
TEXTURE- AND SHAPE-BASED ADVERSARIAL ATTACKS
FOR OVERHEAD IMAGE VEHICLE DETECTION

Mikael Yeghiazaryan1 Sai Abhishek Siddhartha Namburu1 Emily Kim1 Stanislav Panev1

Celso de Melo2 Fernando De la Torre1 Jessica K. Hodgins1

1Carnegie Mellon University, USA 2DEVCOM Army Research Lab

Shape-only
Adversarial

Attacks

Highest Attack
Success

Lowest Attack
Success

Least
Practical

Most
Practical

More
Practical

Less
Practical

High Attack
Success

Low Attack
Success

Learned Adversarial
Camoflages

3D
Shape

Constraints
Set D:
☑Pixelation
☑Limited
color palette
☑Masking

Constraints
Set C:
☑Pixelation
☑Limited
color palette
☒Masking

Constraints
Set A:
☒Pixelation
☒Limited
color palette
☒Masking

Physical
Realization

Equipment/Materials
Needed

Texture-only
Adversarial

Attacks

Model
Texture

Large-
format

Commercial
Vinyl Wrap

Printer

A Large Set
of Paints

A Reduced
Set of Paints

Small
Quantity of

a Reduced
Set of Paints

Constraints
Set B:
☑Pixelation
☒Limited
color palette
☒Masking

Combined Texture-Shape
Adversarial Attacks

Highest Attack
Success
Least

Practical

Lowest Attack
Success

Most
Practical

High Attack
Success

Less
Practical

More
Practical

Low Attack
Success

Textured
Car

Mesh

Learned Adversarial Additive Shape Perturbations
Extra material is added to disguise the original shape

Most added material Least added material

Learned Adversarial Additive Shape Perturbations
Final textured adversarial meshes used during rendering

Most added material Least added material

Fig. 1: We enforced various constraints on common adversarial attacks to improve their implementation in the real world. Our
pipeline perturbs objects’ texture, shape, or both. The latter demonstrates superior efficacy in deceiving object detectors.

ABSTRACT
Detecting vehicles in aerial images is difficult due to

complex backgrounds, small object sizes, shadows, and oc-
clusions. Although recent deep learning advancements have
improved object detection, these models remain susceptible
to adversarial attacks (AAs), challenging their reliability.
Traditional AA strategies often ignore practical implemen-
tation constraints. Our work proposes realistic and practical
constraints on texture (lowering resolution, limiting modified
areas, and color ranges) and analyzes the impact of shape
modifications on attack performance. We conducted exten-
sive experiments with three object detector architectures,
demonstrating the performance-practicality trade-off: more
practical modifications tend to be less effective, and vice
versa. We release both code and data to support reproducibil-
ity at https://github.com/humansensinglab/
texture-shape-adversarial-attacks.

Index Terms— adversarial attacks, remote sensing, ob-
ject detection

1. INTRODUCTION

Robust object detection in aerial and satellite images is vi-
tal for automating critical tasks such as traffic management,
urban planning, and disaster response. State-of-the-art detec-
tors, such as YOLO [1] and RetinaNet [2], which are based
on deep neural networks (DNN), have become foundational in
this domain. However, recent studies such as Szegedy et al.
[3] have revealed that DNNs can be susceptible to adversarial
examples. Given the importance of these applications, under-
standing this vulnerability is crucial, especially in object de-
tection in Remote Sensing Imagery (RSI). Furthermore, there
are scenarios where utilizing AAs to impede vehicle detec-
tion by computer vision systems in overhead images could

https://github.com/humansensinglab/texture-shape-adversarial-attacks
https://github.com/humansensinglab/texture-shape-adversarial-attacks

offer strategic advantages, such as military camouflage.
Our primary objective is to investigate the resilience of

object detectors against adversarial vehicles in RSI scenarios
under realistic constraints. Traditional AA strategies often ne-
glect the physical implementation constraints, focusing solely
on task performance. For example, adversarial texture pat-
terns typically resemble those depicted in Figure 1 (Texture-
only attacks - Constraints Set A). However, it is essential to
consider how such complex patterns can be produced prac-
tically in the physical world. Their creation often requires
specialized equipment, such as expensive vinyl wrap printers,
and trained professionals to install them on vehicle surfaces.

In this study, we propose a set of constraints to ensure at-
tacks are feasible for implementation on vehicles, effectively
camouflaging them. We define a practical adversarial mesh
as a mesh modified in texture and shape such that replicat-
ing the modifications in real life requires minimal resources
or specialized equipment. We consider practicality based on
installation cost, difficulty, and operation. While constrained
attacks are less effective than traditional AAs [4], they offer
better practicality. Shape-only attacks are less effective than
unconstrained texture attacks, but combining constrained tex-
ture with shape modifications improves performance, reach-
ing levels similar to unconstrained texture attacks (Figure 1).

Our work contributes in several ways. (1) We introduce
constrained AAs for shape and texture, designed to create
practical 3D camouflages capable of deceiving object detec-
tors in RSI. These constraints facilitate a more straightforward
implementation compared to unconstrained camouflages. (2)
We thoroughly examine how practicality and adversarial per-
formance relate, finding that they have an inverse relationship.
(3) We developed a tool for generating synthetic overhead im-
ages, contributing to the creation of synthetic datasets.

2. RELATED WORK

Adversarial attacks (AAs) have become central to computer
vision research. Szegedy et al. [3] introduced AAs to expose
vulnerabilities in deep learning models. Research has since
focused on generating adversarial examples and divided AAs
into digital and physical categories [5]. Digital AAs modify
image pixels imperceptibly [6], while physical AAs manip-
ulate objects in the physical world [7]. A hybrid approach,
simulated AAs, tests perceptible attacks in simulated environ-
ments [8]. Our work aligns with simulated AAs, using syn-
thetic data and realistic physics-based rendering for testing.

Recent studies also explore adversarial 3D geometry,
mainly in autonomous driving using point clouds and LI-
DARs [9, 10]. Unlike those works, our focus is solely on
RGB data in remote sensing imagery (RSI), where adversar-
ial attacks are underexplored [11]. In RSI, the demand for
robust automation has risen [12], driving research on AAs.
Many attacks are impractical, so we focus on realistic ad-
versarial camouflages with real-world constraints. One of

Rendered
Overhead

View Images

Universal Adversarial
Car Texture Map

Adv.
Loss

Universal Mesh
Displacement Map

Ground
Plane

Textures

Detectors
Ensemble

Faster
R-CNN

YOLOv5

RetinaNet

Differentiable
Renderer
PyTorch3D

Scene Generation

Orthographic
Camera

Ground Plane

3D Car
Assets

Fig. 2: Our pipeline for adversarial attacks on an ensemble
of object detectors. The back-propagation path is illustrated
by the red dashed line. During inference, we evaluate each
model independently.

Original Adversarial

Detected Missed

Fig. 3: Left: original image, right: corresponding adversarial
image generated with Blender.

the few studies addressing physical aerial adversarial attacks
is [11], which uses adversarial patches to target vehicle de-
tectors. Our approach differs in applying stricter constraints
to adversarial camouflages and vehicle modifications, while
applying these modifications to the entire vehicle and at a
lower geo-spatial resolution. Additionally, instead of real-
world tests, we evaluated our camouflages on highly realistic
synthetic data produced by a physics-based renderer.

3. METHOD

3.1. PyTorch3D Data Generation

PyTorch3D (PT3D) data is generated using PyTorch3D [13]
with 3D vehicle meshes from a GAN-based generator. We
adapt and retrain the Textured 3D GAN (T3GAN) [14] to en-
able semantic segmentation map sampling, producing a set
of meshesM. Using GMaps backgrounds IGMaps

bg and vehi-
cle meshesM, the differentiable renderer (DR) generates im-
ages I = DR

(
IGMaps

bg ,M
)

, where M includes texture T and
shape S. Post-processing steps like blurring and anti-aliasing
enhance realism. M can include either original or adversar-
ial meshes, producing “original” or “adversarial” images, re-
spectively. The pipeline supports synthetic dataset creation
and ground-truth annotations, with adversarial attacks using
optimized Sadv or Tadv. We use this data to train vehicle de-
tectors and to optimize adversarial attacks.

