
Image and Vision Computing 81 (2019) 1–14

Contents lists available at ScienceDirect

Image and Vision Computing

j ourna l homepage: www.e lsev ie r .com/ locate / imav is

Learning facial action units with spatiotemporal cues and
multi-label sampling�

Wen-Sheng Chua,*, Fernando De la Torrea, Jeffrey F. Cohna, b

aRobotics Institute, Carnegie Mellon University, Pittsburgh, USA
bDepartment of Psychology, University of Pittsburgh, Pittsburgh, USA

A R T I C L E I N F O

Article history:
Received 16 October 2017
Received in revised form 17 May 2018
Accepted 22 October 2018
Available online 28 October 2018

Keywords:
Multi-label learning
Deep learning
Spatio-temporal learning
Multi-label sampling
Facial action unit detection
Video analysis

MSC:
00-01
99-00

A B S T R A C T

Facial action units (AUs) can be represented spatially, temporally, and in terms of their correlation. Previ-
ous research focuses on one or another of these aspects or addresses them disjointly. We propose a hybrid
network architecture that jointly models spatial and temporal representations and their correlation. In
particular, we use a Convolutional Neural Network (CNN) to learn spatial representations, and a Long Short-
Term Memory (LSTM) to model temporal dependencies among them. The outputs of CNNs and LSTMs are
aggregated into a fusion network to produce per-frame prediction of multiple AUs. The hybrid network
was compared to previous state-of-the-art approaches in two large FACS-coded video databases, GFT and
BP4D, with over 400,000 AU-coded frames of spontaneous facial behavior in varied social contexts. Rela-
tive to standard multi-label CNN and feature-based state-of-the-art approaches, the hybrid system reduced
person-specific biases and obtained increased accuracy for AU detection. To address class imbalance within
and between batches during network training, we introduce multi-labeling sampling strategies that further
increase accuracy when AUs are relatively sparse. Finally, we provide visualization of the learned AU models,
which, to the best of our best knowledge, reveal for the first time how machines see AUs.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Facial actions convey information about a person’s emotion,
intention, and physical state, and are vital for use in studying human
cognition and related processes. To encode such facial actions, the
Facial Action Coding System (FACS) [1,2] is the most comprehensive.
FACS segments visual effects of facial activities into anatomically-
based action units (AUs), which individually or in combinations can
describe nearly all-possible facial expressions. Action unit descrip-
tion has led to multiple discoveries in behavioral and clinical science
and other fields [2,3].

A conventional pipeline for automated facial AU detection com-
piles four stages: face detection �→ alignment �→ representation �→
classification. With the progress made in face detection and align-
ment, research focuses on features, classifiers, or their combinations.
At least three aspects affect the performance of automated AU detec-
tion: (1) Spatial representation: Hand-crafted features (e.g., SIFT and
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HOG) have been widely used for AU detection, yet are susceptible to
person-specific biases (e.g., [4-6]). To be successful, representations
must generalize to unseen subjects, regardless of individual differ-
ences caused by behavior, facial morphology and recording environ-
ments. (2) Temporal modeling: Action units are dynamic events. For
this reason, temporal cues are critical to precise detection. An open
research question is how to model dynamics and temporal context.
(3) AU correlation: Action units are inter-dependent. Some actions
are mutually exclusive (e.g., open mouth cannot co-occur with closed
mouth) while may increase or decrease the probability of other
action units. For instance, AU12 (lip-corner pull) increases the like-
lihood of AU6 (contraction of the sphincter muscle around the eyes)
and reduces the likelihood of AU15 (lip-corner depressor). By com-
bining spatial representation, temporal modeling, and correlations
among AUs, optimal detection performance can be achieved.

More specifically, we propose a hybrid network that jointly mod-
els spatial and temporal cues and the correlation among AUs. Fig. 1
gives an overview of the proposed framework. To learn a general-
izable representation, a CNN is trained to learn and extract spatial
features. To capture temporal dependencies, LSTMs are stacked on
top of the spatial features. Lastly, we aggregate the learned repre-
sentations from both CNNs and LSTMs into a fusion network that
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Fig. 1. An overview of the proposed hybrid network architecture: The proposed network possesses both strengths of CNNs and LSTMs to model both spatial and temporal cues,
and combines both cues by a fusion network to produce frame-based prediction of multiple AUs.

predicts action units for each frame. Extensive experiments were
performed on two spontaneous AU datasets, GFT and BP4D, con-
taining totally >400,000 frames. The learned spatial features com-
bined with temporal information outperformed a standard CNN and
feature-based state-of-the-art methods. Quantitative and quantita-
tive comparisons inform the advantages of the hybrid architecture
relative to comparison approaches.

An earlier version of this paper appeared as [7]. In this paper,
we introduce new multi-label sampling strategies and larger exper-
iments to demonstrate that reducing class imbalance within and
between batches during training further improves AU detection for
AUs that have low base rates. The current paper is organized as fol-
lows. Section 3 presents the proposed hybrid network. Section 4
evaluates both the learned representation and the performance of
the proposed network against alternative methods. Section 5 intro-
duces multi-label sampling strategies and comparisons with conven-
tional sampling approaches. Section 6 presents visualizations of the
learned AU models. Section 7 concludes our findings and provides
pointers to future work.

2. Related work

Below we review contemporary issues in automated facial AU
detection and success in deep networks.

Facial AU detection: Despite advances in features, classifiers, and
their combinations [8-11], three important aspects reside in auto-
mated AU detection. The first aspect is spatial representation, which is
typically biased to individual differences such as appearance, behav-
ior or recording environments. These differences produce shifted
distributions in feature space (i.e., covariate shift), hindering the
generalizability of pre-trained classifiers. To reduce distribution mis-
match, several studies merged into personalization techniques. Chu
et al. [4] personalized a generic classifier by iteratively re-weighting
training samples based on relevance to a test subject. Along this
line, Sangineto et al. [5] directly transferred classifier parameters

from source subjects to a test one. Zeng et al. [12] adopted an easy-
to-hard strategy by propagating confident predictions to uncertain
ones. Yang et al. [6] further extended personalization for estimating
AU intensities by removing a person’s identity with a latent factor
model. Rudovic et al. [13] interpreted the person-specific variability
as a context-modeling problem, and propose a conditional ordi-
nal random field to address context effects. Others sought to learn
AU-specific facial patches to specialize the representation [14,15].
However, while progress has been made, these studies still resort
to hand-crafted features. We argue that person-specific biases from
such features can be instead reduced by learning them.

