 4

10 0 2 0 0 1 0 2 3 1 1 2 1
11 3 0 3 0 1 0 3 1 1 0 1 0
12 1 1 0 0 0 0 3 2 3 2 2 2

Note: The arm of participant 9 was rigid. Therefore, the hand movement and pronation–supination tasks
were skipped.

3.1.2. In-the-Wild Recordings (WILD)

Participants 2, 4, 5, 10, 11, and 12 agreed to wear two wrist-worn accelerometers throughout
the day for four weeks. Labels of tremors were provided by the participants. In order to promote
frequent labeling throughout the day, participants submitted labels through a cell phone app, which
was designed to prevent participants from submitting many entries within a short time span or
backdating entries. The app prompted participants to submit an entry roughly every hour, and
participants were paid per entry. To improve label accuracy, participants were only asked to
record the amount of tremor they experienced within the five minutes prior to submitting the entry.
Following the recommendation given in previous work [4], we provided three label options (Almost
none, Half the time, and Almost always). We name them weak labels because they have information
about the presence/absence of tremor in a long segment of times but the exact temporal location of the
tremor is unknown. All participants made regular entries during the four weeks, submitting roughly
300 entries each. This dataset with the weak labels is referred to as WILD data.

3.2. Preprocessing

This section describes the pre-processing steps (i.e., downsampling, filtering, and windowing)
that are common to all feature sets. For all feature sets, we downsampled the raw accelerometer signals
to 50 Hz in the time domain. Information loss was negligible because the energy in the frequency
spectrum above 25 Hz was less than 1% of the total energy. Furthermore, the energy of normal human
movement is between 0 and 3 Hz, and the energy of tremor primarily falls between 3 and 9 Hz [36].
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To remove the influence of gravity, we filtered the data with a high-pass third-order Butterworth filter
at 0.3 Hz. Afterwards, the sample sequence was divided into three-second windows (150 samples
per window) with a two-second overlap. A window was labeled as a tremor if more than 50% of it
overlapped with a tremor event.

Non-Negative Tremor Factorization

For some feature sets, in order to enhance the tremor signal, we developed a method to extract
information of the tremor spectrum from the total spectrum before feature extraction. This method
is performed in an unsupervised manner, without using any labels. This method was inspired by
the voice extraction method proposed by Durrieu et al. [37], in the context of speech processing,
which uses non-negative matrix factorization (NMF).

We assume that the amplitude spectrum of every window STotal can be estimated by ŜTotal, which is
decomposed into a tremor spectrum STremor and a non-tremor spectrum SNon-tremor:

ŜTotal = STremor + SNon-tremor. (1)

Similarly to Durrieu et al. [37], we decompose the tremor spectrum into an excitation spectrum
SSource modulated (i.e., multiplied) by a spectral shaping envelope SShape. Both terms are modeled as a
linear combination of frequency functions, ti( f ) and hi( f ), respectively:

STremor = SSource • SShape, (2)

=
N

∑
i=1

wt
i ti( f ) •

M

∑
j=1

wh
j hj( f ), (3)

where • indicates element-wise multiplication, N and M are the number of filters, and wt
i and wh

j
represent the weights for frequency functions ti( f ) and hi( f ). The number and type of filters are based
on Durrieu et al.’s approach [37].

The matrix T( f ) = [t1( f ), t2( f ), . . . , tN( f ), 1]> consists of N = 60 “ideal” tremor spectra, ti( f ),
with base frequencies set every 0.1 Hz from 3–9 Hz, and a vector of ones for modeling windows
without any movement (Figure 3). The ideal tremor spectra are generated by combining three sinc
functions situated at f0 (tremor base frequency), 2 f0, and 3 f0. This design is informed by the frequency
spectrum of tremor, where peaks occur not only in the standard 3–9 Hz range, but also at their two
corresponding harmonics. We considered two harmonics because the third tremor harmonic does not
appear in our dataset.

The matrix H( f ) = [h1( f ), h2( f ), . . . , hM( f )]> consists of M = 63 Hann’s functions hi( f ),
which have a width of five points and are equally spread across the frequency domain with 50%
overlap. Note that representing the tremor spectrum shape as a weighted sum of Hann’s functions
reduces the number of variables that need to be estimated.