3.2. Adversarial Optimization Pipeline

Each cycle of the attack uses PT3D to generate a batch
of adversarial images Ib = {I1, . . . , INb

} such that Ik =

DR
(
IGMaps

bg,k ,Mk

)
,∀ k ∈ [1, . . . , Nb], where Ik is the k-th

image from the batch, IGMaps
bg,k is the k-th background image

sampled from the GMaps dataset, Mk is a randomly selected
mesh with shape and texture components Sk and Tk, and DR
is a differentiable renderer following Section 3.1. Depending
on the optimized entity, either the most recent Sadv or Tadv re-
places the corresponding counterpart in Mk at the beginning
of each iteration. During the attack, we ensure each image
contains only one vehicle to avoid producing meshes that rely
on multiple camouflages being in close proximity. The attack
aims to create independently effective adversarial meshes.

Let Fi be the objective function used to train a detector
model Di. We supply Ib to Di, producing predictions ypred =
Di(Ib). We then minimize a weighted loss function for an
ensemble of models: L =

∑
i λiE [Fi(Di(Ib), ygt)] ,M

⋆
adv =

argminML(M), where ygt are the ground-truth object loca-
tions, manually set to ∅ for adversarial attack training. We
use coefficients λi such that the initial loss values Fi are in
the same order of magnitude.

3.3. Texture-based Attacks

In texture-based attacks, we optimize a universal texture map
applied to all meshes. While (u)nconstrained adversarial
textures (abbreviated as “U”) achieve excellent performance,
they are impractical for real-world use. We introduce con-
straints to reflect practical implementation limitations: Spa-
tial Resolution, Spatial Restriction, and Color Restriction.

Spatial Resolution. Applying iridescent patterns to irreg-
ular shapes such as vehicle surfaces is often challenging. We
impose a texture (pix)elization (abbreviated as “Pix”) con-
straint with block sizes of 16 × 16 px to ensure practical
resolution, corresponding to approximately 15 cm on vehicle
rooftops. We implement this by storing the adversarial texture
as a 32 × 32 × 3 tensor, then upscaling it to the original size
of 512× 512× 3 via nearest-neighbor interpolation.

Spatial Restriction. Another notable limitation is the
need for vehicle camouflage to not hinder vehicle operation.
We restrict the camouflage to specific areas of the vehicle
using segmentation (ma)sks (abbreviated as “Ma”). Certain
parts, such as windows, remain free from camouflage. The
segmented adversarial texture map is given by Tseg = Tor ·
(1− Tmask) + Tadv · Tmask, and Tor is the original texture.

Color Restriction. Our strictest constraint limits the
number of colors in the adversarial texture map, implemented
in two ways: 1) fixing the color count and (l)earning both
the (c)olors and their placement (“Lc”), or 2) (f)ixing the
(c)olors and optimizing their placement only (“Fc”). Unlike
softer constraints such as the non-printability score, this en-
forces strict color limits, a concept largely unexplored in prior

Table 1: Comparison of attack practicality with prior works.
Texture practicality is the first score, shape practicality is the
second. Sequential and parallel combined attacks yield iden-
tical final results. Full table is in Section S6 in the Supple-
mentary Material.

Camouflage PC DI DO Score Notes

O
th

er Du et al. (ON) [11] +0 +0 +0 3 Small AA area
Du et al. (OFF) [11] 00 +0 −0 0 Limited mobility
DTA [15] −0 −0 +0 −1 Special equipment

O
ur

T-U −0 −0 −0 −3 Special equipment
T-Ma −0 −0 +0 −1 Special equipment
T-PixFcMa +0 +0 +0 +3 Lim. color stickers
S-O 0− 0− 0− −3 Shape modification
C-Fc −− −− −− −6 Spec. eq./shape mod.

works. To enforce this constraint, the color of each pixel is
determined during optimization by predicting a probability
distribution p(c) over a fixed set of colors. This distribu-
tion is sharpened using a double softmax s(·) to amplify the
most probable color: pA(c) = s(s(p(c))). The pixel color
is initially set to E[pA(c)], approximating the mode color.
After optimization, each pixel is assigned argmaxci p(ci),
producing a camouflage that satisfies the color constraint.
Additional details can be found in Section S6.1 in the Sup-
plementary Material.

3.4. Shape-based Attacks

We optimize a universal perturbation in shape-based attacks
using a 2D displacement map from a common UV map. De-
formations extend outward from the mesh center, preserving
the original shape. We enforce Symmetry for balanced mass
and Perturbation Magnitude (PM) to limit deformation.

3.5. Combined Attacks

We also conduct combined attacks where both texture and
shape are optimized. These can be performed sequentially
or in parallel. In sequential combined attacks, we first opti-
mize the texture map and then perform a shape-based attack
using the adversarial texture. This allows us to evaluate the
performance of both attacks sequentially. In parallel com-
bined attacks, we alternate between optimizing the texture
and shape. Each entity is optimized for a fixed number of
steps npll, switching between them until the loss converges.

3.6. Computational Requirements

Experiments ran on a machine with an Intel Xeon Gold 6252
CPU, 755 GB RAM, and an NVIDIA Quadro RTX 6000 GPU
(24 GB). Each attack took 3 hours per epoch, using up to 5
GB RAM and 12 GB GPU memory.

Table 2: Figures show mean values from synthetic models
on PT3D and Blender data. “T”, “R”, “S”, and “C” represent
texture, random texture, shape, and combined attacks. Lc and
Fc are mutually exclusive. PM⋆ and Pr⋆ denote optimal per-
turbation magnitude and practicality for shape attacks. See
Table S3 in the Supplementary Material for the full table.

Attack
Constraints PM⋆ Pr⋆ PT3D Blender

Pix Lc Fc Ma EASR EASR
T-U — — 95.77% 70.02%
T-Ma ✓ — — 75.76% 44.43%
T-Pix ✓ — — 94.75% 63.83%
T-PixLcMa ✓ ✓ ✓ — — 68.39% 42.15%
T-PixFcMa ✓ ✓ ✓ — — 12.70% 44.64%
R-PixFc ✓ ✓ — — 3.16% 20.24%
S-O — — — — 0.4 0.6 89.82% 78.86%
C-Fc (seq.) ✓ 0.2 0.8 86.80% 70.37%
C-Fc (par.) ✓ 0.2 0.8 87.11% 68.07%
C-PixFc (seq.) ✓ ✓ 0.2 0.8 86.83% 75.76%
C-PixFc (par.) ✓ ✓ 0.2 0.8 89.34% 77.86%

4. PRACTICALITY AND COMPARISONS

Our focus is not on enhancing AAs performance but explor-
ing the impact of realistic constraints. Given the high effec-
tiveness of unconstrained AAs, there is limited room for im-
provement. We evaluate our work based on three qualitative
criteria: production cost (PC), difficulty of installation (DI),
and difficulty of operation (DO), rated as good (+), insignifi-
cant (0), or bad (−). Practical camouflages score higher. See
definitions in Section S6 in the Supplementary Material.

As shown in Table 1, T-PixFcMa is the most practical
camouflage, despite lower effectiveness (Table 2). Du et al.
[11] (ON) and EVD4UAV [16] achieve similar practicality
scores, but their patches are too small for effective use in
aerial imagery at our resolution. More details on score as-
signment are in Section S6 in the Supplementary Material.
Results from Tables 1 to 2 highlight the trade-off between
practicality and performance. While some studies excel in
AA performance, they lack practicality. We conclude that
optimizing for performance reduces practicality. For exam-
ple, randomly generated camouflages (Table 2) show perfor-
mance reduction that may not be justified without optimiza-
tion. While a more rigorous analysis incorporating real data
could be done (e.g., user studies for DO), this is beyond the
scope due to limited resources.

5. EXPERIMENTS AND RESULTS

While Section 4 qualitatively compares practicality — con-
sidering production cost, installation, and operational com-
plexity — this section provides a quantitative evaluation of
effectiveness under different adversarial attack scenarios.

0.5 0.6 0.7 0.8 0.9 1.0 (Pr)
0%

20%

40%

60%

80%

100%

EASR

C-U

C-Pix

C-Lc

C-Fc (seq.)

S-O

C-PixLc

C-PixFc (seq.)

C-Fc (par.)

C-PixFc (par.)

Fig. 4: EASR vs Practicality (Pr) curves for the shape-based
and combined attacks on PT3D.

5.1. Evaluation metrics

We use effective attack success rate (EASR) to evaluate at-
tack performance, defined as EASR =

|Vd,m|−|Vm,d|
|Vd,d∪Vd,m| , where

the first subscript in Vi,j indicates whether a vehicle was de-
tected (d) or missed (m) in the original dataset, and the second
subscript indicates whether it was detected (d) or missed (m)
in the adversarial dataset after applying adversarial modifica-
tions. EASR is more conservative than the traditional ASR.
More details can be found in Section S5.1 in the Supplemen-
tary Material.