Another aspect remains in temporal modeling, as modeling
dynamics is crucial in human-like action recognition. To explore
temporal context, graphical models have been popularly used for AU
detection. A hidden CRF [16] classified over a sequence and estab-
lished connections between the hidden states and AUs. These models
made Markov assumption and thus lacked consideration of long-
term dependencies. As an alternative, switching Gaussian process
models [17] was built upon dynamic systems and Gaussian pro-
cess to simultaneously track motions and recognize events. However,
the Gaussian assumption unnecessarily holds in real-world scenar-
ios. In this paper, we attempt to learn long-term dependencies to
improve predicting AUs without the requirement to a priori of state
dependencies and distributions.

Last but not the least, it has attracted an increasing attention on
how to effectively incorporate AU correlations. Due to the fact that
AUs could co-occur simultaneously within a frame, AU detection by
nature is a multi-label instead of a multi-class classification problem
as in holistic expression recognition, e.g., [18,19]. To capture AU cor-
relations, a generative dynamic Bayesian network (DBN) [20] was
proposed with consideration of their temporal evolutions. Rather
than learning, pairwise AU relations can be statistically inferred
using annotations, and then injected into a multi-task framework
to select important patches per AU [14]. In addition, a restricted
Boltzmann machine (RBM) [21] was developed to directly capture
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the dependencies between image features and AU relationships. Fol-
lowing this direction, image features and AU outputs were fused in
a continuous latent space using a conditional latent variable model
[22]. For the scenario with missing labels, a multi-label framework
can be applied by enforcing the consistency between the predicted
labels and the annotation [23]. Although improvements can be
observed from predicting multiple AUs jointly, these approaches rely
on engineered features such as HOG, LBP, or Gabor.

Deep networks: Recent success of deep networks suggests strate-
gically composing nonlinear functions results in powerful models
for perceptual problems. Closest to our work are the ones in AU
detection and video classification.

Most deep networks for AU detection directly adapt CNNs (e.g.,
[25]). Gadi et al. [26] used a 7-layer CNN for estimating AU occur-
rence and intensity. Ghosh et al. [27] showed that a shared represen-
tation can be directly learned from input images using a multi-label
CNN. To incorporate temporal modeling, Jaiswal et al. [28] trained
CNNs and BLSTM on shape and landmark features to predict for
individual AUs. Because input features were predefined masks and
image regions, unlike this study, gradient cannot backprop to full
face region to analyze per-pixel contributions to each AU. In addition,
it ignored AU dependencies and temporal info that could improve
performance in video prediction, e.g., [29,30]. On the contrary, our
network simultaneously models spatial-temporal context and AU
dependencies, and thus serves as a more natural framework for AU
detection.

The construction of our network is inspired by recent studies in
video classification. Simonyan et al. [29] proposed a two-stream CNN
that considers both static frames and motion optical flow between
frames. A video class was predicted by fusing scores from both
networks using either average pooling or an additional SVM. To
incorporate “temporally deep” models, Donahue et al. [31] proposed
a general recurrent convolutional network that combines both CNNs
and LSTMs, which can be then specialized into tasks such as activity
recognition, image description and video description. Similarly, Wu
et al. [30] used both static frames and motion optical flow, combined

with two CNNs and LSTMs, to perform video classification. Video-
level features and LSTM outputs were fused to produce a per-video
prediction.

Our approach fundamentally differs from the above methods in
several aspects: (1) Video classification is a multi-class classifica-
tion problem, yet AU detection is multi-label. (2) Motion optical
flow is usually useful in video classification, but not in AU detection
due to large head movements. (3) AU detection requires per-frame
detection; video classification produces video-based prediction.

3. The hybrid network for multi-label facial AU detection

Fig. 2(a) shows a folded illustration of the proposed hybrid net-
work. Below we describe each component in turn.

3.1. Learning spatial cues with CNN

The literature has shown evidence that hand-crafted features
impair generalization of AU detectors [4-6]. We argue that spe-
cialized representation could be learned to reduce the burden of
designing sophisticated models, and further improve performance.
On the other hand, some AUs co-occur frequently (e.g., AUs 6+12 in a
Duchenne smile), and some infrequently. Classifiers trained with AU
relations were shown to lead to more reliable results [14,22,23]. To
these two ends, we train a multi-label CNN by modifying the AlexNet
[24] as shown in Fig. 2(b). Given a ground truth label y ∈ {−1, 0, +1}L

(−1/+1 indicates absence/presence of an AU, and 0 missing label)
and a prediction vector ŷ ∈ R

L for L AU labels, this multi-label CNN
aims to minimize the multi-label cross entropy loss:

LE(y, ŷ) =
−1
L

L∑
�=1

[y� > 0] log ŷ� + [y� < 0] log(1 − ŷ�), (1)

where [x] is an indicator function returning 1 if x is true, and 0
otherwise. The outcome of the fc7 layer is L2-normalized as the

(a) (b)

conv1: 96x11x11x3 

conv3: 72x3x3x96

conv4: 48x3x3x72

conv5: 32x3x3x48

pool1: 96x2x2x1

fc6: 4096

fc7: 4096

fc8: 12

conv2: 96x5x5x96

(c)

(d) (e)

Fig. 2. The structure of the proposed hybrid network: (a) Folded illustration of Fig. 1, showing 3 components of learning spatially representation, temporal modeling, and spatiotem-
poral fusion, (b) our 8-layer CNN architecture, and (c) the schematic of an LSTM block. (d)–(e) Visualization of conv1 layers of models trained on ImageNet [24] and GFT datasets,
respectively. As can be seen, filters learned on our face dataset contain less color blob detectors, suggesting color is less informative in AU detection.
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final representation, resulting in a 4096-D vector. We denote this
representation as “fc7” hereafter.

Note that we do not explicitly impose AU relations during learn-
ing (e.g., add extra constraints). Instead, because multiple labels are
assigned to each instance (due to the nature of multi-label architec-
ture), the relationship among AUs is implicitly coded during training.
For instance, when a smile face is present, the network is guided to
predict AU 6+12 without knowing their relation. This is confirmed
by the visualization of AU models as will be discussed in Section 6.

Fig. 2(d) and (e) visualizes the learned kernels from the conv1
layer on the ImageNet [24] and the GFT datasets, respectively. As can
be seen, the kernels learned on GFT contain less color blob detec-
tors than the ones learned on ImageNet. This suggests that color info
is less useful in faces than in natural images. Similar patterns were
observed on the BP4D dataset [32]. In Section 4, we will empirically
evaluate fc7 against hand-crafted features such as the popular HOG
and Gabor.

3.2. Learning temporal cues with stacked LSTMs

It is usually hard to tell an “action” by observing only a single
frame. Having fc7 extracted, we used stacked LSTMs [33] for encod-
ing temporal context. Fig. 2(c) shows the schematic of a standard
LSTM block. Unlike learning spatial representation on cropped face
images, videos can be difficult to model with a fixed-size architec-
ture, e.g., [16,34]. LSTM serves as an ideal candidate for learning
long-term dependencies, and avoids the well-known “vanishing gra-
dient” in recurrent models. Due to an absence of theory in choosing
the number of LSTM layers and size of each memory cell, we took
an empirical approach by considering the tradeoff between accuracy
and computational cost, and ended up with 3 stacks of LSTMs with
256 memory cells each.

