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Robust Regression
Dong Huang, Ricardo Cabral and Fernando De la Torre, Member, IEEE

Abstract—Discriminative methods (e.g., kernel regression, SVM) have been extensively used to solve problems such as object
recognition, image alignment and pose estimation from images. These methods typically map image features (X) to continuous
(e.g., pose) or discrete (e.g., object category) values. A major drawback of existing discriminative methods is that samples are
directly projected onto a subspace and hence fail to account for outliers common in realistic training sets due to occlusion,
specular reflections or noise. It is important to notice that existing discriminative approaches assume the input variables X to be
noise free. Thus, discriminative methods experience significant performance degradation when gross outliers are present.
Despite its obvious importance, the problem of robust discriminative learning has been relatively unexplored in computer vision.
This paper develops the theory of Robust Regression (RR) and presents an effective convex approach that uses recent advances
on rank minimization. The framework applies to a variety of problems in computer vision including robust linear discriminant
analysis, regression with missing data, and multi-label classification. Several synthetic and real examples with applications to
head pose estimation from images, image and video classification and facial attribute classification with missing data are used
to illustrate the benefits of RR.

Index Terms—Robust methods, errors in variables, intra-sample outliers, missing data.
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1 INTRODUCTION

Discriminative methods (e.g., kernel regression, SVM)
have been successfully applied to many computer
vision problems. Unlike generative approaches, which
produce a probability density over all variables, dis-
criminative approaches directly attempt to compute
the input to output mappings for classification or
regression. Typically, discriminative models achieve
better performance in classification tasks, especially
when large amounts of training data are available.
However, discriminative approaches often lack math-
ematically principled ways to incorporate priors.
More importantly, existing discriminative models are
not robust to errors in the data.

Linear and non-linear regression have been applied
to solve a number of computer vision problems (e.g.,
classification [1], pose estimation [2]). Although they
are widely used, a major drawback of existing regres-
sion approaches is their lack of robustness to outliers
and noise, which are common in realistic training
sets due to occlusion, specular reflections or image
noise. To better understand the lack of robustness, we
consider the problem of learning a linear regressor
from image features X to pose angles Y (see Fig. 1)
by minimizing

min
T
‖Y −TX‖2F . (1)
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(see footnote1 for an explanation of the notation used
in this work). In the training stage, we learn the
mapping T, and in testing, we estimate the pose by
projecting the features xte of the test image, Txte.
Standard regression, Eq. (1), is optimal under the
assumption that the error, E = Y − TX, is normally
distributed. The Least Squares (LS) estimate is the
most efficient unbiased estimate of T in the presence
of Gaussian noise. This is the well-known Gauss-
Markov theorem [3]. However, a small number of
gross outliers can arbitrarily bias the estimate of the
model’s parameters (T). It is important to note that
in training and testing, X is assumed to be noise
free. However, a single outlier in either training or
testing can bias the projection because LS projects the
data directly onto the subspace of T. That is, the dot
product of xte with each row of T (i.e., Txte) can be
largely biased by only a single outlier. For this reason,
existing discriminative methods lack robustness to
outliers.

The problem of robustness in regression has been
studied thoroughly in statistics and recent decades
have witnessed a fast-paced development of so-called
robust methods (e.g., [4], [5], [6]). For instance, M-
estimators [4] assume the error has a heavy tail

1. Bold uppercase letters denote matrices (D), bold lowercase
letters denote column vectors (e.g., d). dj represents the jth column
of the matrix D. Non-bold letters represent scalar variables. ‖A‖F
designates the Frobenius norm of matrix A. ‖A‖∗ is the Nuclear
norm (sum of singular values) of A. The `0 norm of A, ‖A‖0, de-
notes the number of non-zero coefficients in A. Ik ∈ <k×k denotes
the identity matrix. 1n ∈ <n is a vector of all ones. 0k×n ∈ <k×n
is a matrix of zeros. 〈A,B〉 denotes the inner product between
two matrices A and B. Sb(a) = sgn(a)max(|a| − b, 0) denotes
the shrinkage operator. Dα(A) is the Singular Value Thresholding
(SVT) operator, and the scalar α is a parameter of the SVT operator.
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Fig. 1. Predicting the yaw angle of the monkey’s head from image features. Note the image features (image
pixels) contain outliers (hands of the monkey). (Left) Standard regression: projects a partially occluded frontal
face image directly onto the head pose subspace and fails to estimate the correct yaw angle; (Right) Robust
regression removes the intra-sample outlier and projects only the cleaned input image without biasing the yaw
angle estimation.

and typically re-weight the whole sample inversely
proportional to the error using different influence
functions. That is, some robust approaches minimize
a weighted regression

∑n
i=1 wi‖yi −Txi‖22, where wi

weights the whole sample. Other robust approaches
replace the sum (or the mean) by a more robust
measure such as the median (e.g., least median of
squares) [7] or trimmed mean (e.g., least trimmed
square) [5]. However, all of the aforementioned tra-
ditional robust approaches for regression differ from
the problem addressed in this paper in two ways: (1)
these approaches do not model the error in X but in
Y−TX, (2) they mostly consider sample outliers (i.e.,
the whole image is an outlier). This work proposes
an intra-sample robust regression (RR) method that
explicitly accounts for outliers in X. Our work is
related to errors in variables (EIV) models (e.g., [8],
[9], [10]). However, unlike existing EIV models, RR
does not require a prior estimate of the noise and all
parameters are automatically estimated.

In addition to reducing the influence of noise and
outliers in regression, we extend RR to be able to
deal with missing data in regression, wherein some
elements of X are unknown. This is a common issue
in computer vision applications since unknown ele-
ments typically correspond to unobserved local image
features. Surprisingly, this problem has been relatively
unexplored in the computer vision literature. We il-
lustrate the power of RR in several computer vision
tasks, including head pose estimation from images,
facial attribute detection with missing data and robust
LDA for multi-label image classification.

2 RELATED WORK

Extensive literature exists on robust methods for
regression. Huber [4] introduced M-estimation for

regression, providing robustness to sample outliers.
Rousseeuw and Leroy [5] proposed Least Trimmed
Squares, which explicitly finds a data subset that
minimizes the squared residual sum. Parallel to de-
velopments in the statistics community, the idea of
subset selection has also flourished in many computer
vision applications. Consensus approaches such as
RANSAC [11] (and its Maximum Likelihood (ML)
and M-estimator variants [12], [13]) randomly sub-
sample input data to construct a tentative model.
Model parameters are updated when a new config-
uration produces smaller inlier error than its pre-
decessors. In spite of accurate parameter estimates,
even in the presence of several outliers, these methods
heavily rely on the assumption that model generation
from a data subset is computationally inexpensive and
inlier detection can be done adequately. Moreover,
the aforementioned methods do not tackle intra-sample
outliers, i.e., partial sample corruptions.