The non-tremor spectrum is modeled as follows:

SNon-tremor =
M

∑
i=1

wa
i ai( f ), (4)

where each ai( f ) is equal to hi( f )).
In order to estimate the different weights,

wt = [wt
1, wt

2, . . . , wt
N , wt

N+1]
>,

wh = [wh
1 , wh

2 , . . . , wh
M]>, and

wa = [wa
1, wa

2, . . . , wa
M]>,
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we solve a non-negative least-squares problem with Euclidean distance,

min
wtwhwa

‖STotal − ŜTotal‖2
2, (5)

where ŜTotal = wtT( f )×whH( f ) + waA( f )).
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Figure 3. T( f ) matrix. Rows are ideal tremor spectra, which each consist of a base frequency f0 and
two integer harmonics (2 f0 and 3 f0). Base frequencies are set every 0.1 Hz from 3–9 Hz.

The algorithm to estimate the weights uses the update rule from NMF [38]:

wt
new = wt • (S

Shape • STotal)T( f )>

(SShape • ŜTotal)T( f )>
(6)

wh
new = wh • (S

Source • STotal)H( f )>

(SShape • ŜTotal)H( f )>
(7)

wa
new = wa • STotalA( f )>

ŜTotalA( f )>
, (8)

where A( f ) = [a1( f ), a2( f ), . . . , aM( f )]>. ŜTotal must be recomputed after every update. After the
last iteration, the weight wt

N+1, which is associated with the all-ones row of T( f ), is considered
a threshold for the rest of the weights wt

i , and all weights wt
i under this threshold are set to zero.

Using a validation set, we found that, typically, 100 iterations led to sufficient convergence of the
weight vectors.

Given data from a particular participant, we can compute the average power spectrum for all
windows. This computation allows us to personalize this general tremor spectrum extraction procedure
in two ways: (1) We multiply the 60 ideal tremor spectra (T( f )) with the average spectrum shape for
this participant to emphasize the tremor spectrum that best fits the participant’s tremor. (2) We estimate
the base tremor frequency f0 by detecting a peak in the 4–8 Hz interval of the average spectrum shape
and then constrain the weights wt so that only the three maximum weights within a ±1 Hz interval
around f0 are considered. The rest of the weights are set to zero. Figure 4 shows an example spectrum
from raw data and the tremor information extracted from it.
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Figure 4. Tremor spectrum (Top) extracted from the total spectrum (Bottom) of the z-axis acceleration signal.

3.3. Feature Extraction

This paper evaluates seven different feature sets.

3.3.1. Energy in the 3–9 Hz Band (Energy Threshold)

PD tremor energy falls mainly between 3 and 9 Hz [36], and a simple threshold on the energy in
this band serves as a basic benchmark. In order to represent the Receiver Operating Characteristic
(ROC) curve, we evaluated the system in a range of thresholds between the minimum and the
maximum 3–9 Hz energy observed in the training set.

3.3.2. Welch’s One-Sided Power Spectral Density (PSD)

We considered Welch’s one-sided Power Spectral Density (PSD). The PSD is represented with
128 points between 0 and 25 Hz for each axis.

3.3.3. Common Baseline Features (Baseline)

In the time domain, we extracted 16 basic features; the number in parenthesis indicates the
dimension. We compute mean (1), standard deviation (1), median (1), max (1), min (1), signal
magnitude area (1), energy (1), inter-quartile range (2), empirical cumulative distribution function (4),
entropy (1), and auto-regression coefficients (2). In the frequency domain, we calculated the module
of the Fast Fourier Transform (FFT) (spectrum), and from this spectrum, we computed the same
16 features described above, and an additional 11 features: dominant frequency (1), average frequency
(1), spectral power (1), skewness (1), kurtosis (1), and the energy of six equally spaced frequency bands
(6). In the frequency domain, we extracted a total of 27 features (16 + 11).

The 16 time-domain features and 27 frequency domain features are computed on the X-,
Y-, and Z-axes, as well as the magnitude vector of both acceleration and jerk (signal derivative).
In addition, we computed the correlation coefficient between every pair of axes for the acceleration,
jerk, FFT of acceleration, and FFT of jerk signals, leading to 12 correlation coefficients. In total,
the baseline feature set included 356 features: (16+ 27) (features)× 4 (axes: X, Y, Z and magnitude) ×
2 (signals: acceleration and jerk) + 12 (correlation coefficients).