AU detection is by nature a multi-label classification problem. We
optimize LSTMs to jointly predict multiple AUs according to the
maximal-margin loss: LM(y, ŷ) = 1

n0

∑
i max(0,k − yîyi), where k is

a pre-defined margin, and n0 indicates the number of non-zero ele-
ments in ground truth y. One reason for using max-margin instead
of cross-entropy loss as in Section 3.1 is due to more uncertainties
in temporal modeling than in spatial modeling. For instance, head
motions and different duration and speed in actions could cause the
temporal patterns of AUs less structured and thus harder to learn
the per-frame prediction. Max-margin loss could potentially per-
mit some tolerance (i.e., samples beyond the margin were ignored)
instead of enforcing LSTMs to match every frame. Although typi-
cally k = 1 (such as in regular SVMs), here we empirically choose
k = 0.5 because the activation function has squeezed the outputs
into [−1, 1], making the prediction value never go beyond k = 1.
During back propagation, we pass the gradient ∂L

∂ ŷi
= − yi

n0
if yîyi < 1,

and ∂L
∂ ŷi

= 0 otherwise. At each time step, LSTMs output a vector
indicating potential AUs.

Practical issues: There has been evidence that a deep LSTM struc-
ture preserves better descriptive power than a single-layer LSTM
[33]. However, because fc7 features are of high-dimension (4096-
D), our design of LSTMs can lead to a large model with >1.3 million
parameters. To ensure that the number of parameters and the size of
our datasets maintain the same order of magnitude, we applied PCA
to reduce the fc7 features to 1024-D (preserving 98% energy). We set
dropout rate as 0.5 to the input and hidden layers, resulting in a final
model of ∼0.2 million parameters. More implementation details are
in Section 4.

3.3. Fusing spatial and temporal cues

The spatial CNN performs AU detection from still video frames,
while the temporal LSTM is trained to detect AUs from temporal
transitions. Unlike video classification that produces video-based

prediction (e.g., [29-31]), we model the correlations between spa-
tial and temporal cues by adding an additional fusion network.
We modify the late fusion model [34] to achieve this goal. Fig. 1
shows an illustration. For each frame, two fully connected layers
with shared parameters are placed on top of both CNNs and LSTMs.
The fusion network merges the stacked L2-normalized scores in
the first fully connected layer. In experiments, we see that this
fusion approach consistently improves the performance compared to
CNN-only results.

4. Experiments

4.1. Datasets

We evaluated the proposed hybrid network on two large spon-
taneous datasets: BP4D [32] and GFT [35] consisting of >400,000
manually FACS-coded frames. AUs occurring more than 5% base rate
were included for analysis. Twelve AUs met this criterion. Unlike the
previous studies that suffer from scalability issues and require down-
sampling of training data, the network is in favor of large dataset so
we made use of all available data.

BP4D [32] is a spontaneous facial expression dataset in both 2D
and 3D videos. The dataset includes 328 videos of approximately 20 s
each from a total of 41 participants. Action unit intensity was avail-
able for the full range from A through E. We selected positive samples
as those with intensities equal or higher than A-level, and negative
samples as the remaining.

GFT [35] contains 240 groups of three previously unacquainted
young adults. Moderate out-of-plane head motion and occlusion are
presented in the videos. We used 50 participants with each contain-
ing one video of about 2 min (∼5000 frames), resulting in 254,451
available frames. Action unit intensity was available for B through
E intensity. A, or trace level, was not coded. Frames with intensi-
ties equal or greater than B-level were used as positive; other frames
were regarded negative.

4.2. Settings

Pre-processing: We pre-processed all videos by extracting facial
landmarks using IntraFace [36]. Tracked faces were registered to a
reference face using similarity transform, resulting in 200×200 face
images, which were then randomly cropped into 176×176 and/or
flipped for data augmentation. Each frame was labeled +1/−1 if
an AU is present/absent, and 0 otherwise (e.g., lost face tracks or
occluded face).

Dataset splits: For both datasets, we adopted a 3-fold and a 10-
fold protocol to evaluate the effect of the number of training samples
and the generalization capability of different methods, i.e., the 10-
fold protocol uses ∼30% more samples than the 3-fold. For 3-fold
protocol, each dataset was evenly divided into 3 subject-exclusive
partitions. We iteratively trained a model using two partitions and
evaluated on the remaining one, until all subjects were tested. For
10-fold protocol, we followed standard train/validation/test splits
as in the deep learning community (e.g., [24,29,30]). In specific, we
divided entire dataset into 10 subject-exclusive partitions, where 9
for training/validation and 1 for test. For both protocols, we used
∼20% training subjects for validation. To measure the transferability
of fc7 features, we also performed a cross-dataset protocol by training
CNNs on one dataset and using it to extract spatial representations
for training a classifier on another.

Evaluation metrics: We reported performance using frame-
based F1-score (F1-frame= 2RP

R+P ) for comparisons with the literature,
where R and P denote recall and precision, respectively. In addi-
tion, because AUs occur as temporal signals, an event-based F1
(F1-event= 2ER • EP

(ER+EP) ) can be used to measure detection performance
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at segment-level, where ER and EP are event-based recall and preci-
sion as defined in [37]. Different metrics capture different properties
about the detection performance. Choices of one or another metric
depend on a variety of factors, such as purposes of the task, prefer-
ences of individual investigators, the nature of the data. Due to space
limitation, we only reported F1 in this paper.

Network settings and training: We trained the CNNs with mini-
batches of 196 samples, a momentum of 0.9 and weight decay of
0.0005. All models were initialized with learning rate of 1e-3, which
was further reduced manually whenever the validation loss stopped
decreasing. The implementation was based on the Caffe toolbox [38]
with modifications to support multi-label cross-entropy loss. For
training LSTMs, we set an initial learning rate of 1e-3, momentum of
0.9, weight decay 0.97, and RMSProp for stochastic gradient descent.
All gradients were computed using back-propagation through time
(BPTT) on 10 subsequences randomly sampled from training video.
All sequences were 1300-frame long, and the first 10 frames were
disregarded during the backward pass, as they carried insufficient
temporal context. The matrix W were randomly initialized within
[−0.08, 0.08]. As AU data is heavily skewed, randomly sampling the
sequences could cause LSTMs biased to negative predictions. As a
result, we omitted training sequences with less than 1.5 active AUs
per frame. All experiments were performed using one NVidia Tesla
K40c GPU.