To deal with noise in the variables, Error-In-Variable
(EIV) approaches have been proposed (see [9] for
an overview.) However, existing EIV approaches rely
on strong parametric assumptions for the errors. For
instance, orthogonal regression assumes that the vari-
ance of errors in the input and response variables
are identical [14] or that their ratio is known [15].
Under these assumptions, orthogonal regression can
minimize the Gaussian error orthogonal to the learned
regression vectors. Grouping-based methods [16] as-
sume that errors are respectively i.i.d. among the
input and response variables so that one can split
the data into groups and suppress the errors by com-
puting either differences of the group sum, geometric
means or instrument variables. Moment-based meth-
ods [17] learn the regression by estimating high-order
statistics, i.e., moments, from i.i.d. data. Likelihood-
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based methods [10] learn a reliable regression when
the input and response variables follow a joint, nor-
mal and identical distribution. Total Least Square
(TLS) [9] and its nonlinear generalization [18] solve for
additive/multiple terms that enforce the correlation
between the input and response variables. TLS-based
methods relax the assumptions in previous methods
to allow correlated and non-identically distributed
errors. Nevertheless, they still rely on parametric as-
sumptions on the error. Unfortunately, in typical com-
puter vision applications, errors caused by occlusion,
shadow and edges seldom fit such distributions.

Although regression and classification are single-
handedly modeled by our framework, several au-
thors have addressed the issue of robust classification
alone. The majority of these methods can be cast
as robust extensions of Fisher/Linear Discriminant
Analysis (FDA/LDA), where the empirical estimation
of the class mean vectors and covariance matrices
are replaced by their robust counterparts such as
MVE estimators [19], MCD estimators [20] and S-
estimators [21], [22]. In machine learning, several au-
thors [23], [24] have proposed a worst-case FDA/LDA
by minimizing the upper bound of the LDA cost
function to increase the separation ability between
classes under unbalanced sampling. As in previous
work on robust regression, these methods are only
robust to sample-outliers.

Our work is more related to recent work in com-
puter vision. Fidler and Leonardis [25] incorporated
robustness into LDA for intra-sample outliers. In the
training stage, [25] computed PCA on the training
data, replaced the minor PCA components by a ro-
bustly estimated basis, and then combined the two
bases into a new one. Then, the data was projected
onto the combined basis and LDA was computed.
During testing, [25] first estimated the coefficients of
test data on the recombined basis by sub-sampling
the data elements using [26]. Finally, the class label
of the test data was determined by applying learned
LDA on the estimated coefficients. Although outliers
outside of the PCA subspace can be suppressed, [25]
does not address the problem of learning LDA with
outliers in the PCA subspace of the training data.
Zhu and Martinez [27] proposed learning an SVM
with missing data that was robust to outliers. In [27],
the possible values for missing elements are modeled
by a Gaussian distribution such that for each class,
the input data with all possible missing elements
spans an affine subspace. The decision plane of the
robust version of SVM jointly maximizes the between-
class margin while minimizing the angle between the
decision plane and the class-wise affine subspaces.
However, [27] requires the location of the outliers to
be known. In contrast to previous works, our RR en-
joys several advantages: (1) it is a convex approach; (2)
it does not impose assumptions, aside from sparsity,
are imposed on the outliers, which makes our method

general; (3) it automatically cleans the intra-sample
outliers in the training data while learning a classifier.

Our work is inspired by existing work in robust
PCA [28] and its recent advances due to rank mini-
mization procedures [29], [30]. These methods model
data as the sum of a low-rank clean data components
with an arbitrary large and sparse outlier matrix. De
La Torre and Black [28] increased PCA robustness
by replacing the least-square metric with a robust
function and re-weighted the influences of each com-
ponent in each sample based on a given influence
function (derivative of the robust function). Ke and
Kanade [31] replaced the `2 norm with `1 to measure
residuals between an input data matrix and its factor-
ization and used an alternated linear programming
to minimize it. [29], [30] separated a low-rank data
matrix from an assumed sparse corruption despite its
arbitrarily large magnitude and unknown pattern. A
major advantage of this approach is the convex for-
mulation. This approach has been extended to other
problems such as background modeling and shadow
removal [30], image tagging and segmentation [32],
texture unwrapping [33] and segmentation [34]. These
algorithms, however, were originally devised with
tasks such as dimensionality reduction or matrix com-
pletion in mind, which are unsupervised in nature.
In this paper, we will further extend the approach to
detect intra-sample outliers in robust regression, and
illustrate several applications in computer vision.

3 ROBUST REGRESSION (RR)
This section describes the objective function for our
proposed RR and its extension to robust LDA, as well
as a detailed optimization algorithm for RR.

Let X ∈ <dx×n be a matrix containing n dx-
dimensional samples possibly corrupted by outliers.
Formally, X = D + E, where D ∈ <dx×n is a
matrix containing the underlying noise-free compo-
nent and E ∈ <dx×n models outliers. In regression
problems, one learns a mapping T from X to an
output Y ∈ <dy×n. The outliers and the noise-free
component D are unknown, so existing methods use
X in the estimation of T. In presence of outliers, this
results in a biased estimation of T. Our RR solves
this problem by explicitly factorizing X into D + E
and only computing T using the cleaned data D. RR
solves the following optimization problem

min
T,D,E

η

2

∥∥∥W(Y −TD̂)
∥∥∥2

F
+ rank(D) + λ‖E‖0

s.t. X = D + E, D̂ = [D;1T ], (2)

where W ∈ <dy×dy is a diagonal matrix that weights
the output dimensions, T ∈ <(dx+1)×dy is the regres-
sion matrix (the extra dimension is for the regression
bias term). η and λ are scalars that weight the first
and third term in Eq. (2) respectively. RR explicitly
avoids projecting the outlier matrix E to the output
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Algorithm 1 ALM algorithm for solving RR Eq. (3)

Require: X, Y, parameters η (a positive scalar weights term
∥∥∥W(Y −TD̂)

∥∥∥2

F
), λ (a positive scalar weights

term ‖E‖1), ρ (a positive scalar for updating the Lagrange coefficients), γ (a positive scalar for regularizing
the solution to T).