3.3.4. Mel Frequency Cepstral Coefficients (MFCCs)

As commented above, we divided the signal into three-second windows with a two-second
overlap using a Hamming window. For each axis, we compute 12 MFCCs, leading to a feature set of
36 MFCCs.
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3.3.5. Mel Frequency Cepstral Coefficients after Tremor Spectrum Extraction (MFCCs-T/NT)

We computed 12 MFCCs on the original signal and the two spectra obtained using the tremor
spectrum extraction method described in Section 3.2. In total, we computed 36 MFCCs per axis,
or 108 MFCCs in total for each three-second window.

3.3.6. Features Learned with a CNN Trained on Raw Data (CNN)

We trained a CNN (Figure 5) on the raw data. The CNN was made up of several layers
organized into two parts: The first part learned the main features from the inputs and included
one convolutional layer with a max-pooling layer, and the second part integrated four fully connected
layers for classification. The convolutional layer took as input the raw time domain signal of each
three-second window. Considering a 50 Hz sampling rate, every three-second window included
150 samples for each axis, X, Y, and Z. The input dimensions were 3 (axes) × 150 (samples in a
three-second window). The convolution layer applied 1D filters independently along each axis.
The padding parameter of this layer was set to same, resulting in an output with the same dimensions
as the input. The outputs were then combined using a max-pooling strategy. The outputs of the
max-pooling layer were the features considered in this approach. The number and size of the kernels
were defined considering a compromise between the number of parameters in the CNN and the
amount of data available to train them.

Input 

3 x 150 

Convolution 

32 kernels 

1 x 15 

Layer 1  

32 x 3 x 150 

Layer 2  

32 x 3 x 50 

MaxPooling 

1 x 3 
Fully connected 

4 Layers with 128, 

64, 32 and 1 outputs 

ReLU 

ReLU 

sigmoid 

Feature extraction Classification 

Figure 5. Deep learning architecture for training on raw data.

The activation function was ReLU (Rectified Linear Unit) in all layers except the last one (output),
where a sigmoid was used. With ReLU functions, there is a lower probability of gradient vanishing
(the gradient has a constant value). The training process used the binary-cross-entropy loss function
and the rmsprop optimizer with a batch size of 50. In this optimization method, each unit kept its
own mean gradient feedback throughout the learning process. At each step, the given gradient value
was normalized by this mean, avoiding oscillating weight updates. The weights of the convolutional
layer were initialized using a simple autoencoder with three layers (initial, encoding, and decoding).
The weights from the encoding layer were used to initialize the convolutional layer. The rest of the
layers in the CNN were initialized randomly using a Glorot uniform initializer.

There were dropout layers (deactivating 20% of the weights) after convolutional and full connected
layers to avoid over-fitting during the training process. The number of epochs in every experiment
was adjusted using a validation subset extracted from the training set.

3.3.7. Features Learned with a CNN Trained on Spectra after Tremor Spectrum
Extraction (CNN-T/NT)

This feature set is similar to the CNN features (see Section 3.3.6) with a slightly different
deep learning architecture. The CNN includes two convolutional layers, and the features are the
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outputs of the second convolutional layer. The input to the CNN includes the original spectrum of
each three-second window and the two spectra from the tremor extraction preprocessing: tremor
and non-tremor spectra (see Section 3.2). As there are three axes, we have nine spectra for every
three-second window. Each spectrum is represented using 128 points in the 0–25 Hz frequency range.
These spectra are stacked to create a 2D input (9 × 128) to the network (Figure 6). These spectra were
obtained after a Hamming windowing. The number of layers and their dimensions differ slightly
in this architecture compared to that trained on raw data, but all other aspects (activation functions,
training process, etc.) are the same.

Input 

9 x 128 

Convolution 

32 kernels 

5 x 5 

Layer 1  

32 x 9 x 128 

Layer 2  

32 x 3 x 42 

MaxPooling 

3 x 3 

Convolution 

1024 kernels 

3 x 5 

Layer 3  

1024 x 1 x 38 

Fully connected 

3 Layers with 128, 32 

and 1 outputs 

ReLU sigmoid 
ReLU 

ReLU 

Feature extraction Classification 

Figure 6. Deep learning architecture for training on spectra after tremor spectrum extraction.