4.3. Evaluation of learned representation

To answer the question whether individual differences can be
reduced by feature learning, we first evaluated the fc7 features

with standard features in AU detection, including shape (landmark
locations), Gabor, and HOG features. Because such features for AU
detection are unsupervised, for fairness, fc7 features for BP4D were
extracted using CNNs trained on GFT, and vise versa. Fig. 3 shows
the t-SNE embeddings of frames represented by HOG, VGG face
descriptor [39] and fc7 features colored in terms of AU12 and sub-
ject identities. As can be seen in the first and second columns, HOG
and VGG face descriptors have strong distributional biases toward
subject identity. On the other hand, as shown in the third column,
although the network is learned on the other dataset, fc7 features
show relative invariance to individual differences. More importantly,
as shown in the plot of AU12, fc7 features maintain the grouping
effect on samples of the same AU, implying its ability of capturing
necessary information for classification.

As a quantitative evaluation, we treated the frames of the same
subject as a distribution, and computed the distance between two
subjects using Jensen-Shannon (JS) divergence [40]. Explicitly, we
first computed a mean vector ls for each subject s in the feature
space, and then squeezed ls using a logistic function s(a) = 1

1+e−a/m

(m is median of ls as the median heuristic) and unity normalization,
so that each mean vector can be interpreted as a discrete probability
distribution, i.e., ls ≥ 0, ‖ls ‖1 = 1, ∀s. Given two subjects p and q,
we computed their JS divergence as:

D(lp,lq) =
1
2

DKL(lp||m) +
1
2

DKL(lq||m), (2)

where m = 1
2 (lp + lq) and DKL(lp, m) is the discrete KL divergence

of lp from m. JS divergence is symmetric and smooth, and has been

Fig. 3. A visualization of t-SNE embedding using HOG, VGG face descriptor [39] and fc7 features on the BP4D dataset [32] by coloring each frame sample in terms of AU12 (top
row) and subject identities (bottom row). The clustering effect in HOG and VGG face descriptors reveals their encoded information about not only facial AUs but more subject
identities. As can be seen, the separation between subjects of VGG descriptors is more clear than the separation of HOG, because VGG face descriptors were originally trained for
face recognition. On the other hand, the learned fc7 features are optimized for multi-label AU classification, and thus reduce the influence caused by individual differences. More
importantly, fc7 features maintain the grouping effect on samples of the same AU, implying its ability of capturing necessary information for AU classification.
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Dataset

BP4D
GFT

5.38±.40
5.43±.39

4.63±.16
4.74±.23

3.87±.12
3.41±.25

3.58±.09
0.89±.13

Shape Gabor HOG fc7

Fig. 4. Subject-invariance on the BP4D and GFT datasets in terms of a computed JS-
divergence d normalized by log(d)×1e6 (details in text).

shown effective in measuring the dissimilarity between two distri-
butions (e.g., [41]). Higher value of D(lp,lq) tells larger mismatch
given distributions for two subjects. Fig. 4 shows the statistics of dis-
tributional divergence over all subjects in one dataset, which was
computed by summing over D(lp,lq), ∀q 	= p. As can be seen, HOG
consistently reached a lower divergence than Gabor, providing an
evidence that local descriptor (HOG) is more robust to appearance
changes compared to holistic ones (Gabor). This also serves as a pos-
sible explanation why HOG consistently outperformed Gabor (e.g.,
[42]). Overall, fc7 yields much lower divergence compared to alter-
native engineered features, implying reduced individual differences.

4.4. Evaluation of detection performance

This section evaluates the detection performance of the proposed
network on BP4D and GFT datasets. Below we summarize alternative
methods, and then provide results and discussion.

Alternative methods: We compared a baseline SVM trained
with HOG features, a standard multi-label CNN, and feature-based
state-of-the-arts. The HOG features have been shown to outperform
other appearance descriptors (e.g., Gabor/Daisy) [42]. Because HOG is
unsupervised, for fairness, we evaluated a cross-dataset protocol that
trained an AlexNet on the other dataset, termed as ANetT. fc7 fea-
tures extracted by ANetT were then used in comparison with HOG
descriptors. Linear SVMs served as the base classifier, which implic-
itly tells how separable each feature was, i.e., higher classification
rate suggests an easier linear separation, and validates that a good
representation could reduce the burden of designing a sophisticated
classifier. We evaluated ANetT on a 3-fold protocol, while we expect
that similar results could be obtained using 10-fold.

Another alternative is our modified AlexNet (ANet), as mentioned
in Section 3.1, with slightly different architecture and loss func-
tion (multi-label cross-entropy instead of multi-class softmax). ANet
stood for a standard multi-label CNN, a representative of feature
learning methods. On the other hand, CPM [12] and JPML [14] are
feature-based state-of-the-art methods that were reported on the

two datasets. Both CPM and JPML used HOG features [12,14]. They
differ in attacking the AU detection problem from different perspec-
tives. CPM is one candidate method of personalization, which aims at
identifying reliable training samples for adapting a classifier that best
separates samples of a test subject. On the other hand, JPML mod-
els AU correlations, and meanwhile considers patch learning to select
important facial patches for specific AUs. We ran all experiments
following protocols in Section 4.2.

Results and discussion: Tables 1 and 2 show F1 metrics reported
on 12 AUs; “Avg” for the mean score of all AUs. According to the
results, we discuss our findings in hope to answer three fundamental
questions:

1) Could we learn a representation that better generalizes across
subjects or datasets for AU detection? On both datasets, com-
pared to the baseline SVM, ANetT trained with a cross-dataset
protocol on average yielded higher scores with a few excep-
tions. In addition, for both 3-fold and 10-fold protocols where
ANet was trained on exclusive subjects, ANet consistently
outperformed SVM over all AUs. These observations pro-
vide an encouraging evidence that the learned representation
was transferable even when being tested across subjects and
datasets, which also coincides with the findings in the image
and video classification community [29, 34, 43]. On the other
hand, as can be seen, ANet trained within datasets leads
to higher scores than ANetT trained across datasets. This is
because of the dataset biases (e.g., recording environment,
subject background) that could cause distributional shifts in
the feature space. In addition, due to the complexity of deep
models, the performance gain of ANet trained on more data
(10-fold) became larger than ANet trained on 3-fold, show-
ing that the generalizability of deep models increases with the
growing number of training samples. Surprisingly, compared
to SVM trained on 10-fold, ANet trained on 3-fold showed
comparable scores, even with ∼30% fewer data than what
SVM was used. All suggests that features less sensitive to the
identity of subjects could improve AU detection performance.