5.2. Test Data

We describe below the datasets used to test the trained models
and the camouflages generated from the attacks.

LINZ Dataset. We used the labeled LINZ dataset us-
ing LINZ Data Service aerial orthoimages1. The dataset was
sampled into 384x384px images, resulting in 172 595 images
with a 12.5 cm/px resolution. We utilized only the “Small
Vehicles” class for experiments, removing other labels but
preserving all images. This dataset is denoted as ILINZ. A
second dataset, ILINZ

bg , was created by removing vehicles from
ILINZ using “Inpaint Anything” [17].

GMaps Dataset The GMaps dataset provides back-
ground images IGMaps

bg for the PyTorch3D [13] data gen-
eration pipeline (Section 3.1). We extracted Google Maps
(GMaps) satellite images IGMaps with matching coordinates
to the LINZ aerial dataset using QGIS2, ensuring a direct
LINZ-GMaps correspondence. Real vehicles were manually
removed from these images using an image editor, resulting
in the background set IGMaps

bg , later used in the synthetic data
generation process.

Blender Data Generation Blender data tests adversar-
ial meshes in realistic settings using the Cycles physics-based
renderer [18]. Unlike PT3D, Blender generates highly realis-
tic but non-differentiable images, excluding it from adversar-
ial optimization. Synthetic overhead images are produced by

1https://data.linz.govt.nz/layer/
51926-selwyn-0125m-urban-aerial-photos-2012-2013/

2https://www.qgis.org

https://data.linz.govt.nz/layer/51926-selwyn-0125m-urban-aerial-photos-2012-2013/
https://data.linz.govt.nz/layer/51926-selwyn-0125m-urban-aerial-photos-2012-2013/
https://www.qgis.org

Blender using LINZ backgrounds ILINZ
bg and meshes M , in-

corporating either original or adversarial textures and shapes.

5.3. Detection Models

We used RetinaNet [2], Faster R-CNN [19], and YOLOv5 [1]
for vehicle center detection in RSI, representing one-stage,
two-stage, and YOLO-family detectors. Each was trained on
real and synthetic data, labeled “real” and “synt” models. On
real test data, synthetic models achieved 50–63% AP, while
real models exceeded 80%. More details can be found in Sec-
tion S1 in the Supplementary Material. We attacked synthetic
model ensembles, using one for inference.

5.4. Texture-based Attacks

We modify a vehicle’s texture in texture-based attacks to con-
ceal it from detectors, starting with random adversarial tex-
tures. There are twelve distinct texture settings, each eval-
uated on an ensemble of three synthetic models (RetinaNet,
Faster R-CNN, YOLOv5). We compare these adversarial tex-
tures with four random texture maps (R-*). Results on PT3D
test data are shown in Table 2. In Fc experiments, five colors
are determined via K-means clustering of background pixels,
while Lc experiments involve model-learned color placement.

To account for the distribution gap between real and syn-
thetic datasets, we repeat the experiments using Blender. The
results, presented in Table 2, show that constraints reduce per-
formance but increase practicality. Example images are in
Figure 3, with additional examples in the Supplementary Ma-
terial. The performance-practicality trade-off remains even
when testing on a different domain, like Blender. We also ob-
serve that unrestrained color distribution results in saturated
colors, a common but underexplored issue in prior works.
Further details are in Section S1 the Supplementary Material.

5.5. Shape-based Attacks

In shape-based attacks, we alter the geometry of the vehicle
sacrificing practicality for improved adversarial performance.
We link practicality, denoted as Pr, to the perturbation mag-
nitude PM as Pr = 1 − PM, where PM ∈ [0, 1]. Pr = 0
indicates extreme mesh perturbation and Pr = 1 indicates no
perturbation for a more realistic scenario.

Our goal is to minimize PM (maximize Pr) in shape-
based attacks while maximizing EASR performance. We
assess multiple attacks on synthetic models across a range
of Pr values. Refer to the curve in Figure 4 under “Origi-
nal” for details (utilizing original vehicle textures). Given
an EASR-vs-Pr curve, we compute a practicality metric P1
as the harmonic mean of the EASR and Pr values for each
point on the curve, i.e. P1 = 2 EASR·Pr

EASR+Pr . We then pick the
attack with the highest P1 as the optimal one. See the results,
denoted as S-O in Table 2. The results suggest that when no
adversarial texture is utilized along with a deformed vehicle

geometry, the deformation must be large to achieve good
performance, which is expensive to produce and difficult to
install and operate, rendering it impractical.

5.6. Combined Attacks

In the combined attacks, we aim to boost the adversarial per-
formance by attacking both mesh entitites: texture and shape.
We discard the adversarial textures that use masking because
a modified mesh is hard to segment into semantically mean-
ingful parts. Thus, this leaves us with six adversarial texture
maps for mesh-based attacks, each with its texture setting.

Sequential Attacks. We conduct six sequential attacks,
each using one of the six adversarial textures from a non-
masked setup. We follow the methodology in Section 5.5 to
determine the optimal PM. The results, labeled C-* in Ta-
ble 2, reveal significant insights. While the improvement over
texture attacks without the fixed colors constraint (T-U, T-Pix,
T-Lc, T-PixLc) is unjustified due to practicality loss, the fixed
colors constraint (T-Fc and T-PixFc) justifies sacrificing some
practicality for better performance. Compared to the huge
practicality loss in shape-based attacks, the sequential blend
of adversarial texture and shape is more efficient than shape-
only attacks. We evaluate the resulting adversarial meshes on
Blender data where the PM⋆ ̸= 0.

Parallel Attacks. We conduct parallel attacks using only
two adversarial texture maps, Fc and PixFc, to reduce the PM
even further than the sequential attacks. The results in Table 2
suggest no significant gain in switching to parallel attacks.

6. CONCLUSION

This study outlines a methodology for developing effective
camouflage strategies to conceal vehicles in RSI. We also
study the performance-practicality trade-off when imple-
menting adversarial camouflages. While our findings could
be misused, it is vital for the research community to be aware
of the vulnerabilities in current models that we highlight. We
show an inverse relationship between practicality and perfor-
mance: unconstrained adversarial textures are highly effective
against vehicle detection systems, while practical constrained
textures are easier to implement but less effective. Shape-
only attacks are also less impactful than texture attacks, but
combining both can achieve results similar to unconstrained
textures. Notably, sequential and parallel executions of shape
and texture attacks demonstrate similar adversarial perfor-
mance. Additionally, we present two pipelines for generating
synthetic aerial images: using a differentiable renderer and a
physics-based renderer.

Acknowledgements
We thank Brent Lance for valuable feedback and support.
This work was supported in part by the Army Research Lab.

7. REFERENCES

[1] Glenn Jocher, “YOLOv5 by Ultralytics,” May 2020. 1,
5

[2] Lin, Tsung-Yi and Goyal, Priya and Girshick, Ross and
He, Kaiming and Dollar, Piotr, “Focal Loss for Dense
Object Detection,” in Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV), Oct
2017. 1, 5

[3] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus, “Intriguing properties of neural networks,”
arXiv preprint arXiv:1312.6199, 2013. 1, 2

[4] Suryanto, Naufal and Kim, Yongsu and Larasati, Ha-
rashta Tatimma and Kang, Hyoeun and Le, Thi-Thu-
Huong and Hong, Yoonyoung and Yang, Hunmin and
Oh, Se-Yoon and Kim, Howon, “ACTIVE: Towards
Highly Transferable 3D Physical Camouflage for Uni-
versal and Robust Vehicle Evasion,” in Proceedings of
the IEEE/CVF International Conference on Computer
Vision (ICCV), October 2023, pp. 4305–4314. 2

[5] Syed M. Kazam Abbas Kazmi, Nayyer Aafaq, Man-
soor Ahmad Khan, Ammar Saleem, and Zahid Ali, “Ad-
versarial Attacks on Aerial Imagery : The State-of-the-
Art and Perspective,” in 2023 3rd International Confer-
ence on Artificial Intelligence (ICAI), 2023, pp. 95–102.
2

[6] Andrew Du, Yee Wei Law, Michele Sasdelli, Bo Chen,
Ken Clarke, Michael Brown, and Tat-Jun Chin, “Ad-
versarial Attacks against a Satellite-borne Multispectral
Cloud Detector,” in 2022 International Conference on
Digital Image Computing: Techniques and Applications
(DICTA), 2022, pp. 1–8. 2