3.4. Classification Algorithms

This section describes two different classifiers, and evaluates their performance in two scenarios:
(1) fully supervised learning on LAB data (accurate labels) and (2) weakly supervised learning with a
multiple-instance learning (MIL) algorithm on WILD data (weak labels) .

3.4.1. Fully Supervised Learning

For fully supervised learning, we compare two classification algorithms. We use a random forest
(RF) (with 100 decision trees) as our baseline algorithm. RF achieves comparative results to other
traditional ML algorithms, such as a decision tree, k-nearest neighbor, or an SVM. Our second algorithm
is a Multi-Layer Perceptron (MLP) because they are typically put at the end of deep architectures for
final classification. Our MLP is constructed of three fully connected layers with 128, 32, and 1 neurons,
respectively. The activation function is ReLU in all layers except the last one, where a sigmoid is used.

3.4.2. Weakly Supervised Learning

To train on weak labels, we used the MIL algorithm proposed by Zhang et al. [4]. This algorithm
iterates through three steps: First, the system predicts the class of every three-second window contained
in a five-minute interval. These predictions, which are output from a sigmoid layer, can be thought
of as pseudo-probabilities. Next, all three-second windows in every five-minute interval are sorted
according to these probabilities. Finally, a subset of the windows are selected from each five-minute
interval for retraining. In particular, if the weak label of a five-minute interval is Almost none or Almost
always, the bottom (least likely to be tremor) 50% or top (most likely to be tremor) 50% of the windows
within that interval are selected for retraining, respectively. For intervals labeled as Half the time,
the bottom 25% and top 25% of the windows are selected. The algorithm terminates when it reaches a
set number of iterations, chosen using a validation subset selected from the training set. Note that, in
the first iteration, no predictions are available for sorting the windows because the system is yet to
be trained. Therefore, to initialize this algorithm, the three-second windows are sorted according to
the estimated energy of the tremor spectrum, which is computed in an unsupervised manner using



Sensors 2020, 20, 5817 12 of 23

the non-negative tremor factorization described in Section 3.2. With this initialization, the number of
iterations is lower than 10.

4. Experiments

This section describes the experimental validation, which addresses four main questions:

1. How well do our proposed feature sets and ML algorithms generalize to patients that are not in
the training set?

2. How does our best system (feature set + ML algorithm) compare to previous work?
3. How well can an automatic method reproduce patient self-assessments of tremor, the current

standard for in-home monitoring?
4. How well can an automated system approximate the percentage of tremor time over long intervals

(hours, days, or weeks)?

Unless otherwise noted, all experiments use leave-one-subject-out (LOSO) cross-validation to
assess performance: classifiers are trained using data from every subject but one, and performance is
measured by testing on the data from the held-out subject. This approach simulates a realistic scenario
where there are no training labels for a new patient.

4.1. Evaluating Performance on Lab Data

Table 3 summarizes the Area Under the Curve (AUC) values and False Positive Rates (FPRs) at a
0.90 True Positive Rate (TPR) for each pairing of the seven feature sets and two classification algorithms.
The results are the average over all the subjects using a leave-one-subject-out cross-validation. Figure 7
shows the Receiver Operating Characteristic (ROC) curves for all feature sets using an MLP for
classification. With this dataset, a difference of 0.01 in AUC is significant with p-value < 0.0001,
according to Hanley’s method [39].

Table 3. Area Under the Curve (AUC) and False Positive Rate (FPR) at a 0.90 True Positive Rate (TPR)
for the seven feature sets and two classifiers: Random Forest (RF) and Multi-Layer Perceptron (MLP).

Feature Set
AUC FPR at 0.90 TPR

RF MLP RF MLP

Energy threshold 0.715 0.62
PSD 0.813 0.818 0.53 0.52

Baseline 0.830 0.829 0.45 0.45
MFCCs 0.851 0.853 0.40 0.39
CNN 0.850 0.850 0.38 0.41

MFCCs-T/NT 0.869 0.870 0.33 0.33
CNN-T/NT 0.884 0.887 0.32 0.30

Note: The energy threshold constitutes a 1D feature vector, which makes RF and MLP unapplicable. AUC and FPR
at a 0.90 TPR are computed by sliding the threshold over the range of possible values.