Initialization:D(0) = X, D̂(0) = [D(0);1T ], E(0) = X−D(0), T(0) = (D̂(0)(D̂(0))T + γIdx+1)−1Y(D̂(0))T ;
Lagrange Multiplier Initialization: Γ

(0)
1 = X

‖X‖2 ,Γ(0)
2 = D(0)

‖D(0)‖2
,µ(0)

1 = dn
4 ‖X‖1 , µ

(0)
2 = dn

4 ‖D
(0)‖1.

while ‖
X−D(k)−E(k)‖

F

‖X‖F
> 10−8 and ‖

D̂(k)−[D(k);1T ]‖
F

‖D̂(k)‖
F

> 10−8 do

Assuming W = diag{wii}, update T(k+1) = [t1, t2, · · · , tc], where ti = w2
ii(w

2
iiD̂

(k+1)(D̂(k+1))T +
γId)

−1yi(D̂
(k))T , and γ regularizes the scale of ti.

Update D̂(k+1) =
[
η(T(k))TWTWT(k) + µ

(k)
2 Id

]−1 [
η(T(k))TWTY − Γ

(k)
2 + µ

(k)
2 [D(k);1T ]

]
;

Update D(k+1) = D1/β(Z(k+1)), where Z(k+1) = 1
β

(
Γ

(k)
1 + µ

(k)
1

(
X−E(k)

)
+
[
Γ

(k)
2 + µ

(k)
2 D̂(k)

]
(1:dx,·)

)
, and

β = µ
(k)
1 + µ

(k)
2 ;

Update E(k+1) = S
λ/µ

(k)
1

(
X−D(k) + Γ

(k)
1 /µ

(k)
1

)
;

Update Γ
(k+1)
1 = Γ

(k)
1 +µ

(k+1)
1 (X−D(k+1)−E(k+1)), Γ

(k+1)
2 = Γ

(k)
2 +µ

(k+1)
2 (D̂(k+1)− [D(k+1);1T ]), µ(k+1)

1 =

ρµ
(k)
1 , µ

(k+1)
2 = ρµ

(k)
2 ;

end while
Ensure: T, D, E

space by learning the regression T only from the
augmented noise-free data D̂ = [D;1T ] ∈ <(dx+1)×n.
Note that there are infinite possible decompositions of
X into D and E. RR thus adds the second and third
terms in Eq. (2) to constrain the possible solutions. The
second term constrains D to lie in a low-dimensional
subspace, which is a good prior for visual data. The
third term encourages E to be sparse.

It is important to note that RR is different from
cleaning the data using RPCA and then computing
LS-regression on the clean data, because RR cleans
the input data X = D + E in a supervised manner.
That is, the data D will preserve the subspace of X
that is maximally correlated with Y. For this reason,
the outlier component E computed by RR is able to
correct outliers both inside and outside the subspace
spanned by D (see the experiment in section 5.1.1).

The original form of RR, Eq. (2), is cumbersome
to solve because the rank and cardinality operators
are discontinuous and non-convex. Following recent
advances on rank minimization [30], these operators
are respectively relaxed to their convex surrogates: the
nuclear norm and the `1-norm. Using this relaxation
Eq. (2) is rewritten as

min
T,D,E

η

2

∥∥∥W(Y −TD̂)
∥∥∥2

F
+ ‖D‖∗ + λ‖E‖1

s.t. X = D + E, D̂ = [D;1T ]. (3)

This problem can be efficiently optimized using an
Augmented Lagrange Muliplier (ALM) technique,

wherein Eq. (3) is rewritten as

min
T,D,D̂,E

η

2

∥∥∥W(Y −TD̂)
∥∥∥2

F
+ ‖D‖∗ + λ‖E‖1 (4)

+〈Γ1,X−D−E〉+
µ1

2
‖X−D−E‖2F

+〈Γ2, D̂− [D;1T ]〉+
µ2

2
‖D̂− [D;1T ]‖2F ,

where Γ1 ∈ <dx×n and Γ2 ∈ <(dx+1)×n are Lagrange
multiplier matrices, and µ1 and µ2 are the penalty
parameters. For each of the four matrices {T,D, D̂,E}
to be solved in Eq. (4), the cost function is convex if
the remainder three matrices are kept fixed. Details
of the ALM method to minimize Eq. (4) are given in
Alg. 1.

3.1 Robust LDA: Extending RR for classification

Classification problems can be cast as a particular case
of binary regression, where each sample in X belongs
to one of c classes. The goal is then to learn a mapping
from X to labels indicating the class membership
of the data points. LDA learns a linear transforma-
tion that maximizes inter-class separation while min-
imizing intra-class variance, and typical solutions are
based on solving a generalized eigenvalue problem.
However, when learning from high-dimensional data
such as images (n < dx), LDA typically suffers from
the small sample size problem. While there are several
approaches to solve the small sample size problem
(e.g., regularization), a more fundamental solution is
to relate the LDA problem to a reduced-rank LS
problem [35]. LS-LDA [35] directly maps X to the
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class labels by minimizing

min
T

∥∥∥(YYT )−1/2(Y −TX)
∥∥∥2

F
, (5)

where Y ∈ <c×n is a binary indicator matrix, such that
yij = 1 if xi belongs to class j, otherwise yij = 0 . The
normalization factor W = (YYT )−1/2 compensates
for having a different number of samples per class.
T ∈ <c×dx is a reduced rank regression matrix, which
typically has rank c − 1 (if the data are centered).
After T is learned, a test data sample xte ∈ <dx×1 is
projected by T onto the c dimensional output space
spanned by T, then the class label of the test data xte
is assigned using k-NN.

When X is corrupted by outliers, Eq. (5) suffers
from the same bias problem as standard regression.
RR, Eq. (3), can be directly applied to Eq. (5), yielding

min
T,D,E

η

2

∥∥∥(YYT )−1/2(Y −TD̂)
∥∥∥2

F
+ ‖D‖∗ + λ‖E‖1

s.t. X = D + E, D̂ = [D;1T ]. (6)

This is a Robust LDA formulation, which can be easily
solved as a special case of RR (Alg. 1).

3.2 Robustness in testing

In the previous sections, we have assumed that the
training set was corrupted by outliers and noise.
Similarly, the test data might contain outliers and, as
in the case of training, RR removes outliers before
projection. Let us refer to Xte ∈ <dx×nte as a set of test
samples (nte samples), Yte ∈ <dy×nte as the estimated
label, and let the subscript te denote the test data.
Note that this is a non-trivial problem because the
test label matrix Yte is not available to provide the
supervised information.