[7] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes,
Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Ta-
dayoshi Kohno, and Dawn Song, “Robust Physical-
World Attacks on Deep Learning Visual Classification,”
in Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2018. 2

[8] Alexey Kurakin, Ian Goodfellow, Samy Bengio, et al.,
“Adversarial Examples in the Physical World,” 2016. 2

[9] Huangxinxin Xu, Fazhi He, Linkun Fan, and Junwei
Bai, “D3AdvM: A direct 3D adversarial sample attack
inside mesh data,” Computer Aided Geometric Design,
vol. 97, pp. 102122, 2022. 2

[10] Kibok Lee, Zhuoyuan Chen, Xinchen Yan, Raquel Urta-
sun, and Ersin Yumer, “ShapeAdv: Generating Shape-
Aware Adversarial 3D Point Clouds,” arXiv preprint
arXiv:2005.11626, 2020. 2

[11] Andrew Du, Bo Chen, Tat-Jun Chin, Yee Wei Law,
Michele Sasdelli, Ramesh Rajasegaran, and Dillon
Campbell, “Physical Adversarial Attacks on an Aerial
Imagery Object Detector,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Com-
puter Vision (WACV), January 2022, pp. 1796–1806. 2,
3, 4

[12] Xingkui Zhu, Shuchang Lyu, Xu Wang, and Qi Zhao,
“TPH-YOLOv5: Improved YOLOv5 Based on Trans-
former Prediction Head for Object Detection on Drone-
captured Scenarios,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp.
2778–2788. 2

[13] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari, “Accelerating 3D Deep Learning with Py-
Torch3D,” arXiv:2007.08501, 2020. 2, 4

[14] Dario Pavllo, Jonas Kohler, Thomas Hofmann, and Au-
relien Lucchi, “Learning Generative Models of Textured
3D Meshes From Real-World Images,” in Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), October 2021, pp. 13879–13889.
2

[15] Suryanto, Naufal and Kim, Yongsu and Kang, Hyoeun
and Larasati, Harashta Tatimma and Yun, Youngyeo
and Le, Thi-Thu-Huong and Yang, Hunmin and Oh,
Se-Yoon and Kim, Howon, “DTA: Physical Camou-
flage Attacks Using Differentiable Transformation Net-
work,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June
2022, pp. 15305–15314. 3

[16] Huiming Sun, Jiacheng Guo, Zibo Meng, Tianyun
Zhang, Jianwu Fang, Yuewei Lin, and Hongkai
Yu, “Evd4uav: An altitude-sensitive benchmark
to evade vehicle detection in uav,” arXiv preprint
arXiv:2403.05422, 2024. 4

[17] Tao Yu, Runseng Feng, Ruoyu Feng, Jinming Liu, Xin
Jin, Wenjun Zeng, and Zhibo Chen, “Inpaint Anything:
Segment Anything Meets Image Inpainting,” arXiv
preprint arXiv:2304.06790, 2023. 4

[18] “Blender Cycles,” https://docs.blender.
org/manual/en/latest/render/cycles/
index.html, Accessed: 2024-03-06. 4

[19] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun, “Faster R-CNN: Towards Real-Time Object De-
tection with Region Proposal Networks,” in Advances
in Neural Information Processing Systems, C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett,
Eds. 2015, vol. 28, Curran Associates, Inc. 5

https://docs.blender.org/manual/en/latest/render/cycles/index.html
https://docs.blender.org/manual/en/latest/render/cycles/index.html
https://docs.blender.org/manual/en/latest/render/cycles/index.html

Texture- and Shape-based Adversarial Attacks for Overhead Image
Vehicle Detection
Supplementary Material

S1. TRAINING DETAILS & DETECTION MODELS

S1.1. Training Details

We use three model architectures in our experiments: Reti-
naNet, Faster R-CNN, and YOLOv5. We obtain RetinaNet
and Faster R-CNN from Detectron23. We retrieve YOLOv5
from its native implementation by Ultralytics4. We train the
first two using the Detectron2 pipeline. We train YOLOv5
using its native pipeline.

S1.1.1. Real Models

The training data is derived from the LINZ dataset ILINZ, by
removing all non-“Small Vehicle” class labels from the train-
ing set, resulting in 119 691 training images. We train the real
RetinaNet and Faster R-CNN for 10 000 iterations and batch
size 640. We train the real YOLOv5 for 50 epochs and batch
size 640, which corresponds to approximately 10 000 itera-
tions.

S1.1.2. Synthetic Models

To train the synthetic models, we produce a training synthetic
dataset using PT3D consisting of 30 000 images. We train
RetinaNet and Faster R-CNN for 10 000 iterations using batch
size 128, while YOLOv5 is trained for 42 epochs using batch
size 128 (approximately 9800 iterations).

S1.2. Detection Models

Table S1 shows the average precision scores by the real and
synthetic models on the synthetic and real test sets. These
results supplement Section 7.2 in the paper.

Table S1: Evaluation results of the six models on the real and
synthetic test sets.

Architecture Training
Data

Detection
Threshold

AP (real) AP (synt.) AP
(Blender)

RetinaNet ILINZ 49.82% 93.50% 94.80% 91.22%
Faster R-CNN ILINZ 72.13% 80.34% 93.31% 81.71%
YOLOv5 ILINZ 59.85% 96.21% 95.51% 95.55%
RetinaNet PT3D 47.64% 49.09% 99.88% 79.35%
Faster R-CNN PT3D 86.95% 59.21% 99.49% 85.50%
YOLOv5 PT3D 60.40% 63.54% 99.95% 97.99%

3https://github.com/facebookresearch/detectron2
4https://github.com/ultralytics/yolov5

S2. PYTORCH3D DATA REALITY GAP
MITIGATION

Mitigating the distribution gap between the real and PT3D
datasets is essential for various reasons. The primary reason
is the generalization of our results. We cannot claim that our
results can generalize to one domain if we operate on a com-
pletely different domain. Hence, we attempt to minimize the
distribution gap. We try to achieve this goal by optimizing
specific parameters in the rendering pipeline, as described be-
low.

S2.1. Gaussian Blur

We apply blurring to the vehicles in the images to simulate
the blurring in the real images. Given a background image
Ibg and the corresponding foreground image (i.e. , containing
vehicles) Ifg, we apply Gaussian blur:

Iblur = Ibg +G(Ifg − Ibg), (1)

where G(·) is a Gaussian blur operator with kernel size de-
fined by k = 6 ·

⌈
σ
⌉
− 1, where

⌈
·
⌉

is the ceiling operator,
and σ is the blur level. We find that σ = 2.4 is the optimal
blurring value as shown in Figure S5. Our analysis of the blur
level shows that deficient levels of blur (i.e. , close to coarse
PT3D renderings) result in less robust synthetic models when
evaluated on the real data. Similarly, very high levels of blur
(i.e. , almost vanished vehicles) also result in poor perfor-
mance. As expected, the optimal value is somewhere in the
middle. See the effect of applying blurring in Figure S9.

S2.2. Anti-aliasing

We use anti-aliasing techniques to remove pixelization from
PyTorch3D’s coarse renderings. We apply them by rendering
images four times larger than the intended size, then com-
pressing them with the average pooling operator with kernel
size 4 and stride 4. See the effect of anti-aliasing in Figure S9.

S3. DATASETS INFORMATION

This section provides technical details for the datasets we
have sampled/annotated (real) or generated (synthetic) for our
experiments.

S3.1. Real Datasets

We produced two real overhead-view datasets for our project.
The images were sampled from two online sources: Land In-

https://github.com/facebookresearch/detectron2
https://github.com/ultralytics/yolov5

formation New Zealand5 (LINZ) and Google Maps (GMaps).
Since both provide georeferenced imagery, the two image sets
were sampled from the exact location in New Zealand - Sel-
wyn6.

S3.1.1. LINZ Dataset

Examples of the labeled LINZ and the background LINZ
datasets are shown in Figure S10 and Figure S11, respec-
tively. The distribution between negative (i.e. , empty) and
positive (i.e. , non-empty) images in the LINZ dataset is as
follows: 158 944 for negative images and 13 651 for positive
images. See the distribution of vehicle categories in this set
of images in Figure S6.

S3.1.2. Google Maps (GMaps) Dataset

We retrieved 173 264 images in total for the GMaps dataset,
which approximately matches the number of sampled LINZ
images. See examples of the GMaps dataset images in Fig-
ure S12.