2) Could the learned temporal dependencies improve performance,
and how? The learned temporal dependencies was aggregated
into the hybrid network denoted as “ours”. On both 3-fold
and 10-fold protocols, our hybrid network consistently out-
performed ANet in all metrics. This improvement can be better
told by comparing their F1-event scores. The proposed net-
work used CNNs to extract spatial representations, stacked
LSTMs to model temporal dependencies, and then performs
a spatiotemporal fusion. From this view, predictions with fc7
features can be treated as a spacial case of ANet—a linear

Table 1
F1-frame on GFT dataset [35].

3-Fold protocol Cross 10-Fold protocol

AU SVM CPM JPML ANet Ours ANetT SVM CPM JPML ANet Ours

1 12.1 30.7 17.5 31.2 29.9 9.9 30.3 29.9 28.5 57.5 63.0
2 13.7 30.5 20.9 29.2 25.7 10.8 25.6 25.7 25.5 61.4 74.6
4 5.5 – 3.2 71.9 68.9 45.4 – – – 75.9 68.5
6 30.6 61.3 70.5 64.5 67.3 46.2 66.2 67.3 73.1 61.6 66.3
7 26.4 70.3 65.5 67.1 72.5 51.5 70.9 72.5 70.2 80.1 74.5
10 38.4 65.9 67.9 42.6 67.0 23.5 65.5 67.0 67.1 54.5 70.3
12 35.2 74.0 74.2 73.1 75.1 55.2 74.2 75.1 78.3 79.8 78.2
14 55.8 81.1 52.4 69.1 80.7 62.8 79.6 80.7 61.4 84.2 80.4
15 9.5 25.5 20.3 27.9 43.5 14.2 34.1 43.5 28.0 40.3 50.5
17 31.3 44.1 48.3 50.4 49.1 34.2 49.2 49.1 42.4 61.6 61.9
23 19.5 19.9 31.8 34.8 35.0 21.8 28.3 35.0 29.6 47.0 58.2
24 12.9 27.2 28.5 39.0 31.9 18.9 31.9 31.6 28.0 56.3 50.8
Avg 24.2 48.2 41.8 50.0 53.9 32.9 50.5 52.4 48.4 63.4 66.4
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Table 2
F1-frame metrics on BP4D dataset [32].

3-Fold protocol Cross 10-Fold protocol

AU SVM CPM JPML ANet Ours ANetT SVM CPM JPML ANet Ours

1 21.1 43.4 32.6 40.3 31.4 32.7 46.0 46.6 33.9 54.7 70.3
2 20.8 40.7 25.6 39.0 31.1 26.0 38.5 38.7 36.2 56.9 65.2
4 29.7 43.3 37.4 41.7 71.4 29.0 48.5 46.5 42.2 83.4 83.1
6 42.4 59.2 42.3 62.8 63.3 61.9 67.0 68.4 62.9 94.3 94.7
7 42.5 61.3 50.5 54.2 77.1 59.4 72.2 73.8 69.9 93.0 93.2
10 50.3 62.1 72.2 75.1 45.0 67.4 72.7 74.1 72.5 98.9 99.0
12 52.5 68.5 74.1 78.1 82.6 76.2 83.6 84.6 72.0 94.4 96.5
14 35.2 52.5 65.7 44.7 72.9 47.1 59.9 62.2 62.6 82.9 86.8
15 21.5 36.7 38.1 32.9 34.0 21.7 41.1 44.3 38.2 55.4 63.3
17 30.7 54.3 40.0 47.3 53.9 47.1 55.6 57.5 46.5 81.1 82.7
23 20.3 39.5 30.4 27.3 38.6 21.6 40.8 41.7 38.3 63.7 73.5
24 23.0 37.8 42.3 40.1 37.0 31.3 42.1 39.7 41.5 74.3 81.6
Avg 32.5 50.0 45.9 48.6 53.2 43.4 55.7 56.5 51.4 77.8 82.5

hyperplane with a portion of intermediate features. In gen-
eral, adding temporal information helped predict AUs except
for a few in GFT. A possible explanation is that in GFT, the head
movement was more frequent and dramatic, and thus makes
temporal modeling of AUs more difficult than moderate head
movements in BP4D. In addition, adding temporal prediction
into the fusion network attained an additional performance
boost, leading to the highest F1 score on both datasets with
either the 3-fold or the 10-fold protocols. Note that using
solely the temporal model causes slight performance drop, as
temporal transition could be unclear to capture in the sponta-
neous datasets (e.g., mouth motions due to speech), and might
require more complex models (e.g., bi-directional LSTMs). We
leave deeper investigation into more sophisticated tempo-
ral models in future work. In all, similar to “late fusion”, the
overall network shows that the spatial and temporal cues are
complementary, and thus is crucial to incorporate all of them
into an AU detection system.

3) Would jointly considering all issues in one framework improve
AU detection? This question aims to examine if the hybrid net-
work would improve the performance of the methods that
consider the aforementioned issues independently. To answer
this question, we implemented CPM [12] as a personalization
method that deals with representation issues, and JPML [14]
as a multi-label learning method that deals with AU relations.
Our modified ANet served as a feature learning method. All
parameters settings were determined following the descrip-
tions in the original papers. To draw a valid discussion, we
fixed the exact subjects for all methods. Observing 3-fold on
both datasets, the results are mixed. In GFT, ANet and JPML
achieved 3 and 2 highest F1 scores; in BP4D, CPM and ANet
reached 5 and 2 highest F1 scores. An explanation is because,
although CNNs possess high degree of expressive power, the
number training samples in 3-fold (33% left out for testing)
were insufficient and might result in overfitting. In the 10-fold
experiment, when training data was abundant, the improve-
ments became clearer, as the parameters of the complex
model can better fit our task. Overall, in most AUs, our hybrid
network outperformed alternative approaches by a significant
margin, showing the benefits for considering all issues in one
framework.

Note that the proposed approach does not always outperform the
others due to generalizability issues of the model. This can attribute
to multiple factors in data (e.g., label consistency, insufficient diver-
sity in subjects or samples, data bias) and algorithmic design (e.g.,
network architecture, training strategy, model selection), which
remain an open question for future investigation.

5. Multi-label sampling

In spontaneous datasets, the incidence of AU labels can vary
greatly. As shown in Fig. 5, certain AUs occur with high base rate
(e.g., AUs 6, 7 and 12) while others occur infrequently (e.g., AUs
1, 2 and 15). Without any treatment on class imbalance, classifiers
trained on this distribution could cause predictions biased by major
classes (classes with higher base rate) due to a global error measure-
ment. That is, when unbalanced class distribution is present, minor
classes do not contribute equally in the global performance mea-
sure, resulting in a natural inclination to the most frequent classes.
As can be observed in the Section 4.4, the hybrid multi-label network
performed less well for minor classes, such as AUs 1, 2, and 15.