Consider Eq. (3) without the first supervised term,

min
Dte,Ete

‖Dte‖∗ + λ ‖Ete‖1 (7)

s.t. Xte = Dte + Ete,

where Dte ∈ <dx×nte is the cleaned test data, Ete ∈
<dx×nte is the noise/outlier matrix, and λ is the
positive scalar determined in training (see Eq. (3)).

Eq. (7) is equivalent to RPCA [29]. However, RPCA
is an unsupervised technique and can only clean
outliers/noise that are orthogonal to Xte. We will
refer to this noise as out-of-subspace noise. If we are
interested in removing the error within the subspace
of Xte, this can be done by using the cleaned training
data D. In the training stage, D is optimized to
have maximum correlation with the output labels Y.
Our assumption is that the clean test data can be
reconstructed as local combinations of the training
data. That is, Dte = DZte, where Zte ∈ <n×nte . In
order to make the combination locally compact, we

regularize the combination coefficient Zte by mini-
mizing its nuclear norm [36]. The resulting objective
function becomes

min
Zte,Ete

‖Zte‖∗ +
λ

‖D‖∗
‖Ete‖1 (8)

s.t. Xte = DZte + Ete,

where the weight λ
‖D‖∗ in front of ‖Ete‖ is used to

keep the original balance between ‖Ete‖ and ‖Dte‖ =
‖DZte‖ in Eq. (7). Directly applying the ALM to
solve Eq. (8) is a challenging task because we cannot
apply the standard Singular Value Thresholding (SVT)
operators on Zte. Note that the term DZte is not
the standard formulation to be solved with SVT. We
followed the idea of [37] and linearized the term DZte
before the standard SVT operation. Alg. 2 describes
the optimization strategy. After solving (8), the re-
gression or classification output for Xte is computed
as Yte = T[DZte;1

T ]. In the case of classification,
Yte contains the decision values to compute AUROC
or to produce binary class labels using the k-nearest-
neighbor method.

4 RR WITH MISSING DATA

Robust regression Eq. (3) can easily be extended to
handle missing elements in the input data matrix X.
From now on, we will refer to this problem as “RR-
Missing”.

Let Ω be the index set of observed elements in
X, and PΩ be the projection operator from the ma-
trix space to the support of observed elements. RR-
Missing solves the following problem

min
T,D,E

η

2

∥∥∥W(Y −TD̂)
∥∥∥2

F
+ ‖D‖∗ + λ‖E‖1 (9)

s.t. PΩ(X) = PΩ(D + E), D̂ = [D;1T ],

The algorithm for solving Eq. (9) is similar to Eq. (3).
After solving Eq. (9), the missing elements in X are
filled by the values in D.

As in the case of RR, the test data with missing
elements can be cleaned similarly to section 3.2 by
solving

min
Zte,Ete

‖Zte‖∗ +
λ

‖D‖∗
‖Ete‖1 (10)

s.t. PΩ(Xte) = PΩ(DZte + Ete).

After solving Eq. (10), the regression/classification
output for Xte is computed as Yte = T[DZte;1

T ].
The extension of RR-Missing to RLDA-Missing is
straightforward.

5 EXPERIMENTAL RESULTS

This section compares our RR methods against state-
of-the-art approaches on four experiments for regres-
sion and classification.
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Algorithm 2 ALM algorithm for cleaning the test data Eq. (8)

Require: Xte ∈ <dx×nte , D ∈ <dx×n, parameters λ (a positive scalar weights term ‖E‖1, which is determined
in training) and ρt (a positive scalar for updating the Lagrange coefficients).

Initialization:Z(0)
te = 0n×nte

, where its element z
(0)
te (i, j) = 1 if i = argmini{dist (xte(j),di)}i=1,··· ,nj =

1, · · · , nte; E(0)
te = Xte −DZ

(0)
te ;

Lagrange Multiplier Initialization: Γ
(0)
te = Xte

‖Xte‖F ,µ(0)
te = dn

4 ‖Xte‖1.

while

∥∥Xte−DZ
(k)
te −E

(k)
te

∥∥
F

‖Xte‖F
> 10−8 do

Update S(k+1) = Z
(k)
te − 1

βte

(
−DTΓ(k) + µ

(k)
te DT

[
DZ

(k)
te − (X−E

(k)
te )
])

, where βte = µ
(k)
te ‖DTD‖2F ;

Update Z
(k+1)
te = D1/β(S(k+1));

Update E
(k+1)
te = S

λ/µ
(k)
te

(
Xte −DZ

(k)
te + Γ

(k)
te /µ

(k)
te

)
;

Update Γ
(k+1)
te = Γ

(k)
te + µ

(k)
te (X−DZ

(k+1)
te −E

(k+1)
te ), µ(k+1)

te = ρtµ
(k)
te ;

end while
Ensure: Zte, Ete

The first experiment uses synthetic data to compare
with existing approaches and illustrate how existing
robust regression methods cannot remove outliers that
lie in the subspace of the data. The second experiment
applies RR to the problem of head pose estimation
from partially corrupted images. The third experi-
ment reports comparisons of RR against state-of-the-
art multi-label classification algorithms on the MSRC,
Mediamill and TRECVID2011 databases. The fourth
experiment illustrates the application of RR-Missing
to predict facial attributes.

5.1 Robust Regression (RR)

5.1.1 RR on Synthetic Data

This section illustrates the benefits of RR in a synthetic
example. We generated 200 three-dimensional sam-
ples where the first two components were generated
from a uniform distribution between [0, 6], and the
third dimension is 0. In Matlab notation D = [6 ∗
rand(2, 200);0T ], , X = D+E, , and Y = T∗[D;1T ],
where D ∈ <3×200 is the clean data. T∗ ∈ <3×4 was
randomly generated and used as the true regression
matrix. The error term, E ∈ <3×200, was generated as
follows: for 20 random samples, we added random
Gaussian noise (∼ N (0, 1)) in the second dimension,
this simulates in-subspace noise. Similarly, for another
20 random samples, we added random Gaussian
noise (∼ N (0, 1)) to the third dimension. This sim-
ulates noise outside the subspace. The output data
matrix was generated as Y = T∗[D;1T ] ∈ <3×200.
Fig. 2 (a) shows the clean data D with blue “o’s”,
and the corrupted data X with black “×’s”. For better
visualization, we only showed 100 randomly selected
samples. The black line segments connect the same
samples before (D) and after corruption (X). The line
segments along the vertical direction are the out-of-
subspace component of E = X−D, and the horizontal

line segments represent the in-subspace component of
E.