The results in Table 3 indicate that feature sets, not algorithms, drive performance: AUC values are
similar between RF and MLP within a particular feature set, but differ across feature sets. We can see
that the simple baseline of thresholding energy performs much worse than the more complex feature
sets. In particular, the results show the importance of tremor spectrum extraction (-T/NT): Not only
do MFCCs and CNNs show significant improvement when computed after this preprocessing step
compared with raw data, but CNN-extracted features computed on raw data (CNN) perform worse
than our handcrafted MFCCs computed after tremor spectrum extraction (MFCCs-T/NT).
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Figure 7. Receiver Operating Characteristic (ROC) curves for the different feature extraction strategies
using the MLP classifier. Note: The ROC curve for the “energy in the 3–9 Hz band” feature is computed
by sliding the threshold over the range of possible values.

The CNN-T/NT features had the highest performance, but the performance from the
MFCCs-T/NT features was close. Furthermore, because the CNN-T/NT features are learned using
labeled data, the quality of these features relies on having access to relatively large datasets. In contrast,
the MFCCs-T/NT features are not learned from data and, hence, are independent of the dataset
size. Figure 8 (top) depicts how the CNN-T/NT features degrade when given less data: CNN-T/NT
performance drops below that of MFCCs-T/NT when <50% of the training data are available. Note that
the training data are used only for the feature extraction process and not for the classification algorithm:
We train the convolutional layers using a small amount of data, fix the weights, and then train the
MLP using the full dataset.
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Figure 8. Analysis of AUC values over varying amounts of training data. (Top): Data reduced
for feature learning only. Mel Frequency Cepstral Coefficients after Tremor Spectrum Extraction
(MFCCs-T/NT) features are not learned, which means they are independent of dataset size. (Bottom):
Data reduced for both feature learning and MLP training.
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While the previous experiment demonstrates the sensitivity of the CNN-T/NT features to the size
of the training dataset, training part of a deep network on a small dataset and training the rest of it in a
larger dataset is not a realistic scenario. Figure 8 (bottom) shows the performance of both feature sets
when data are also reduced for the MLP classifier. We can see that when <50% of the training data are
available, performance of the two systems is similar. This finding implies that, while the CNN-T/NT
features perform better with our dataset, our handcrafted MFCCs-T/NT features may be useful when
small datasets are all that is available.

4.2. Comparison to Previous Work on LAB Data

In order to compare our best-performing system (CNN-T/NT + MLP) with published studies
for in-home data, we implemented the systems of Pulliam et al. [6] (details described in [40]),
Hammerla et al. [7] (also used by Fisher et al. [32]), and the best-performing system analyzed by
Zhang et al. [4]. Figure 9 shows the ROC curves for each of the systems applied to our LAB data, and
Table 4 specifies AUC and FPR at 0.9 TPR values. Our system demonstrates significant improvement
over those from the previous studies. All subsequent experiments compare our CNN-T/NT + MLP
system with the next best one (Zhang et al. [4]).

Figure 9. Comparing our best system (Convolutional Neural Network Trained on Spectra after Tremor
Spectrum Extraction (CNN-T/NT) + MLP) on lab-recorded (LAB) data to previous systems proposed
in the literature using leave-one-subject-out (LOSO) cross-validation.

Table 4. AUC and FPR at 0.90 TPR on LAB data

System AUC FPR at 0.90 TPR

CNN-T/NT + MLP (ours) 0.887 0.30
Pulliam et al. [30] 0.701 0.67
Hammerla et al. [7]/Fisher et al. [32] 0.809 0.50
Zhang et al. [4] 0.831 0.44
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4.3. Reproducing Tremor Self-Assessments in Patients’ Diaries

The current standard for in-home monitoring of PD relies on patient self-assessments of their
symptoms. Here, we perform five different experiments to analyze how well our algorithms can
replicate this current standard by computing Spearman’s correlation coefficient [41] between our
system’s output and the weak labels (Almost none, Half the time, and Almost always) that were assigned
to the five-minute intervals by our participants using the app. To convert our instance-based system
output into the corresponding weak label, we use the percentage of detected tremor in the five-minute
interval, assigning <33%, 33–66%, and >66% tremor to Almost none, Half the time, and Almost always,
respectively. We evaluated the system considering different types of training and testing sets in order
to perform a detailed analysis.