In general, performance on rare classes can be improved if more
samples are observed. We refer interested readers to more compre-
hensive reviews (e.g., [45-47]). In the literature, the imbalance levels
are often referred to as imbalance ratio or skewness, computed as the
ratio of the size of the majority class over the size of the minority
class. Standard approaches in learning from such unbalanced classes
can be broadly categorized into two branches:

• Resampling: Resampling techniques aim at producing a new
dataset from the original one. To balance the distributions
between frequently and rarely occurring classes, oversampling
or undersampling approaches are typically used. Another trend
employs synthesis for the minority class, i.e., growing the pop-
ulation of minority classes by synthesizing samples in the fea-
ture space (e.g., SMOTE [48]). Because the sampling is done at
data-level, resampling can be seen as a classifier-independent
approach that applies to most problems.

• Classifier adaptation/cost-sensitive learning: This type of
methods is classifier-dependent. The goal here is to modify
a classification algorithm to further emphasize the contribu-
tions of minor classes. The unbalanced nature of the data is
addressed by re-estimating sample distribution, reinforcing the
algorithm toward the minority class, or re-weighting training
losses inversely proportional to each class size.

Although imbalance learning has been a well-known problem
with rather comprehensive studies, most existing methods only con-
sider sampling for only one majority class and one minority class.
Because facial images contain several AU class labels per sample, the
complexity of the sampling problem becomes higher, making the
application of standard approaches indirectly applicable.

As illustrated in Fig. 5, a clear imbalance among AU classes
exists in spontaneous datasets, such as GFT [49] and BP4D+ [44].
For instance, in BP4D+, the most frequently occurring AU has
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Fig. 5. Distributions of AU base rates in two of the largest spontaneous datasets used in this study: (a) GFT [35] and (b) BP4D+ [44]. (c) Shows the exact base rate of individual
AUs of each dataset. Base rate is defined as the frequency of a particular AU occurring in video frames of the entire dataset. Note that we only count the frames that can be validly
face tracked and annotated completely with 12 AUs.

more than 10 times more samples than the least occurring one.
We note that, for illustrating the severity of class imbalance, we
used larger, renewed GFT and BP4D+ datasets in this section than
earlier experiments in Section 4.4. Recall that in an end-to-end
supervised framework, “batches” are randomly sampled from the
training set for updating parameters in stochastic gradient descent.
However, randomly selecting images causes at least two issues for
proper stochastic training. First, as illustrated in the top row of
Fig. 6, the number of AU presence between batches is unbalanced.
This can potentially weaken gradient stability between batches dur-
ing back propagation. Second, the number of AU presence within
batches is also unbalanced. As noted earlier, such imbalance can
cause the learned model to favor the majority class. Due to these
differences between AU class distributions, a multi-label sampling
strategy is of specific need.

In this section, we will introduce two multi-label sampling strate-
gies to attack this specific imbalance in the multi-label space:
multi-label stratification in Section 5.1, and multi-label minority
oversampling majority undersampling (MOMU) in Section 5.2. Then,
in Section 5.3, we will evaluate different multi-label sampling strate-
gies in both training and test phases.

Algorithm 1. Multi-label stratification.

5.1. Multi-label stratification

We first propose an algorithm for balancing the distribution
between batches. The idea was inspired by standard methods on
stratified sampling, which utilizes independent sampling among each
sub-population when sub-populations vary within an overall popu-
lation. Algorithm 1 summarizes the proposed multi-label stratifica-
tion approach. The input to the algorithm is a datasetD= {xi, Yi}|D|

i=1
annotated with L classes (i.e., Yi ∈ R

L). Suppose |D| is the num-
ber of images in the dataset, and Y�

i is the �-th AU annotation of
the i-th image. The multi-label stratification starts by computing the
total number of examples for each AU class, and then iteratively dis-
tributing images that contain the AU with the fewest samples. The
distribution is performed evenly into each batch until the complete
dataset is distributed (|D| = 0) or the desired number of batches is
collected. This normally terminates after (L + 1) iterations (L itera-
tions for distributing all AUs and 1 iteration for distributing samples
with no AUs annotations), but could end up less if samples of certain
AU class have been already distributed. Note that images without
any AU annotations still carry information about being an opposite
(negative) class for each AU, and thus we enforce the sampling to
terminate until the dataset is empty.

This algorithm is performed in a greedy perspective. That is, we
aim to have labels in every batch as diverse as possible. If images
that contain minority class labels are not evenly distributed in pri-
ority, it is likely that some batches contain zero occurrence of rare
labels, resulting in biased learning that is difficult to be repaired sub-
sequently. On the other hand, due to the availability of more samples,
distributing later the images with labels from the majority classes
maintains to guide the model towards a desired parametric update.

The middle row of Fig. 6 illustrates the distribution of AU pres-
ence in each mini-batch. As can be seen, the number of AU presence
is much more balanced between batches compared to the random
sampling shown in the first row. However, each vertical slice (i.e., AU
distribution in one batch) still exhibits dramatic unbalanced AU dis-
tribution. For example, minor AUs (e.g., 1, 2 and 4) are outnumbered
by major AUs (e.g., 7, 10, and 12). To balance the distribution of AU
presence within batches, we are driven to the next sampling strategy.
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Fig. 6. Distributions of AU classes in each mini-batch using different sampling strategies: (top) random sampling, (middle) multi-label stratification, (bottom) MOMU sampling.
As can be seen in random sampling, the number of AU presence between and within batches are dramatically different (see text for details).
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Algorithm 2. The proposed multi-label minority oversampling
majority undersampling (MOMU).

5.2. Multi-label minority oversampling majority undersampling
(MOMU)

To the best of our knowledge, despite numerous studies on multi-
label classification and deep learning, there is limited discussion
on how class imbalance of multi-label data can be systematically
addressed between and within batches. As we have observed in
the previous section, both random sampling and multi-label strat-
ification suffer from dramatic unbalanced distributions within each
mini-batch. This drives us to the next strategy termed multi-label
minority oversampling majority undersampling (MOMU).

Algorithm 2 summarizes the proposed multi-label MOMU strat-
egy. For each batch, MOMU proceeds by progressively filling the
(image,label) pairs in a greedy manner. Similar to multi-label stratifi-
cation, as discussed in the previous section, MOMU starts by picking
S images that contain the AU with the fewest samples in the popu-
lation distribution (the AU distribution of an entire dataset). Because
each image contains multiple labels, adding S images into the cur-
rent batch can simultaneously increase the base rate for other AUs.
These S samples are then removed from the dataset to ensure a max-
imal use of annotated data. In the next iteration, MOMU picks the
AU with the fewest samples in the current batch, and then samples
next S images (without replacement) that contain this particular AU.
In this way, we ensure that the AU with the fewest samples can be
always compensated through sampling. We repeat the procedure for
the desired number of B batches until all batches are filled. Note that
during sampling, it is likely that a particular minority class runs out of
samples (N� < S). In this case, we simply restore to the dataset with
all images that contain AU �, and then continue sampling images
that contain this particular AU class. Because the images are added
into each batch consecutively with guarantees to contain at least an
active AU, the class distribution between batches will remain around
a similar scale. More importantly, as we intentionally fill in images
for the minority class, the class distribution within batches can be
also controlled within a balanced range.