We compared our RR with five state-of-the-art
methods: (1) Standard least-squares regression (LSR),
(2) GroupLasso (GLasso) [38], (3) RANSAC [11], (4)
Total Least Square (TLS) [39], which assumes the
error in the data is additive and follows a Gaussian
distribution, and (5) RPCA+LSR, which consists of
first performing RPCA [29] on the input data and
then learning the regression on the cleaned data using
standard LSR. The LSR directly learns the regression
matrix T using the data X. The other methods (2)-
(5) re-weight the data or select a subset of the sam-
ples input data X before learning the regression. We
randomly selected 100 samples for training and used
the remaining 100 data points for testing. Both the
training and testing sets contain half of the corrupted
samples.

Fig. 2(b-f) visualizes the results of the regression for
the different methods. Fig. 2(b) shows the results of
TX, once T is learned with GLasso. GLasso learns
a sparse regression matrix that re-weights the input
data along dimensions, but it is unable to handle
intra-sample outliers. Note how the samples are far
away from the original clean samples. Fig. 2(c) shows
the subset of X selected by RANSAC. Although we
selected RANSAC parameters to obtain the best test-
ing error, many of the corrupted data points are still
identified as inliers. Fig. 2 (d) shows results obtained
by TLS, where TLS only partially cleaned the cor-
rupted data because the synthesized error cannot be
modeled by an isotropic Gaussian distribution. Fig. 2
(e) shows results obtained by the method RPCA+LSR,
which first computes RPCA to clean the data and
then applies LSR. The data cleaned by RPCA [29],
DRPCA, is displayed with red “o’s”. Because DRPCA

is computed in an unsupervised manner, only the out-
of-subspace error (the vertical lines) can be discarded,
while the in-subspace outliers can not be corrected.
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(f) Robust Regression (RR)

Fig. 2. (a) Original and corrupted 3D synthetic dataset. Black lines connect data points before (D) and after
corruption (X). (b)-(e) show the input data processed by several baselines, and (f) shows that RR removes the
in-subspace outliers.

TABLE 1
Relative Absolute Error (RAE) and its standard deviation for output Yte and regression matrix T on synthetic

data (10 repetitions).

LSR GLasso RANSAC TLS RPCA+LSR RR
RAET 0.269± 0.121 0.269± 0.121 0.256± 0.133 0.269± 0.121 0.464± 0.030 0.035± 0.015
RAEY 0.035± 0.012 0.035± 0.012 0.036± 0.013 0.925± 0.136 0.051± 0.006 0.015± 0.006

Finally, Fig. 2 (f) shows the result of RR. The clean data
DRR is denoted by red “o’s”. Note that our approach
is able to clean both the in-subspace (the horizontal
lines) and out-of-subspace (the vertical lines) outliers.
This is because our method jointly computes the
regression and the subspace estimation.

We also computed the error for the regression ma-
trix T∗ (the first two columns) and the testing error
for Yte on the 100 test samples. Table 1 compares
the mean regression error measured by the Rela-
tive Absolute Error (RAE) between the true labels
Yte ∈ <3×100 and the estimated labels Ỹte. RAET =
‖T̃(:,1:2)−T∗(:,1:2)‖F

‖T∗(:,1:2)‖F and RAEY = ‖Ỹte−Yte‖F
‖Yte‖F . The

information in the third column of T∗ is excluded in
generating Y = T[D;1T ]. Therefore, we dismiss this
column when evaluating RAET. As shown in Table
1, RR produces the smallest estimation error for both
T∗ and Yte among the five compared methods, while
GroupLasso, RANSAC and RPCA+LSR produce small
improvements over standard LSR due to their lim-
itability to deal with both the in-subspace and out-of-
subspace corruptions.

5.1.2 RR for pose estimation
This section illustrates the benefit of RR in the prob-
lem of head pose estimation. We used a subset of the

CMU Multi-PIE database [40], which contains 1721
face images from 249 subjects in Session 1. The face re-
gions are detected automatically using the OpenCV 2

face detector. The detected faces cover 11 head poses
θ =[−90◦, −75◦, −60◦, −45◦, −15◦, 0◦, 15◦, 45◦,
60◦, 75◦, 90◦] each with a random lighting direction.
Each image is cropped around the face region and
resized to 51 × 61. We vectorized the images into a
vector of 51 × 61 = 3111 dimensions in the matrix
X ∈ <3111×1721 and the yaw angles of the images are
used as the output data Y = [cos(θ), sin(θ)] ∈ <2×1721.
See Fig. 4 for examples of cropped images.

Similar to the previous section, we have compared
RR with five methods to learn a regression from the
image X to the yaw angle Y: (1) LSR, (2) GLasso [38],
(3) RANSAC [11], (4) TLS and (5) RPCA+LSR. For
a fair comparison, we randomly divided the 249
subjects into 5 folds and performed 5-fold cross-
validation. For each trial of cross-validation, we used
one fold for training and the remaining four folds for
testing. Parameters of interest in methods (2)-(4) were
selected by performing grid search over the 5-fold
cross-validation. The performance of the compared
methods is measured with the averaged angle error.

2. http://opencv.willowgarage.com/wiki/
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Fig. 3. Projection of face images (the gray “·’s”)in the output space Y = [cos(θ), sin(θ)] by LSR, TLS, RPCA+LSR
and Robust Regression(RR). The red “×’s” denote the ground true location for pose angles θ =[−90◦, −75◦,
−60◦, −45◦, −15◦, 0◦, 15◦, 45◦, 60◦, 75◦, 90◦] in the output space.

(a) Input images X at different pose angles

(b) Decomposition of images in (a) as X = DTLS +
ETLS by TLS

(c) Decomposition of images in (a) as X = DRPCA +
ERPCA by RPCA

(d) Decomposition of images in (a) as X = DRR + ERR
by RR.

Fig. 4. Decomposition of input images in (a) by (b)
TLS, (c) RPCA and (d) RR. Robust regression (RR)
cleans most facial details and only preserves the cor-
related with pose angles.

Table 2 summarizes the results of methods (1)-(4)
and RR. The LSR method produced the largest angle
error. RANSAC produced comparable error to stan-
dard LSR, indicating that RANSAC is unable to select

a subset of “inliers” to robustly estimate the regression
matrix. RPCA+LSR produced relatively larger yaw
angle error. This is because RPCA is unsupervised
and lacks the ability to preserve the discriminative
information in X that correlates with the angles Y.
RR got the smallest error among all the compared
methods.