4.3.1. LAB/WeakLAB

The system is trained on accurate labels from the LAB data and tested on synthetically
generated weak labels from the LAB data. The synthetically generated labels are generated using the
accurate labels by computing the percentage of tremor in five-minute intervals (with a four-minute
overlap): Almost none (<33% tremor), Half the time (33–66%), and Almost always (>66%). Because these
labels are accurately generated, this experiment represents an upper limit on the accuracy measured as
a correlation coefficient.

4.3.2. LAB/WILD

The system is trained on accurate labels from the LAB data and tested on weak labels from the
WILD data. This experiment estimates performance of the system in a realistic scenario: trained on
data collected in a laboratory setting, but expected to classify data collected in a user’s home.

4.3.3. WeakLAB/WILD

The system is trained on LAB data with synthetically generated weak labels. Because accurate
labels for the WILD data do not exist, this experiment serves as a fair comparison of training on the
LAB data versus WILD data.

4.3.4. WILD/WILD

The system is trained and tested on weak labels from the WILD data. This experiment estimates
the effect of training on data collected in natural settings.

4.3.5. WeakLAB + WILD/WILD

The system is trained simultaneously on (weakly labeled) LAB and WILD data to benefit from
the reliability of weak labels from LAB data, but also from the greater variability of the WILD data.

Figure 10 shows the correlation values between the weak labels and the outputs from either
CNN-T/NT + MLP or Zhang et al. [4] in the five experiments. Note that random guessing would lead
to a correlation of 0. Almost all correlations are significant, i.e., the null hypothesis of no correlation
can be rejected with p < 0.005. Correlations are higher for participants 2, 4, and 11. These participants
showed high percentages of tremor time during the lab session (see Table 1) and high scores in the
MDS-UPDRS scale for resting tremor (see Table 2). Participant 5 only showed postural and kinetic
tremor with low percentages of tremor time during the session. Participant 10 did not show tremor
very often during the LAB session (12% of the session for the right hand, and 8% for the left hand)
with predominance of resting tremor. Participant 12 showed very little tremor during the LAB session
(1% of the session for the right hand, and 2% for the left hand) with predominance of resting tremor.
Although our system, in general, obtains slightly higher correlations with the weak labels than that of
Zhang et al. [4], the differences are not significant.
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(b)
Figure 10. Spearman’s correlation coefficients between the classifier output and the assigned labels.
Asterisks represent correlations for which the null hypothesis of no correlation can be rejected with
p < 0.005. (a) Training on accurately labeled data (LAB only), testing on LAB or in-the-wild (WILD)
data. Note: Participant 12 was excluded from the LAB/weakLAB experiment due to insufficient tremor.
(b) Training on weakly labeled data (LAB, WILD, or both), testing on weakly labeled WILD data.

All decreases in correlation from LAB/weakLAB to LAB/WILD experiments are significant
(Figure 10a). The lower performance is unsurprising because it is harder to detect tremor in everyday
activities than in laboratory conditions with prescribed activities, and there is likely more variability in
the labels in the wild. Furthermore, when computing the correlation on WILD data, we assume that all
weak labels are accurate. In contrast to the WILD data, weak labels from the LAB data are calculated
using manually labeled data, and are thus guaranteed to be more accurate.

We expected that training with WILD data would improve results on the WILD data because
the training and testing distributions are similar. However, our performance in the WILD/WILD
experiment (Figure 10b) is worse than in the LAB/WILD experiment (Figure 10a). This reduction could
be explained by the fact that training on LAB data was done with accurate labels, whereas only weak
labels are available for WILD data. Therefore, we also trained on LAB data with synthetically generated
weak labels (Figure 10b). Nonetheless, training on weakly labeled LAB data still outperforms training
on WILD data for all participants except participant 11. Combining the weakLAB and WILD data
during training does not lead to significant differences in performance from training on only WILD
data, likely due to the fact that we have six times more WILD data than LAB data.

The drop in performance from training on WILD data versus LAB data is different from
Hammerla et al.’s findings: wWth their dataset of 34 participants, training on WILD data led to
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higher performance on WILD data than training on LAB data [7]. Our results may be a reflection
of the discrepancy [42,43] of WILD data labels obtained from different participants. It is possible
that Hammerla et al. [7] were able to bypass the issues of labeler discrepancy with their stratified
seven-fold cross-validation method. Mixing data from all participants allowed their system to learn
each participant’s movement and labeling style. It could therefore benefit from the greater variability
in the WILD data. Zhang et al. [5] also showed improved performance when training on WILD, but the
algorithms were trained on person-specific data. In contrast, our LOSO cross-validation method does
not allow our system to learn these idiosyncrasies. Our performance may therefore suffer from the
discrepancy and inaccuracies of the WILD data labels.