The bottom row of Fig. 6 illustrates the AU distribution after
the multi-label MOMU. As can be seen, the number of AU presence
between batches remains in similar scale, while the AU distribution
within batches becomes much more balanced. As we will show in
the subsequent evaluation, such balanced distribution consistently
improves training performance as well as test performance in both
within-dataset and between-dataset scenarios. To our knowledge,
this could serve as one of the first attempts that address multi-label

sampling for unbalanced datasets in the context of stochastic train-
ing. Although we will illustrate only performance on deep learning
models, we believe the same idea can be applied to more models
such as multi-label stochastic SVMs [50].

Comparison with existing methods: Recall that most litera-
ture consider strategies that involve either resampling or classifier
adaptation/cost-sensitive learning. One interpretation of MOMU is
its behavior as a hybrid of both. As in standard deep learning,
augmentation for training data is often done through random crop-
ping of the input image. From this perspective, MOMU takes the
full advantage of both types of strategies by achieving resampling
through sampling the minor classes in the image space, and cost-
sensitive learning through balancing the contributions of different
classes in the feature space.

5.3. Evaluation of different multi-label sampling strategies

In this section, we evaluate the effects of multi-label sampling
strategies in terms of improvements in training and test perfor-
mance. Following Section 4.2, we used a 10-fold data split protocol.
Note that, to reflect the severity of class imbalance in more realistic
datasets, we used larger, renewed GFT and BP4D+ datasets [44] in
this section. In comparison with Section 4.4, GFT and BP4D+ brought
147 subjects (2.9× more) and 98 subjects (2.4× more), respectively.

5.3.1. Evaluation of training performance
Fig. 7 reports the training performance on the GFT dataset in

terms of F1-score (y-axis) and the number of iterations (x-axis).
Three sampling strategies, i.e., standard random sampling, multi-
label stratification, and multi-label MOMU, were evaluated. The
reason we picked F1-score as the evaluation metric is because of its
sensitivity in true positives, which we believe can closely describe
human perception compared to accuracy-based measures. In other
words, given a distribution skewed toward negative samples in each
AU class, we believe humans are more sensitive about a model clas-
sifying correctly on a positive sample than a negative one. If an
accuracy-based metric (e.g., S-score or kappa [49], AUC, or accuracy)
is used over skewed classes, one may not be able to distinguish the
classifier’s performance on top of the true positives (see also [51]).
Having such metric is able to provide a more accurate description
about performance of human’s interest.

As can be seen the red curve in Fig. 7, standard random sampling
(as used in most deep learning literature) suffers from unbalanced
AU distribution. For notational convenience, we denote base rate for
the �-th AU as BR�. The performance of minority AUs, such as AUs 4
(BR4 = 3.4%) and 15 (BR15 = 8.8%), remains rather low even during
the training phase with 8000 iterations. Multi-label stratification, as
indicated by the green curve, exhibits a relatively smoother training
curve because each mini-batch contains similar amount of AU pres-
ence, which would help avoid the network favoring prediction on the
negative samples. However, as can be seen, multi-label stratification
only ends up with similar performance because the AU distribution
within each mini-batch remains dramatically biases as discussed in
the previous section. The MOMU strategy, as indicated by the blue
curve, shows significant improvement for minority classes, includ-
ing AUs 1 (BR1 = 8.8%), 2 (BR2 = 10.9%), 4 (BR4 = 3.4%), and 15
(BR15 = 8.8). Not surprisingly, the performance of major AUs did
not decrease notably even though the samples in the majority classes
were under-sampled. This is mainly due to the high redundancy of
the video frames shown in spontaneous datasets. In all, as indicated
by the F1 scores, the multi-label MOMU strategy effectively guides
the network with reliable training for the multi-label AU data.
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Fig. 7. Comparison of training performance on the GFT dataset in terms of F1-score (y-axis) vs the number of iterations (x-axis) over different sampling strategies: (red) random
sampling, (green) multi-label stratification, (blue) multi-label MOMU. As can be observed, for conventional random sampling and multi-label stratification, the performance of
minority AUs, such as AUs 4 (BR4 = 3.4%) and 15 (BR15 = 8.8%), remains rather low even after training phase with 8000 iterations (the curve is higher better).

5.3.2. Evaluation of test performance
For performance evaluation during the test phase, we provide

evaluation for individual AUs in Tables 3 and 4 in within- and

Table 3
Performance evaluation of different sampling strategies: Random Sampling (RS),
Multi-label stratification (MS), and MOMU sampling (MOMU). Comparison was per-
formed in terms of within-dataset and between-dataset scenarios in the GFT dataset
[35].

Within Between

AU RS MS MOMU RS MS MOMU

1 .44 .38 .47 .03 . .16
2 .41 .35 .38 . . .13
4 . . .29 .07 .07 .08
6 .73 .73 .71 .52 .52 .54
7 .72 .72 .73 .63 .61 .62
10 .68 .68 .67 .32 .33 .46
12 .72 .75 .75 .58 .61 .55
14 .05 .27 .4 .23 .25 .22
15 .17 .14 .29 .01 .01 .23
17 .32 .47 .49 .22 .3 .4
23 .39 .38 .48 .34 .43 .32
24 .13 .44 .41 . .01 .19
Avg .4 .44 .51 .25 .26 .32

between-dataset scenarios. The within-dataset scenario indicates
training and test on subjects of the same dataset; between-dataset
scenario indicates training on subjects of one dataset while test

Table 4
Performance evaluation of different sampling strategies: Random Sampling (RS),
Multi-label stratification (MS), and MOMU sampling (MOMU). Comparison was per-
formed in terms of within-dataset and between-dataset scenarios in the BP4D+
dataset [44].

Within Between

AU RS MS MOMU RS MS MOMU

1 .19 .19 .43 .28 .31 .3
2 .15 .15 .46 .3 .32 .31
4 .83 .83 .88 . . .25
6 .82 .82 .9 .66 .78 .71
7 .91 .91 .94 .74 .86 .79
10 .78 .78 .82 .68 .74 .74
12 .87 .87 .91 .81 .75 .79
14 .8 .8 .83 . . .12
15 .15 .15 .38 .02 .05 .15
17 .3 .3 .54 .15 .01 .28
23 .44 .44 .6 .14 .17 .39
24 .02 .02 .4 .02 . .09
Avg .52 .52 .67 .25 .33 .41
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on subjects of the other dataset. Fig. 8 shows the improvement on
both GFT [35] and BP4D+ [44] datasets using within-dataset and
between-dataset scenarios.