To further illustrate how RR differs from TLS and
RPCA+LSR, Fig. 4 visualizes the decomposition of
training images by RR (i.e., X = DRR + ERR), by
TLS (i.e., X = DTLS + ETLS) and by RPCA (i.e.,
X = DRPCA + ERPCA), for the same input images.
All images contain person-specific features, for in-
stance glasses at −30◦ and long dark hair at +30◦

(see Fig. 4(a)). Fig. 4(b)-(c) show that both TLS and
RPCA are able to remove some of the edges. While
RR (Fig. 4(d)) preserves much fewer personal facial
details in DRR than TLS (DTLS) and RPCA (DRPCA)
(especially for those images under the pose −30◦ and
+30◦). With fewer facial details and more dominant
profiles, the regression trained on DRR (as in RR) is
able to model higher correlation with the pose angles
than using DRPCA.

Fig. 3 visualizes the differences among LSR, TLS,
RPCA+LDA and RR on both training (the 1st row)
and testing images (the 2nd row). We projected the
face images (the gray “·’s”) into the output space
Y = [cos(θ), sin(θ)] using the discussed four methods
(one column each). The red “×’s” denote the ground
true location for pose angles. The projections (the gray
“·’s”) produced by LSR, TLS and RPCA+LDA are far
from the ideal outputs (the red “×’s”). RR (the 4th

column) is the method that improves the correlation
between inputs (the gray “·’s”) and the outputs (the
red “×’s”). It is therefore more robust than LSR, TLS
and RPCA+LSR in estimating the pose angles.

5.2 Robust LDA for classification
5.2.1 RLDA for face recognition
This section evaluates our Robust LDA (RLDA)
method for face recognition with synthetically cor-
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TABLE 2
Comparison of yaw angle error and standard deviation for six methods on a subset of CMU Multi-PIE

database [40].

LSR GLasso RANSAC TLS RPCA+LSR RR
7.3o ± 6.1o 7.1o ± 5.9o 7.3o ± 6.2o 11.7o ± 10.1o 10.8o ± 9.7o 5.1o ± 4.6o

Fig. 5. Decomposition of downsampled test images Xte in the AR face database [41]. Left: Experiments on
original images (0% corruption). Right: Experiments on synthetically corrupted images (5% corruption). (a) Input
test images; (b) Reconstructed test images (XZSRC) and the outliers (Xte −XZSRC) by Sparse Representation
for Classification (SRC) [42], where X is the training images and ZSRC is the sparse coefficient for the test
images Xte; (c) Reconstructed test images (DZRLDA) and the outliers (Xte−DZRLDA) by Robust LDA (RLDA),
where D is the cleaned training images by solving Eq. 6, and ZRLDA is the RLDA coefficient computed by Eq. 8.
Note that RLDA cleaned more intra-sample outliers and reconstructed more facial details than SRC.

rupted images.
We used the AR database [41], which contains over

4, 000 frontal face images of 126 subjects under illu-
mination change, expressions, and facial disguises. 26
pictures were taken for each subject and organized in
two sessions. In the experiment, we used the cropped
and aligned face images of 50 male subjects and 50
female subjects provided in [41]. For each subject, 13
images from Session 1 were used for training and
the remaining 13 images from Session 2 were used
for testing. Each image was cropped and resized to
165×120 and then converted to gray-scale (see the first
row on the left of Fig. 5 for examples). To evaluate the
robustness of the algorithms, we corrupted the images
by adding black squares (see the first row on the right
half of Fig. 5 for examples).

We followed the settings in [42] and used the
two types of features that produced the highest per-
formance of Sparse Representation for Classification

(SRC) in [42]: (1) Downsampled face: downsample
the cropped images by 1/6 and vectorize a down-
sampled image into a 540 dimensional vector; (2)
Laplacian face: compute Laplacian face features [43]
on the original 165 × 120 image and select the top
540 components. Fig. 5 illustrates decomposition of
downsampled test images Xte (a) in the AR face
database [41] by SRC and our Robust LDA (RLDA)
approach. The Left part of Fig. 5 shows experiments
on original images (0% corruption). The Right part of
Fig. 5 shows experiments on synthetically corrupted
images (5% corruption). Using SRC [42] (Fig. 5(b)),
the test images were reconstructed as XZSRC , where
X represents the training images and ZSRC is the
sparse coefficient. The outliers were then computed as
(Xte−XZSRC). Note that SRC produced little outliers.
This is because both the training and testing images
of the same subject contain similar expression, illumi-
nation and accessories such as glasses and scarf. SRC
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computed the sparse representation of test images Xte

using similar training images in X. Fig. 5(c) shows the
reconstructed test images (DZRLDA) and the outliers
(Xte − DZRLDA) by RLDA, where D represents the
cleaned training images by solving Eq. 6 and ZRLDA
is the RLDA coefficient obtained by Eq. 8. Note in
contrast to SRC, our RLDA approach used the cleaned
training images D instead of the original training
images X. We can see from Fig. 5(c) that RLDA
cleaned more intra-sample outliers and reconstructed
more facial details than SRC.

In Table 3, we compared face recognition accu-
racy of linear SVM, SRC and RLDA using both the
downsampled images and the Laplacian face as the
classification features. As shown in the first row (0%)
in Table 3, RLDA produced higher accuracy than SRC
and SVM on downsampled images, and comparable
accuracy to SRC on Laplacian features. From the
2nd to 4th row, as corruption increased, all methods
showed lower accuracy. Furthermore, because the
Laplacian features were not computed in the robust
manner, under large percentage of corruption (the 3rd

to 4th row in Table 3), the results with Laplancian fea-
tures were worse than RLDA with the downsampled
images. Comparing to SVM and SRC, RLDA showed
the best robustness, consistently producing the best
results.

TABLE 3
Face recognition accuracy on AR face database [41]
under synthetic corruption. The percentages in the

brackets denotes the portion of images covered by the
synthetic squares. Higher value indicates better

performance. Best results are in bold.