4.4. Estimating Percentage of Tremor Time

Most of the previous experiments have evaluated the accuracy of various systems in detecting
exactly when tremor occurred. However, an aggregate percentage of tremor time over long periods
has been used in PD neurological studies to determine differences in cortical activation patterns [44] or
to analyze the oscillatory activity and correlations throughout the different states of levodopa-naive
Parkinsonism [45].

Figure 11 shows the ground truth percentage of tremor time, which was computed from the
accurate labels of the LAB data, and compares it to the percentage output by CNN-T/NT + MLP,
MFCCs-T/NT + MLP, and Zhang et al. [4]. The percentage of tremor time was computed during the
whole session. Table 1 show the sessions’ durations per participant in seconds (between 3090 and 5824
seconds). With the exception of participant 4, the error between CNN-T/NT + MLP or MFCCs-T/NT +
MLP and ground truth is on par with or less than Zhang et al. [4].
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Figure 11. True percentage of tremor (calculated from the accurate labels) and percentage output by
the automatic systems on LAB data.

On WILD data, accurate labels are not available, and each weak label corresponds to a range of
tremor percentage: 0–33%, 33–66%, and 66–100% tremor for Almost none, Half the time, and Almost
always, respectively. The estimate of the percentage of tremor time from these labels corresponds to
the middle of the range (i.e., 16.6%, 50%, and 83.3% tremor, respectively). The percentage of tremor
time was computed using all the data of each participant, around 300 entries of five minutes (25 h).
Figure 12 shows how these estimates using weak labels compare to the true percentage on LAB data.
Although our weak-label estimates generally correspond well to the ground truth, they overestimate
the true percentage on participants 10 and 12, most likely because these participants experienced very
little tremor.
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Figure 12. Comparing true percentage of tremor to percentage estimated from weak labels on LAB data.

Figure 13 compares the percentage of tremor time detected by the systems to that estimated from
the weak labels on WILD data. Consistently with our findings on the LAB data, Figure 13 indicates
that CNN-T/NT + MLP and MFCCs-T/NT + MLP have less error (with respect to the weak-label
estimates of percentage) than Zhang et al. [4]. Both systems reported a lower percentage of tremor
time for participants 10 and 12 than the weak-label estimate, which may be a reflection of the findings
from Figure 12: weak-label estimates of percentage of tremor time are too high for participants 10 and
12. Note that, on WILD data, the weak-label estimates may deviate even further from the ground truth
than what is indicated in Figure 12 due to the fact that weak labels obtained from WILD data are more
noisy than those computed from LAB data.
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Figure 13. Weak-label estimate of percentage of tremor compared to percentages output by the
automatic systems on WILD data.

Table 5 shows the mean and standard deviation of the error when estimating the percentage
of tremor for LAB and WILD (using data from Figures 11 and 13). In all scenarios, the proposals
described in this paper (CNN-T/NT + MLP and MFCCs-T/NT + MLP) show improvement over
Zhang et al. [4]. For LAB data, the percentage of tremor time was computed with the whole session.
Figure 14 shows the error across subjects when predicting the percentage of tremor time with smaller
periods of time (minutes) using LAB data. The error decreases rapidly when increasing the period time,
that is, with periods of time between 10 and 15 min, it is possible to obtain a similar error compared to
the case of considering the whole session. As we have only in-the-wild recordings from six patients, the
differences between the three evaluated methods are not statistically significant (t-test p-value > 0.3).
Although there are not significant differences between methods, the mean error when estimating the
percentage of tremor is lower than 5% for LAB data and lower than 10% for WILD data. Recent studies
proposing the percentage of tremor as a PD biomarker to provide continuous monitoring of tremor
have reported errors of over 15% [46].
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Table 5. Mean and standard deviation of the error when estimating the percentage of tremor for LAB
and WILD.