S3.2. Synthetic Datasets

For our experiments, we rendered various synthetic datasets
with original and adversarial objects using two rendering
techniques: PyTorch3D and Blender. Here, we provide addi-
tional technical details and examples from each.

S3.2.1. PyTorch3D Datasets

Original. This dataset includes original (unmodified) car
meshes. See examples of the PyTorch3D original images in
Figure S13.

Adversarial and Random Textures. As described in the
paper, we produce twelve adversarial texture maps and four
random texture maps. See these texture maps in Figure S14.
We generate 5000 validation images for each texture map that
we use for evaluation. To generate an image, we first render
the meshes using PT3D and then insert a background image
sampled from the GMaps dataset. For each scene, we uni-
formly sample from one to five vehicles. We uniformly ran-
domize the vehicle position and rotation in the scene. The
camera always points to the origin of the coordinates as de-
fined in PT3D. To sample the camera pose, we first uniformly
sample a 2D-coordinate on a square, which we then re-project
on a hemisphere, ensuring that the maximum elevation angle
deviation from the vertical position is 20◦. View examples of
these images in Figure S16.

5https://data.linz.govt.nz/
6https://data.linz.govt.nz/layer/

51926-selwyn-0125m-urban-aerial-photos-2012-2013/

S3.2.2. Blender Datasets

Original. We render 14 459 images in Blender, where 998
contain vehicles and 13 461 images are empty. There are 2096
vehicles in total in the Blender data. See examples of the
original Blender images in Figure S17.

Adversarial and Random Textures. We use the same
adversarial and random texture maps as described for the
PT3D adversarial data. We also use the same scenes as for
the original Blender data, i.e. , 14 459 images, out of which
998 images contain 2096 vehicles in total. See example
images in Figure S18.

S4. 3D MESH-BASED ADVERSARIAL ATTACKS

In this section, we describe the technical aspects detailing
the methodology employed for executing adversarial attacks
within each specific setting.

S4.1. Ensemble Attacks

See Table S2 for an overview of some significant hyper-
parameters related to each adversarial attack reported in the
paper.

Table S2: An overview of the hyper-parameters used in the
ensemble attacks. The loss coefficients λ1, λ2 and λ3 corre-
spond to the loss coefficients applied to the loss objectives of
RetinaNet, Faster R-CNN and YOLOv5 respectively, as de-
scribed in Equation 1 in the main paper.

Attack Type Loss coefficient λi # of epochs
λ1 λ2 λ3

A-U 0.020 10.000 10.000 3
A-Ma 0.020 10.000 10.000 3
A-Pix 0.020 10.000 10.000 3
A-PixMa 0.020 10.000 10.000 3
A-Lc 0.020 10.000 10.000 2
A-Fc 0.002 10.000 2.500 2
A-LcMa 0.007 10.000 5.000 2
A-FcMa 0.002 10.000 2.000 2
A-PixLc 0.020 10.000 10.000 2
A-PixFc 0.002 10.000 2.500 2
A-PixLcMa 0.020 10.000 5.000 2
A-PixFcMa 0.003 10.000 2.000 2
Shape Attack 0.020 15.000 32.000 2
A-Fc (seq.) 0.020 10.000 30.000 2
A-PixFc (seq.) 0.013 18.740 20.444 2
A-Fc (par.) 0.020 10.000 30.000 2
A-PixFc (par.) 0.011 13.180 20.860 2

S4.2. Texture Optimization

As outlined in Section 5.2, we employ three constraints that
lead to the twelve adversarial texture settings discussed in the
main paper. These constraints are Spatial Resolution, Spatial
Restriction and Color Restriction. In this section, we discuss
the implementation of each constraint. Before delving into

https://data.linz.govt.nz/
https://data.linz.govt.nz/layer/51926-selwyn-0125m-urban-aerial-photos-2012-2013/
https://data.linz.govt.nz/layer/51926-selwyn-0125m-urban-aerial-photos-2012-2013/

the details of each constraint, we first describe how the adver-
sarial texture is defined in the unconstrained attack (T-U). To
execute this attack, a tensor of dimensions 512 × 512 × 3 is
initialized, representing the adversarial texture map. During
this initialization process, each element in the tensor is uni-
formly sampled from 0 to 1. During the unconstrained attack,
this tensor is the optimized entity.

S4.2.1. Spatial Resolution

To implement the spatial resolution constraint, we store the
adversarial texture as a tensor of a smaller size. In our case,
because we apply pixelization of size 16 px×16 px, we store a
latent representation of the adversarial texture as a 32×32×3
tensor, where the first two dimensions are derived from the
fact that the final texture map is expected to be 512×512×3,
hence 512/16 = 32. Upon texture generation request, we
upscale this tensor to 512×512×3 using the nearest-neighbor
interpolation, resulting in a pixelated output.

S4.2.2. Spatial Restriction

To implement the spatial restriction constraint, we use an ad-
versarial texture map Tadv of size 512 × 512 × 3, an original
texture map Tor of a vehicle to which the adversarial texture
is applied, and its corresponding binary segmentation mask
Tmask. Using these three entities, we produce the segmented
adversarial texture map

Tsegmented = Tor · (1− Tmask) + Tadv · Tmask. (2)

See the “Ma” texture maps in Figure S15 to understand the
final result. When combining this constraint with the Spatial
Resolution constraint, we first produce a pixelated adversarial
texture map and then apply masking.

S4.2.3. Color Restriction

Consider the following example to understand how the color
constraint is implemented differently. Let pi be the i-th pixel
of a texture map, such that pi ∈ P , where P ∈ R(Ht·Wt)×3 is
the set of all pixels in the texture map of size (Ht ×Wt × 3).
In addition, let C = {ci,∀i = 1, 2, . . . , N}, ci ∈ R3 be the
limited set of colors that we want to enforce for painting the
texture map, where N is the number of allowed colors.

Ideally, we would like to be able to perform argmin in a
differentiable manner to reassign each pixel value at each at-
tack iteration, such that pi ← argmin

ci∈C
(∥pi− ci∥2). However,

it is unclear how to do this differently. Therefore, we modify
the pipeline to perform it in a differentiable fashion. First of
all, we change the definition of each pixel in the texture map:
instead of representing RGB values, each pixel now repre-
sents a set of probabilities of belonging to a particular color
ci from the set of colors C, i.e. , pi ∈ RN ,

∑
k pi,k = 1,

P ∈ R(Ht·Wt)×N and pi = (pi,1, pi,2 . . . , pi,N), where pi,k

is the probability that the i-th pixel in the texture map is ck.
Second, we define a softmax-like function, which we use to
amplify the maximum value in a vector and suppress the non-
maximum values. We control the amplification and suppres-
sion levels with a temperature parameter τ . Applying this
softmax-like function to some vector r = [r1, r2, . . .]

T, we
obtain s(ri) = eln (ri)/τ∑

j eln (rj)/τ
. For simplicity, let s(pi) repre-

sent [s(pi,1), . . . , s(pi,N)]T. Whenever prompted to generate
a texture map with the Color Restriction constraint, we per-
form the following procedure on each pixel pi to obtain its
output RGB form p̂i ∈ R3:

wi = s (s (pi)) , (3)
p̂i = C ·wi, (4)

where C = [c1 c2 . . . cN] ∈ R3×N . In other words, we
first shift the probabilities towards the maximum probabil-
ity class as shown in Eq. (3), then, treating probabilities as
weights, we perform a weighted sum of colors C as shown
in Eq. (4). As we empirically find, performing soft-argmax
(Eqs. (3) and (4)) twice results in a much better approximation
to argmax than if it was performed only once. We tried reduc-
ing the temperature parameter τ and performing soft-argmax
only once, but lower temperatures resulted in numerical insta-
bility. After each attack cycle, softmax is applied to each pi
to ensure

∑
k pi,k = 1. After finishing an adversarial attack

with this constraint, a non-differentiable argmax assigns col-
ors from C to each pixel, ensuring a final texture map with at
most N colors. During the attack, either {P} or {P,C} can
be optimized, contingent upon the applied restrictions (“Fc”
or “Lc” respectively).

S4.3. Shape Optimization

As outlined in Section 5.3 in the main paper, we optimize
the displacement map, transforming the pixel values into ver-
tex deformations. We employ two constraints Symmetry and
Magnitude.

We initialize a negative displacement tensor of shape 64×
64× 1 representing a single channel (grayscale) image. This
ensures that the number of pixels in the displacement map
(4096) is always greater than the number of vertices of the
car meshes we use (1000). Contrary to the texture map ini-
tialization, we initialize this tensor with zeros, aiming to start
from the un-deformed state.