%-pixel corruption 1-NN SVM SRC RLDA
Downsample (0%) 68.5% 76.4% 88.0% 89.8%

Laplacian (0%) 90.8% 80.6% 94.7% 94.8%
Downsample (5%) 33.7% 64.7% 80.8% 85.1%

Laplacian (5%) 54.5% 74.5% 71.7% 77.2%
Downsample (20%) 9.7% 44.5% 67.5% 72.4%

Laplacian (20%) 47.8% 67.9% 63.6% 64.9%
Downsample (40%) 7.4% 35.5% 52.9% 61.4%

Laplacian (40%) 33.7% 56.5% 48.2% 51.4%

5.2.2 RLDA for real databases
This section evaluates our Robust LDA (RLDA)
method on two multi-label and one multi-class clas-
sification tasks: object categorization on the MSRC
dataset, action recognition in the MediaMill dataset
and event video indexing on the TRECVID 2011
dataset. Each dataset’s corpus and features are de-
scribed below:

MSRC Dataset (Multi-label)3 has 591 photographs
(see Fig. 6(a)) distributed among 21 classes with an
average of 3 classes per image. We mimic [1] dividing
each image into an 8 × 8 grid and calculating the

3. http://research.microsoft.com/en-
us/projects/ObjectClassRecognition/

first and second order moments for each color channel
on each grid in the RGB space. This results in a 384
dimensional vector, which we use to describe each
image.

Mediamill Dataset (Multi-label) [44] consists of
43907 sub-shots (see Fig. 6(c)) divided into 101 classes.
We followed [1] and eliminated classes containing
fewer than 1000 samples, leaving 27 classes. Then, we
randomly selected 2609 sub-shots such that each class
has at least 100 labeled data points. Each image was
therefore characterized by a 120-dimensional feature
vector, as described in [44].

PASCAL VOC 2007 Dataset (Multi-label) consists
of 9963 images labeled with at least one of 20 classes,
split into trainval and test sets. We used state of
the art features obtained from Overfeat, a Convolu-
tional Neural Network trained on ImageNet [45]. We
rescaled every image to 221×221 pixels and obtained
a single 4096 dimensional feature vector as the output
from layer 22 of the network for every image in the
dataset.

TRECVID 2011 Dataset (Multi-class)4 consists of
video data in MED 2010 and the development data
of MED 2011, totaling 9822 video clips belonging
exclusively to one of 18 classes. We first detected
100 shots for each video and then used their center
frames as keyframes. We described each keyframe
using dense SIFT descriptors. From these, we learned
a 4096 dimension Bag-of-Words dictionary. Each video
was represented by a normalized histogram of all of
its feature points. We used a 300 core cluster to extract
the SIFT features, which took about 1500 CPU hours
in total. In the experiment, we randomly split the
dataset into two subsets: 3122 entries for training and
6678 for testing.

We compared RLDA to the state-of-the-art approach
for Multi-Label LDA (MLDA) [1] and to Robust
PCA [29] followed by traditional LDA (RPCA+LDA).
As a control, we also compared to LDA, PCA+LDA
(preserving 99.9% of energy) and a linear one-vs.-all
SVM.

For the classic LDA-based testing procedure, one
first projects the test points using the learned T from
training. Then, for each projected test sample, we
find the k-nearest-neighbor (kNN) from the training
samples projected by T. Finally, we select the class
label from the class labels of k-neighbors by majority
voting. However, this procedure is not appropriate
in our evaluation for two reasons: (1) it is not fair
to use a fixed k for classes with different number
of samples, e.g., samples per class are in [19, 200] for
MSRC and [100, 2013] for Mediamill; and (2) kNN
introduces nonlinearity to the LDA-based classifiers,
which is unfair to linear SVM. For these reasons,
we use Area Under Receiver Operating Characteristic
(AUROC) as our evaluation metric. AUROC summa-

4. http://www-nlpir.nist.gov/projects/tv2011/
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(a)

(b)

(c)
Fig. 6. Multi-label datasets for object recognition and
action classification. Example images in (a) MSRC and
(b) PASCAL VOC 2007 , and (c) example keyframes in
Mediamill .

rizes the cost/benifit ratio over all possible classi-
fication thresholds. We report the average AUROC
(over 5-fold Cross Validation) for each method under
their best parameters in Table 4. In the MSRC dataset
results in Table 4, LDA performs the worst since
it is most sensitive to the noise in data. SVM per-
forms better than PCA+LDA and RPCA+LDA. Our
method (RLDA) leads to significant improvements
over the others due to its joint classification and data
cleaning (for both Gaussian and sparse noise in the
input). For Mediamill, LDA is just slightly worse than
PCA+LDA and RPCA+LDA due to the low noise level
in the data. In this case, RLDA does not “over-clean”
the data, and performs similar to PCA+LDA and
RPCA+LDA. In the PASCAL VOC 2007 dataset re-
sults, performance increases become less accentuated,
with baseline methods yielding good performance
due to the recent advances in representation provided
by Overfeat [45]. MLDA, on the other hand, results
in a poorer score because it relies heavily on the
normalization based on inter-class correlations.

To test our method in a large scale dataset, we
ran experiments on the TRECVID2011 dataset. We
used the Minimum Normalized Detection Cost (Min-

TABLE 4
AUROC for Multi-label Object (MSRC), Action

(Mediamill) and Image (Pascal VOC) classification.
Higher value indicates better performance. Best

results are in bold.

Database LDA SVM PCA+LDA MLDA RPCA+LDA RLDA
MSRC 0.65 0.79 0.76 0.63 0.75 0.83

Mediamill 0.77 0.64 0.77 0.67 0.77 0.76
Pascal VOC2007 0.92 0.90 0.92 0.79 0.87 0.94

NDC), the evaluation criteria for MED 2010 and MED
2011 challenges, as suggested by NIST. Fig. 7 shows
that RLDA achieved the best class-wise MinNDC
for 9 out of 18 classes over other linear methods,
i.e., LDA/MLDA, SVM and RPCA+LDA. Note that
because the classes are mutually exclusive, MLDA is
identical to LDA. SVM is heavily affected by out-
liers for the “Wedding Ceremony”, “Getting a vehi-
cle unstuck” and “Making a sandwich” cases. For
some classes, LDA and RPCA+LDA are similar to
or better than RLDA. We believe this is due to (1)
the data features computed by Bag-of-Words model
smoothed/regularized some outliers, and (2) the non-
linear nature of the classification task. Therefore some
error patterns modeled by LDA and RPCA enhanced
their discriminative ability. Nevertheless, among all
linear algorithms, our method (RLDA) obtained the
best average MinNDC. In addition, to show how non-
linearity affects the performances, we compared the
kernelized version of the LDA (KLDA), RPCA+LDA
(KRPCA+KLDA) and RLDA (KRDA). Here, we ap-
ply the homogeneous kernel maps technique [46] to
obtain a three order approximation of the χ2 kernel.
Other more accurate approximations are possible [47].
Fig. 7 shows that KRDA still obtains better results. 9
out of 18 best class-wise MinNDC and best average
MinNDC over all classes.