LAB Data WILD Data
System Mean Std Mean Std

CNN-T/NT + MLP (ours) 4.1% 4.0% 9.1% 5.9%
MFCCs-T/NT + MLP (ours) 4.4% 5.4% 12.1% 8.2%

Zhang et al. [4] 8.8% 10.0% 13.7% 10.1%

Note: Errors on WILD data are computed with respect to percentages of tremor that are estimated from weak labels.
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Figure 14. Error when estimating the percentage of tremor depending on the duration (minutes)
considered to estimate the percentage.

5. Conclusions

This paper analyzes several algorithms and features for PD tremor detection in laboratory and
in-the-wild data using wrist-worn accelerometers. In particular, we have identified several feature
sets that demonstrate improvement over previous work, including a tremor spectrum extraction
technique. We found that CNN-T/NT + MLP leads to the highest performance among the twelve
systems we analyzed, and that it significantly outperforms the three most relevant systems described
in the literature with sufficient detail to be reproduced. Improved performance of CNN-T/NT over
CNN indicates the benefit of our novel tremor spectrum extraction technique. Our handcrafted
MFCCs-T/NT features have similar performance to the CNN-T/NT features, and are shown to be less
sensitive to lack of training data than the CNN-T/NT. When developing a real system, we suggest
using MFCCs-T/NT when the amount of available data is not sufficient to train a deep neural network.
In this situation, handcrafted features with traditional machine learning algorithms, like Random
Forest, provide a reasonable performance. Additionally, the method for tremor spectrum extraction
proposed in this paper contributes to increase this performance independently of the amount of
available data. On the other hand, if there are enough data for training, the CNN-T/NT approach is
preferred because this approach can learn relevant features for tremor detection.

We analyzed the ability of our best system (CNN-T/NT + MLP) and the best system from previous
work (Zhang et al. [4]) to reproduce in-home tremor self-assessments. Our system performs better
than that of Zhang et al. [4], although the improvement is not statistically significant. Our findings do
not coincide with those of Hammerla et al. [7] or Zhang et al. [5], i.e., performance degrades when
trained on WILD data as opposed to LAB data, even when controlling for weak versus accurate labels
or combining WILD with LAB data. The discrepancy in our findings may be due to our differing data
splitting procedures (LOSO versus seven-fold and person-specific). In this paper, we have used LOSO,
guaranteeing that there are not recordings from the same subject in training and testing sets. From our
point of view, the LOSO methodology simulates a more realistic scenario where there are no training
labels for a new patient. Using a seven-fold cross-validation methodology can guide us to optimistic
conclusions that are not applicable when developing a real system.
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We also compared several systems on their ability to estimate a percentage of tremor time over
long time periods, which has been used in previous neurological studies to analyze the PD’s impact
in different patients. CNN-T/NT + MLP performs better than Zhang et al. [4], with an average error
of 4.1% when predicting percentage of tremor time on LAB data, and 9.1% on WILD data. Note that,
on the WILD data, percentage of tremor time could only be estimated from the weak labels, and is
thus not a perfect ground truth. These results improved the performance described in a recent study
that proposed the percentage of tremor as a biomarker for PD monitoring, reporting estimation errors
of over 15%. This recent study also used acceleration signals from sensors situated in a wristband.

The main contributions of this paper comparing with the best system from previous work
(Zhang et al. [4]) have been the analysis of several features sets, including proposals adapted from the
area of audio processing, the evaluation of deep learning algorithms, and the description of a signal
preprocessing step to extract tremor information from the signal spectrum.

While the proposed features provided better results in the evaluated data, a limitation of this
work is the small number of subjects. However, we have partially mitigated the small sample-subject
size by using an LOSO cross-validation methodology. Another limitation relevant for the monitoring
of PD progression is that we only detect presence/absence of tremor, but not the intensity or type
of tremor (resting, postural, or kinetic). While future work might address previous limitations, a
major challenge continues to be to improve the quantity and quality of labels in the wild. For instance,
personalization algorithms that can improve detection scores from unlabeled user-specific data can lead
to transformative results towards improving generalization of the detection algorithms. Along these
lines, a framework that can simultaneously train on accurate (LAB) and weak (WILD) labels could
help leverage the high variability we find in WILD data, while reducing the effect of poor label quality.
Another interesting future line will consist of using the proposed methods to supervise tremor of
PD patients before and after Levodopa therapy. This analyses will allow the obtaining of objective
metrics (biomarkers) to quantify the medication impact. Evaluating the system with already validated
therapies would support the feasibility of the proposed system.
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