Additionally, a topology map is calculated from the static
UV map of each mesh. The topology map gathers and re-
tains the information of each unique vertex from the UV map.
This helps align the displacement maps, UV maps, and tex-
ture maps.

The deformation at each vertex of the mesh is calculated
by using the equation

∆Vi = Ri ·Di, (5)

Axes of symmetry

Fig. S1: An example of the axes of symmetry in a displace-
ment map. The highlighted axes correspond to the central
plane that cuts the mesh in two halves along its longitudinal
direction.

where Ri is the vector defined by joining the geometric mean
of all the vertices of the vehicle mesh and the corresponding
vertex coordinate Vi. To calculate Di, the displacement tensor
is circularly padded to match the dimensions of the UV map.
Then, each point sampled from the topology map is used to
interpolate the aligned displacement map bi-linearly to calcu-
late the corresponding deformation Di. The two constraints
are imposed as follows.

S4.3.1. Symmetry

To ensure the symmetrical layout of the mesh, we apply a
symmetry mask while deforming the mesh. This symmetry
mask is calculated from the UV map with two axes of sym-
metry. The axes of symmetry for the corresponding displace-
ment map are shown in Figure S1.

S4.3.2. Magnitude

The maximum amount of perturbation is crucial to determine
the practicality. We determine the width of the car mesh by
finding the maximum difference of vertex positions along the
width. The sigmoid function σ(x) = 1/ (1 + e−x) is used on
the displacement tensor to make sure its values lie between
0 and 1. The final deformations are calculated by extending
Equation (5).

∆Vi = PM ·W · σ (Ri ·Di) (6)

where PM is the perturbation magnitude as defined in Section
5.3 in the main paper and W is the width of the car. The
displacement maps corresponding to optimal perturbations,
when greater than 0, as described in Table 2 in the main paper
are shown in Figure S19.

S5. ADDITIONAL RESULTS

In this section, we report some further results to complement
the arguments from the main paper.

S5.1. EASR

To evaluate the effectiveness of the adversarial meshes, we
rendered two matched image datasets, Dor and Dadv, from
each experiment. For Dor, we composed and rendered 3D
scenes with the original car meshes. For Dadv, we apply
adversarial modifications to the meshes of the same scenes.
Thus, each image from Dor has an identical version (the same
background, lighting, camera parameters, and car locations
and orientations) with adversarial cars. We compute the per-
centage of vehicles detected in Dor but missed in Dadv. Vd,m

represents such vehicles, and Vd,d denotes vehicles detected
in both Dor and Dadv. This computation yields the Attack
Success Rate ASR =

|Vd,m|
|Vd,d∪Vd,m| , where | · | is the cardinal-

ity operator. In our task, avoiding introducing new detections
Vm,d after applying the adversarial entity is also important.
Thus, we modify ASR to account for this:

EASR =
|Vd,m| − |Vm,d|
|Vd,d ∪ Vd,m|

= ASR− ER, (7)

where EASR is the Effective Attack success Rate and ER is
the erroneous rate, i.e. fraction of true-positive detections
that emerged after introducing the adversarial entity.

S5.2. APD

In addition to computing the EASR, we evaluate the average
precision drop (APD) when running adversarial attacks. To
calculate APD, we first compute the AP on a dataset of orig-
inal images Dor and on a dataset of adversarial images (Dadv
(where both are as defined in Section 7.1 in the main paper),
resulting in APor and APadv respectively. We then obtain the
average precision drop as APD = APor − APadv. See the
results in Table S3.

As anticipated and previously noted, the findings indicate
that introducing constraints diminishes performance while in-
corporating shape modifications alongside texture alterations
restores performance. We also highlight the notably low
APD observed in randomly generated texture maps, implying
that replicating adversarial modifications randomly may yield
poor results.

S5.3. Original Blender Data Evaluation

We also report the evaluation results of all models using the
original Blender data. See example images in Section S3.2.2,
and the evaluation results in Table S1. The evaluation re-
sults suggest that almost all models perform quite well on
the Blender original data. It could be the consequence of the

Table S3: The figures show mean values from evaluations
of individual synthetic models on PT3D and Blender data.
“T”, “R”, “S” and “C” represent the texture, random texture,
shape, and combined attacks. Note that Lc and Fc are mutu-
ally exclusive by definition. The constraints follow the def-
initions outlined in Section 5.2. PM⋆ and Pr⋆ represent the
optimal perturbation magnitude and practicality of the attacks
involving shape modifications.

Attack
Constraints PM⋆ Pr⋆ PT3D Blender

Pix Lc Fc Ma APD APD
T-U — — 50.97% 63.17%
T-Ma ✓ — — 32.68% 40.67%
T-Pix ✓ — — 53.28% 59.03%
T-PixMa ✓ ✓ — — 24.20% 37.47%
T-Lc ✓ — — 46.17% 64.95%
T-Fc ✓ — — 7.54% 48.46%
T-LcMa ✓ ✓ — — 26.83% 46.80%
T-FcMa ✓ ✓ — — 2.56% 23.11%
T-PixLc ✓ ✓ — — 56.30% 62.13%
T-PixFc ✓ ✓ — — 9.62% 48.92%
T-PixLcMa ✓ ✓ ✓ — — 22.97% 37.59%
T-PixFcMa ✓ ✓ ✓ — — 2.53% 38.32%
R-U — — 0.21% 13.69%
R-Pix ✓ — — 0.51% 16.77%
R-Fc ✓ — — 0.85% 15.82%
R-PixFc ✓ ✓ — — 0.62% 17.75%
S-O — — — — 0.4 0.6 53.18% 72.47%
C-U 0.0 1.0 55.43% —
C-Pix ✓ 0.0 1.0 58.09% —
C-Lc ✓ 0.0 1.0 50.49% —
C-Fc (seq.) ✓ 0.2 0.8 18.35% 62.96%
C-Fc (par.) ✓ 0.2 0.8 37.39% 62.57%
C-PixLc ✓ ✓ 0.0 1.0 58.13% —
C-PixFc (seq.) ✓ ✓ 0.2 0.8 36.09% 68.64%
C-PixFc (par.) ✓ ✓ 0.2 0.8 37.79% 71.18%

Blender dataset being a high quality simulation of real world
data, i.e. it is between the coarse PT3D data and the fine-
grained LINZ data. Consequently, both the real and synthetic
models exhibit strong performance, attributed to the close re-
semblance between the Blender dataset and the training sets
of both sets of models.

S5.4. Evaluating Real Data Models on the Adversarial
Data

We also evaluate the real models (i.e. , trained on real data) on
all adversarial datasets rendered using Blender. We run these
experiments to assess how robust models trained on real data
would react to adversarial samples that are highly realistic.
However, we recognize the distribution gap between the real
data and the synthetically produced data with Blender. See
the results of the evaluations in Figures S2 and S3.

S6. PRACTICALITY AND COMPARISONS

This section extends the arguments discussed in Section 6 in
the main paper. See the extended version of Table 1 from

the main paper below in Table S4. Because the optimal Pr
level found for C-U, C-Pix, C-Lc, and C-PixLc is 1.0, i.e.
PM = 0.0, hence these combined attacks are not considered
in Table S4, because they correspond to their texture-based
counterparts T-U, T-Pix, T-Lc, and T-PixLc, respectively.

Table S4: Comparing the practicality of the attacks explored
in our study to previous works. We do not distinguish be-
tween sequential and parallel combined attacks as they only
impact the process, not the final result’s form. The first sym-
bol reflects the texture-related practicality score, the second
symbol reflects the shape-related practicality score. This ta-
ble complements Table 1 from the main paper. Compared to
the table in the main paper, the “Notes” column is missing
because we discuss the score of each camouflage in detail in
the text, instead of leaving brief notes in the table.