5.3 RLDA with missing data
This section illustrates the use of RLDA-Missing to
perform attribute classification on the PubFig [48]
and Multi-PIE [40] databases. Our goal is to show
that RLDA-missing can incorporate information from
feature vectors with different dimensionality, 49 land-
marks on the PubFig images and 66 landmarks on
Multi-PIE images.

The PubFig database [48] consists of 58, 797 im-
ages of 200 people collected from the internet. Clas-
sifiers will be trained to recognize the facial at-
tributes, e.g., Gender, race, and accessaries, from im-
age features. The images in the PubFig database were
taken in completely uncontrolled situations with non-
cooperative subjects. Thus, there are large variations
in pose, lighting, expression, occlusion, scene and
camera parameters. These imaging conditions pose
great difficulties in classifying facial attributes. In
addition to those from the PubFig database, we also
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Fig. 7. MinNDC results for Media Event Detection on TREC2011. Lower value indicates better performance.
Best results are in bold.

used 5683 face images from the Multi-PIE database
from 249 subjects. In the Multi-PIE database, Each
subject posed 2 11 facial expressions. For each fa-
cial expression, we used the photos taken under
frontal lighting and seven horizontal head pose angles
{−45◦,−30◦, 15◦, 0◦,+15◦,+30◦,+45◦}.

Our goal is to predict 7 facial attributes (Gen-
der, Asian, White, Indian, Black, Glasses and
Beard/Mustache) from facial features. We formulated
the facial attribute recognition as a multi-label clas-
sification problem: for each image, we assigned 7
attributes that are represented with a binary indicator
vector yi ∈ <7×1, where yij = 1 if xi belongs has
attribute j and yij = 0 (j = 1, · · · , 7) otherwise.
To train our facial attribute detector, we used train-
ing images from the PubFig database, which have
been labeled with 49 landmarks using the super-
vised descent method [49], and images from Multi-
PIE database [40], which have been manually labeled
with 68 landmark points. Learning a classifier using
both datasets is a challenging problem because the
regressor will have input features of different dimen-
sions. In this section, we will show how RR is able
to merge information from these two databases to
get improved results on estimating facial attributes.
During testing (see section 3.2), a test data sample
xte is cleaned to produce dte and the indicator vector
yte = T[dte; 1] ∈ <7. yte is used as decision values to
compute AUROC, or to produce binary class labels
using the k-nearest-neighbor method.

Given the images that have been labeled with the
seven attributes, we computed the image features
as follows. Given the landmarks, we computed an
8-dimensional Histogram of Gradient (HoG) vector
around each facial point, (the size of each pixel block
is 1/6 of the length of the nose). Then, we concate-
nated all the HoG values to form an 8 × 49 = 392-
dimensional feature vector for the image. See Fig. 8 for
an example. In the case of the Multi-PIE images the

faces had been manually labeled with 66 landmarks
and we proceeded as before, extracting a 8×66 = 544
dimensional feature vector, see Fig. 8 (b).

Fig. 8. Training RLDA-Missing classifier on a con-
catenated data matrix X consisting of data from the
PubFig database (49 facial points detected) (a) and
the MultiPIE database (68 facial points detected) (b). In
the original concatenated matrix “X” (c), note that the
data block of PubFig contains missing elements. In the
clean/filled data matrix “D” (d), the missing elements
are automatically filled. In testing, we only use the
PubFig part of D to clean the testing data.
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We ran four experiments. The first one was a base-
line experiment using only the 58797 images from
PubFig database labeled with 49 landmarks (392-
dimensional feature vectors), we refer to this exper-
iment as “PubFig (49 pts) only”. The second experi-
ment, we added the 5683 images from the Multi-PIE
database, but we only used 49 of the 68 available
landmarks, that are common to both databases. We
refer to this experiment as “PubFig (49 pts)&MultiPIE
(49 pts)”. All feature vectors in the second experi-
ment have 392 dimensions. In the third experiment,
we added the same 5683 images from the Multi-
PIE database but included all 68 landmarks that are
available. The 544−392 = 52-dimensional unavailable
features in the PubFig dataset are considered as miss-
ing data, see Fig. 8 (c) for the concatenated training
data matrix “X”. We trained RLDA with missing data
as described in Section 4, the missing elements in “X”
were filled in the cleaned/filled training data the “D”
(Fig. 8 (d)). We refer to this experiment as “PubFig
(49 pts)&MultiPIE (68 pts)”. Finally, we compared
RLDA missing with LDA-missing [50], a LDA-based
approach for missing data that does not incorporate
robustness into their formulation.

In all experiments, we performed grid-search for
RLDA parameters (η and λ) with a 4-fold cross-
validation. At each trial of cross-validation, we used
three PubFig folds and all Multi-PIE images for train-
ing, leaving one PubFig fold out for testing. Com-
pared to the two baseline methods (“RLDA: PubFig
only” and ”RLDA: PubFig (49pts)&MPIE (49pts)”),
our RLDA-missing approach can incorporate addi-
tional 52-dimensional features from the Multi-PIE
dataset. This typically leads to improved classifica-
tion results. Compared to “LDA-missing” [50], our
approach does not rely on explicit assumption on the
missing values and adds robustness. “LDA-missing”
[50] explicitly models the missing values by Gaus-
sian distribution, whereas the missing elements in
this experiment were structured (blocked). As shown
in Table. 5, our RLDA-missing produced improved
results in both class-wise and average AUROCs.

6 CONCLUSION

This paper addressed the problem of robust discrim-
inative learning and presented a convex formulation
for RR. Our approach jointly learns a regression while
removing the outliers that are not correlated with
labels or regression outputs. The framework of RR is
useful to solve problems such as robust LDA, multi-
labeled image classification and regression with miss-
ing data. We illustrated the benefits of RR in several
computer vision problems including facial attribute
detection, head pose estimation, and image/video
classification. We show that by removing outliers, our
methods consistently learn better representations and
outperform state-of-the-art methods in both the linear

and kernel spaces (using homogeneous kernel maps).
Finally, our approach is general and can easily be
applied to make other subspace methods, such as
partial least square or canonical correlation analysis,
more robust.
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