As can be seen in the within-dataset scenario of Fig. 8, the
improvements on GFT focus on the minor classes, such as AUs 1, 2,
15, 17 and 24. More precisely, the improvements are mostly obvious
in the F1-score metric. As mentioned earlier, this is because F1-score
maintains the sensitivity in true positives, and therefore including
more samples from the minority classes can help improve detec-
tion of the true positives. AUC did not reflect much improvement
or decrement because of its insensitivity to skewed class distribu-
tions, as also discussed in [51]. On the other hand, the improvements
within BP4D+ are rather consistent. One possible explanation is
because BP4D+ yields more dramatic skewness between AU distri-
butions than GFT does, and our multi-label MOMU strategy is able
to better balance the distribution between and within batches. More
interestingly, the improvements on BP4D+ are roughly inverse-
proportional to the underlying AU base rates as shown in Fig. 5(b).
This provides an evidence that training with a more balanced distri-
bution in multi-label data can help improve test time performance,
and the improvement is even more obvious when the class distribu-
tions are significantly different.

For the between-dataset scenario, the improvements of minority
classes can be still observed for both datasets. Because BP4D+ has
much higher base rate in AUs than BP4D does, AU 4 was signifi-
cantly improved in the between-GFT experiment for both AUC and
F1. For some AUs such as 1, 2, 6, 7, 10 and 12, the improvements
were much less obvious. On the other hand, for the between-BP4D+
experiments, the results were rather mixed. For AUs 14, 17, 23 and
24, we observed similar behaviors. However, for AUs 1, 2, 6, and 7,
AUC was improved yet F1 behaved in the opposite. Similarly, for AUs
10 and 12, the improvements in terms of AUC were higher than the
ones in F1-score. One potential reason is because GFT has more sub-
jects and thus more number of frames to train the classifier. Although
within each AU the distribution is biased toward negative samples,

having more training data can potentially improve prediction on
negative samples, and thus improves AUC better. Nevertheless, mul-
tiple variabilities between two dataset can account for such relatively
unpredictable results . These variabilities include recording environ-
ments, interview context, skin color, head pose and so on. We believe
this is still an open problem, and refer interested readers to the Con-
clusion Chapter for more of our thoughts and ideas to address these
variabilities.

6. Visualization of AU models

To better understand and interpret the proposed network, we
implement a gradient ascent approach [53,54] to visualize each AU
model. More formally, we look for such input image I� by solving
the optimization problem:

I� = arg max
I

A�(I) − Y(I), (3)

where A�(I) is an activation function for the �-th unit of the out-
put layer given an image I, and Y( • ) is a regularization function that
penalizes I to enforce a natural image prior. In particular, we imple-
mented Y( • ) as a sequential operation of L2 decay, clipping pixels
with small norm, and Gaussian blur [54]. The optimization was done
by iteratively updating a randomized and zero-centered image with
the backprop gradient of A�(I). In other words, each pixel of S was
renewed gradually to increase the activation of the �-th AU. This
process continued until 10,000 iterations.

Fig. 9 shows our visualizations of each AU model learned by the
CNN architecture described in Section 3.1. As can be seen, most mod-
els match the attributes described in FACS [52]. For instance, model
AU12 (lip corner puller) exhibits a strong “�” shape to the mouth,
overlapped with some vertical “stripes”, implying the appearance
of teeth is commonly seen in AU12. Model AU14 (dimpler) shows
the dimple-like wrinkle beyond lip corners, which, compared to
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Fig. 8. Improved points of MOMU over random sampling in both within-dataset and between-dataset scenarios for GFT [35] and BP4D+ [44] datasets. Results in AUC and F1
suggest that improvements are more consistent in BP4D+ than in GFT due to the more dramatic AU imbalance in the BP4D+ dataset (as illustrated in Fig. 5).
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Fig. 9. Synthetically generated images to maximally activate individual AU neurons in the output layer of CNN, trained on GFT [35], showing what each AU model “wants to see”.
The learned models show high agreement on attributes described in FACS [52] (best view electronically).

AU12, gives the lip corners a downward cast. Model AU15 (lip cor-
ner depressor) shows a clear “
 ” shape to the mouth, producing an
angled-down shape at the corner. For upper face AUs, model AU6
(cheek raiser) captures deep texture of raised-up cheeks, narrowed
eyes, as well as a slight “�” shape to the mouth, suggesting its fre-
quent co-occurrence with AU12 in spontaneous smiles. Models AU1
and AU2 (inner/outer brow raiser) both capture the arched shapes
to the eyebrows, horizontal wrinkles above eyebrows, as well as
the widen eye cover that are stretched upwards. Model AU4 (brow
lowerer) captures the vertical wrinkles between the eyebrows and
narrowed eye cover that folds downwards.

Our visualizations suggest that the CNN was able to identify these
important spatial cues to discriminate AUs, even though we did not
ask the network to specifically learn these AU attributes. Further-
more, the global structure of a face was actually preserved through-
out the network, despite that convolutional layers were designed for
local abstraction (e.g., corners and edges as shown in Fig. 2(d)). Lastly,
the widespread agreements between the synthetic images and FACS
[52] confirm that the learned representation is able to describe and
reveal co-occurring attributes across multiple AUs. We believe such
AU co-occurrence is captured due to the multi-label structure in the
proposed network. This was not shown possible in standard hand-
crafted features in AU detection (e.g., shape [28,55], HOG [12,14], LBP
[21,56] or Gabor [21]). To the best of our knowledge, this is the first
time to visualize how machines see facial AUs.

7. Conclusion and future work

We have presented a hybrid network that jointly learns three
factors for multi-label AU detection: Spatial representation, temporal
modeling, and AU correlation. To the best of our knowledge, this is
the first study that shows a possibility of learning the three seem-
ingly unrelated aspects within one framework. The hybrid network
is motivated by existing progress on deep models, and takes advan-
tage of spatial CNNs, temporal LSTMs, and their fusions to achieve

multi-label AU detection. Experiments on two large spontaneous
AU datasets demonstrate the performance over a standard CNN and
feature-based state-of-the-art methods. In addition, we introduce
multi-label sampling strategies to further improve performance for
sparse AUs. Lastly, our visualization of learned AU models showed,
for the first time, how machines see each facial AU. Models trained
with the sampling strategies showed promising improvements on
both validation and test data. Future work include deeper analysis of
the temporal network (e.g., evaluate the impact of head movement
of pose for temporal modeling, and incorporation of bi-directional
LSTMs), training an entire network end-to-end, and compare the
proposed model between single-label and multi-label settings, etc.
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