Camouflage PC DI DO Total
Score

O
th

er
w

or
ks

Du et al. (ON) [22] +0 +0 +0 +3
Du et al. (OFF) [22] 00 +0 −0 0
EVD4UAV [71] +0 +0 +0 +3
FCA [75] −0 −0 +0 −1
ACTIVE [73] −0 −0 +0 −1
DTA [72] −0 −0 +0 −1

O
ur

T-U −0 −0 −0 −3
T-Ma −0 −0 +0 −1
T-Pix −0 +0 −0 −1
T-PixMa −0 +0 +0 +1
T-Lc −0 −0 −0 −3
T-Fc −0 −0 −0 −3
T-LcMa −0 −0 +0 −1
T-FcMa −0 −0 +0 −1
T-PixLc 00 +0 −0 0
T-PixFc +0 +0 −0 +1
T-PixLcMa 00 +0 +0 +2
T-PixFcMa +0 +0 +0 +3
S-O 0− 0− 0− −3
C-Fc −− −− −− −6
C-PixFc +− +− −− −2

The constraints that we implement affect the practicality
of the final adversarial meshes, expressed through the produc-
tion cost (PC), the difficulty of installation (DI), and difficulty
of operation (DO). Production cost refers to the estimated
cost of producing the physical camouflage, including mate-
rial, printing expenses, and labor time. Difficulty of installa-
tion refers to how easy or difficult it is to physically apply or
set up the camouflage on a vehicle. Difficulty of operation as-
sesses the extent to which the camouflage affects the normal
operation or mobility of the vehicle. See detailed discussions
below.

S6.1. Texture-Based Attacks

We first consider the texture modifications and their effect on
the practicality.

The Spatial Resolution constraint (abbreviated as “Pix”)
provides a practical approach to camouflage implementation

T-U
*

T-M
a*

T-Pix
*

T-PixM
a*

T-L
c*

T-Fc*

T-L
cM

a*

T-FcM
a*

T-PixL
c*

T-PixF
c*

T-PixL
cM

a*

T-PixF
cM

a*
R-U

*

R-Pix
*

R-Fc*

R-PixF
c*

S-O

C-Fc (
seq

.)
*

C-PixF
c (

seq
.)
*

C-Fc (
pa

r.)
*

C-PixF
c (

pa
r.)
*

Attack Type

0%

20%

40%

60%

80%

100% 99
.5

1%

94
.6

3%

98
.9

4%

86
.9

0% 97
.4

0%

99
.2

7%

77
.6

2% 85
.9

2%

98
.5

4%

98
.1

3%

78
.1

1%

95
.5

2%

65
.1

7%

66
.1

5%

79
.1

7%

82
.1

8%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

10
0.

00
%

98
.7

2%

82
.0

3% 92
.2

6%

74
.1

7%

96
.3

6%

96
.6

1%

74
.9

4%

73
.2

7%

94
.4

4%

94
.5

0%

68
.1

6%

91
.1

1%

70
.5

2%

66
.4

3%

34
.7

2%

77
.8

8%

10
0.

00
%

10
0.

00
%

10
0.

00
%

99
.9

4%

99
.9

4%

99
.6

0%

81
.7

5%

96
.6

7%

82
.6

6%

96
.7

7%

99
.6

0%

80
.4

4% 88
.2

1% 97
.4

8%

99
.4

0%

76
.2

1%

97
.9

8%

74
.5

0%

75
.0

0%

63
.9

1%

84
.2

7%

99
.9

0%

10
0.

00
%

10
0.

00
%

99
.9

0%

10
0.

00
%

EASR

RetinaNet (Real) Faster R-CNN (Real) YOLOv5 (Real)

Fig. S2: Evaluation results of the models trained on real data and tested on the Blender-generated adversarial datasets.
Dentations: ∗texture-only attacks, †shape-only attacks, and ∗†combined attacks.

T-U
*

T-M
a*

T-Pix
*

T-PixM
a*

T-L
c*

T-Fc*

T-L
cM

a*

T-FcM
a*

T-PixL
c*

T-PixF
c*

T-PixL
cM

a*

T-PixF
cM

a*
R-U

*

R-Pix
*

R-Fc*

R-PixF
c*

S-O

C-Fc (
seq

.)
*

C-PixF
c (

seq
.)
*

C-Fc (
pa

r.)
*

C-PixF
c (

pa
r.)
*

Attack Type

0%

20%

40%

60%

80%

100%

79
.6

9%

48
.5

4%

71
.4

3%

38
.3

4%

63
.5

3%

83
.6

4%

30
.0

3%

50
.5

1%

66
.3

6%

80
.1

9%

29
.6

1%

70
.7

7%

30
.5

6%

35
.4

7%

26
.4

5%

39
.2

0%

90
.3

3%

90
.5

3%

89
.9

0%

88
.8

6%

88
.7

4%

56
.7

8%

28
.1

9%

49
.5

4%

27
.1

4%

44
.3

0%

72
.1

1%

24
.3

0%

50
.7

6%

48
.8

2%

70
.5

6%

20
.4

3%

64
.7

9%

38
.7

2%

40
.9

7%

21
.1

9%

43
.8

3%

77
.8

0%

79
.6

5%

77
.7

5%

75
.3

9%

75
.4

1%

89
.4

7%

48
.6

7%

69
.5

2%

39
.1

5%

80
.6

1% 86
.8

8%

41
.1

8% 47
.1

5%

70
.9

0%

83
.9

4%

35
.9

2%

74
.2

8%

42
.3

6%

39
.1

0%

9.
51

%

46
.6

9%

95
.5

4%

95
.3

3%

95
.4

6%

95
.3

5%

95
.1

7%

APD

RetinaNet (Real) Faster R-CNN (Real) YOLOv5 (Real)

Fig. S3: Evaluation results of the models trained on real data and tested on the Blender-generated adversarial datasets.
Dentations: ∗texture-only attacks, †shape-only attacks, and ∗†combined attacks.

by utilizing stickers or painting squares rather than applying
the entire camouflage in one go (for example, by using vinyl
wraps, as discussed below). This method enhances the DI
score, resulting in improved outcomes. Consequently, cam-
ouflages adhering to the “Pix” constraint receive a positive
texture DI score (+X), whereas those that do not adhere to it
receive a negative score (−X). Here, X is a placeholder for
the shape-related score.

Secondly, the Spatial Restriction constraint (referred to
as “Ma”) takes into consideration the potential challenges of
operating a vehicle covered entirely by camouflage, which
can restrict the vehicle’s mobility. Our findings indicate that
full-coverage camouflages are more effective (refer to Ta-
ble 2 in the main paper; attacks involving “Ma” consistently
yield lower EASR compared to their non-“Ma” counterparts).
However, such camouflages are only suitable for stationary
vehicles, limiting operational flexibility. Introducing this
constraint allows for maintaining mobility. Therefore, cam-
ouflages adhering to this constraint receive a positive texture
DO score (+X), while those not adhering to it receive a
negative score (−X).

The Color Restriction (denoted as “Lc” or “Fc”) con-
straint minimizes the color palette for generating adversarial
texture maps, impacting camouflage production costs (PC).
Without any color restriction, we assume a negative texture
PC score (−X), as full-color printing, typical for such cases,
incurs high costs (e.g., starting from $2000 for vinyl wraps).7

Simply reducing colors does not cut costs, as vinyl wraps re-
main necessary. However, combining color restriction with
spatial resolution (e.g., “PixFc”) lowers costs by using stick-
ers or manually coloring squares using a small predefined set
of colors. Such combinations positively affect both PC and DI
scores (+X). For the limited color constraint (“Lc”), where
colors are automatically identified, we assume no impact on
PC score (0X) due to potentially hard-to-obtain colors.

S6.2. Shape-Based and Combined Attacks

The shape-based attacks do not involve any texture alter-
ations, resulting in texture-related scores of 0 across all
three criteria. Moreover, reproducing shape modifications
proves challenging, resulting in negative scores across all
three shape-related criteria. Estimating the cost and diffi-
culty of installation of such modifications remains uncertain,
dependent on the vehicle’s original shape and the extent of
planned alterations. Similarly, assessing the difficulty of op-
eration proves challenging and contingent on various factors.
The PC, DI, and DO scores for the texture components in
combined attacks mirror those of the texture-only attacks.

7https://www.jdpower.com/cars/shopping-guides/
how-much-does-it-cost-to-wrap-a-car

S6.3. Other Works

Du et al. introduce two types of camouflages: ON and OFF.
The ON type is applied on the rooftop of a vehicle, while the
OFF type is placed outside of the vehicle. We find that the
ON type, as well as EVD4UAV, is as practical as our most
constrained texture-based attack, but its limited coverage area
renders it impractical within the geospatial resolution context
of our study. It could be considered as a tighter version of
our implemented spatial restriction constraint (“Ma”), leading
to lower performance. The OFF type of camouflage scores
lower on DO due to mobility limitations. Additionally, the
production cost of such camouflage remains unclear, resulting
in a neutral PC texture score.

The remaining three works (FCA, ACTIVE, and DTA)
share similarities with our T-Ma camouflage. Therefore, we
assign them the same scores as the T-Ma camouflage.

S7. ANALYSIS OF ADVERSARIAL TEXTURES

Throughout our experiments, we observed a striking sim-
ilarity in the prevalence of highly saturated colors, be-
tween unconstrained adversarial texture maps and adversarial
patches generated in prior studies, such as those mentioned in
[22,4,11]. Further analysis of our results and those of other
researchers revealed that adversarial texture maps or patches
generated in setups with minimal constraints tend to saturate
colors located at the edges of the RGB color cube. They con-
sistently exhibited extreme color saturation. Figure S7 shows
the different T-U textures obtained with different attack ini-
tializations. As you can see, despite different initializations,
they are very similar.

Additionally, our analysis of the latent space indicated
that adversarial attacks could shift vehicle embeddings toward
the background distribution but were unable to achieve com-
plete blending, see Figure S8. We used PCA8 and t-SNE9 on
features from a synthetic RetinaNet model. Replicating the
background underneath the car would be the most optimal so-
lution resulting in the perfect camouflage. As a result, the
features extracted from adversarial vehicles did not closely
resemble the original vehicle or the background embeddings
but instead fell somewhere in between.

As mentioned, some other works produce adversarial
patches with highly saturated colors, similar to our T-U tex-
ture map. Therefore, we analyze the color distribution to
verify that the colors appear at the edges of the RGB cube. To
do so, we plot the distribution of pixel values along the red,
green, and blue channels for each texture map.

Du et al. make their adversarial patches public10 in good
quality, so we use them to compare. See the results of the

8https://scikit-learn.org/stable/modules/
generated/sklearn.decomposition.PCA.html

9https://jmlr.org/papers/v9/vandermaaten08a.html
10https://github.com/andrewpatrickdu/

adversarial-yolov3-cowc

https://www.jdpower.com/cars/shopping-guides/how-much-does-it-cost-to-wrap-a-car
https://www.jdpower.com/cars/shopping-guides/how-much-does-it-cost-to-wrap-a-car
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://jmlr.org/papers/v9/vandermaaten08a.html
https://github.com/andrewpatrickdu/adversarial-yolov3-cowc
https://github.com/andrewpatrickdu/adversarial-yolov3-cowc

comparison in Figure S4. Interestingly, they conclude that
weather augmentations do not considerably improve the re-
sults. However, we find that weather augmentations during
optimization significantly affect the distribution of colors by
pushing a significant fraction of pixels away from the edges of
the RGB cube. This type of effect can be used to constrain the
optimized space, which, without any strict constraints, seems
to attempt to drive the optimization outside the RGB cube
(hence causing crowding at the edges).

A-U (Our)

CP-On-GC (Du et al.)

CP-On-GCW (Du et al.)

0 50 100 150 200 250

Red Channel

0 50 100 150 200 250

Green Channel

0 50 100 150 200 250

Pixel Value

Blue Channel

0 50 100 150 200 250

Red Channel

0 50 100 150 200 250

Green Channel

0 50 100 150 200 250

Pixel Value

Blue Channel

0 50 100 150 200 250

Red Channel

0 50 100 150 200 250

Green Channel

0 50 100 150 200 250

Pixel Value

Blue Channel

Fig. S4: Color distribution in adversarial patches.

0.0 1.0 2.0 3.0 4.0
Blur level

0%

20%

40%

60%

80%

100%

Average Precision vs Blur Level

Synthetic RetinaNet
Synthetic Faster R-CNN
Synthetic YOLOv5
Mean AP

Real RetinaNet
Real Faster R-CNN
Real YOLOv5

Fig. S5: Each point on the solid lines corresponds to a syn-
thetic model trained using the corresponding blur level. Each
such model is evaluated on the real validation set. The hor-
izontal dashed lines represent the real models’ performance
on the real validation set. The vertical dotted lines represent
the maxima. The red line represents the average curve of the
other three curves. As shown by this analysis, σ = 2.4 is the
optimal blur level.

Small
 Veh

icl
e

Trai
ler

 Small

Spe
cia

liz
ed

Truc
k

Van
 RV

Trai
ler

 Larg
e

Bus

Unk
no

wn

34,665
(61.94%)

9,659
(17.26%)

3,682
(6.58%)

3,481
(6.22%) 2,526

(4.51%) 1,398
(2.5%) 366

(0.65%)
192

(0.34%)

Distribution of Vehicle Categories

Fig. S6: Visualization of vehicle category distribution in the
LINZ dataset: each bar signifies the number of samples asso-
ciated with a specific vehicle category. The figures within the
brackets indicate the proportion of total vehicles represented
by each class.

Fig. S7: Examples of T-U textures obtained with different
initializations. The grey region maps to the underside of the
car which is ignored by the adversarial optimization.

Original Cars

Background

T-U Texture

Fig. S8: Embeddings of background images and vehicles with
original and T-U texture maps.

No anti-aliasing, no blurring

Anti-aliasing, no blurring

Anti-aliasing, blurring

Fig. S9: The first row represents the coarse renderings by PyTorch3D. The second row represents the result of applying anti-
aliasing. The third row represents the result of applying both anti-aliasing and blurring.

Fig. S10: Examples of the labeled LINZ dataset.

Fig. S11: The odd rows represent original images from the LINZ dataset. The even rows represent the corresponding back-
ground LINZ images, where the vehicles have been automatically removed.

Fig. S12: Examples of the GMaps background dataset.

Fig. S13: Examples of the original PT3D images.

A-U A-Ma A-Pix A-PixMa

A-FcMaA-LcMaA-FcA-Lc

A-PixLc A-PixFc A-PixLcMa A-PixFcMa

A-PixFcR-Pix R-FcR-U

Fig. S14: Adversarial and random texture maps. The right side corresponds to the car’s underside, which the adversarial
optimization ignores.

A-U A-Ma A-Pix A-PixMa

A-FcMaA-LcMaA-FcA-Lc

A-PixLc A-PixFc A-PixLcMa A-PixFcMa

A-PixFcR-Pix R-FcR-U

Fig. S15: Visualizations of the textures from Figure S14 applied to a car mesh.

A-U A-Ma A-Pix A-PixMa

A-FcMaA-LcMaA-FcA-Lc

A-PixLc A-PixFc A-PixLcMa A-PixFcMa

R-U R-Pix R-Fc A-PixFc

Fig. S16: Illustrations of vehicles sourced from the PT3D datasets featuring adversarial and random texture maps.

Fig. S17: Examples of the original Blender images.

A-U A-Ma A-Pix A-PixMa

A-Lc A-Fc A-LcMa A-FcMa

A-PixLc A-PixFc A-PixLcMa A-PixFcMa

R-U R-Pix R-Fc R-PixFc

Fig. S18: Illustrations of vehicles sourced from the Blender datasets featuring adversarial and random texture maps.

Shape-only attack Combined: A-Fc-seq. Combined: A-Fc-par. Combined: A-Fc-par. Combined: A-Fc-par.Original Mesh

Fig. S19: Visualization of different shape-based attacks and their corresponding displacement maps.

	 Introduction
	 Related Work
	 Method
	 PyTorch3D Data Generation
	 Adversarial Optimization Pipeline
	 Texture-based Attacks
	 Shape-based Attacks

	 Combined Attacks

	 Computational Requirements
	 Practicality and Comparisons
	 Experiments and Results
	 Evaluation metrics
	 Test Data
	 Detection Models
	 Texture-based Attacks
	 Shape-based Attacks
	 Combined Attacks
	 Conclusion
	 References
	 Training Details & Detection Models
	 Training Details
	 Real Models
	 Synthetic Models

	 Detection Models

	 PyTorch3D Data Reality Gap Mitigation
	 Gaussian Blur
	 Anti-aliasing

	 Datasets Information
	 Real Datasets
	 LINZ Dataset
	 Google Maps (GMaps) Dataset

	 Synthetic Datasets
	 PyTorch3D Datasets
	 Blender Datasets

	 3D Mesh-based Adversarial Attacks
	 Ensemble Attacks
	 Texture Optimization
	 Spatial Resolution
	 Spatial Restriction
	 Color Restriction

	 Shape Optimization
	 Symmetry
	 Magnitude

	 Additional Results
	 EASR
	 APD
	 Original Blender Data Evaluation
	 Evaluating Real Data Models on the Adversarial Data
	 Practicality and Comparisons
	 Texture-Based Attacks
	 Shape-Based and Combined Attacks
	 Other Works

	 Analysis of Adversarial Textures

