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Figure 1. High-fidelity face tracking results using our method. From left to right: Input image captured by an iPhone, normal map, fully-lit

avatar (avatar before relighting), relit avatar (avatar after relighting), and relit avatar under different viewpoints. Please notice the specular

highlight changes on the avatars under different viewpoints.

Abstract

3D video avatars can empower virtual communications

by providing compression, privacy, entertainment, and a

sense of presence in AR/VR. Best 3D photo-realistic AR/VR

avatars driven by video, that can minimize uncanny effects,

rely on person-specific models. However, existing person-

specific photo-realistic 3D models are not robust to lighting,

hence their results typically miss subtle facial behaviors and

cause artifacts in the avatar. This is a major drawback for

the scalability of these models in communication systems

(e.g., Messenger, Skype, FaceTime) and AR/VR. This paper

addresses previous limitations by learning a deep learning

lighting model, that in combination with a high-quality 3D

face tracking algorithm, provides a method for subtle and

robust facial motion transfer from a regular video to a 3D

photo-realistic avatar. Extensive experimental validation

and comparisons to other state-of-the-art methods demon-

strate the effectiveness of the proposed framework in real-

world scenarios with variability in pose, expression, and

illumination. Our project page can be found at this website.

1. Introduction

Currently, video conferencing (e.g., Zoom, Skype, Mes-

senger) is the best 2D available technology for internet com-

munication. To allow for more advance levels of communi-

cation and sense of presence, Augmented Reality (AR) and

Virtual Reality (VR) technologies aim to build 3D person-

alized avatars, and superimpose virtual objects in the real

space. If successful, this new form of face-to-face interac-

tion will allow extended remote work experiences that can

improve productivity, reducing cost and stress of commut-

ing, have a huge impact on the environment, and overall

improving the work/life balance.

Today most real-time systems for avatars in AR are

cartoon-like (e.g., Apple Animoji, Tiktok FaceAnimation,

Hyprsense, Loom AI); on the other hand, digital creators in

movies have developed uncanny digital humans using ad-

vanced computer graphics technology and person-specific

(PS) models (e.g., Siren). While some of these avatars can

be driven in real-time from egocentric cameras (e.g., Doug

character made by digital domain), building the PS model is

an extremely time-consuming and hand-tuned process that

13059



prevents democratizing this technology. This paper con-

tributes toward this direction, and it proposes new algo-

rithms to robustly and accurately drive 3D video-realistic

avatars from monocular cameras to be consumed by AR/VR

displays (see Fig. 1).

Model-based photo-realistic 3D face reconstruc-

tion/animation from a video has been a core area of

research in computer vision and graphics in the last

thirty years [3, 4, 6, 8, 14, 16, 23, 28, 33, 49, 44, 59, 2].

While different versions of morphable models or active

appearance models have provided good facial animation

results, the existing 3D models do not provide the quality

that is needed it for a good immersive viewing experience

in AR/VR. In particular, the complex lighting, motion, and

other in-the-wild conditions do result in artifacts in the

avatar due to poor decouple of rigid and non-rigid motion,

as well as, no accurate texture reconstruction. To tackle

this problem, we build on recent work on Deep Appearance

Model (DAM) [27] that learns a person-specific model from

a multi-view capture setup. [27] can render photo-realistic

avatars in a VR headset by inferring 3D geometry and

view-dependent texture from egocentric cameras .

This paper extends DAM [27] with a new deep light-

ing adaptation method to recover subtle facial expressions

from monocular videos in-the-wild and transfer them to a

3D video-realistic avatar. The method is able to decouple

rigid and non-rigid facial motions, as well as, shape, ap-

pearance and lighting from videos in-the-wild. Our method

combines a prior lighting model learned in a lab-controlled

scenario and adapts it to the in-the-wild video, recovering

accurate texture and geometric details in the avatar from

images with complex illuminations and challenging poses

(e.g. profile). There are two main contributions of our work.

First, we provide a framework for fitting a non-linear ap-

pearance model (based on a variational auto-encoder) to in-

the-wild videos. Second, we propose a new lighting trans-

fer module to learn a global illumination model. Experi-

mental validation shows that our proposed algorithm with

deep lighting adaptation outperforms state-of-the-art meth-

ods and provides robust solutions in realistic scenarios.

2. Related Work

3D Face Tracking. 3D morphable face models

(3DMM) [3, 4, 6, 14, 16, 23, 33] and Active Appear-

ance Models (AAMs) [8, 28, 49] have been extensively

utilized for learning facial animations from 3D scans

and face tracking. These methods produce texture and

geometry through the idea of analysis-by-synthesis, where

a parametric face model is iteratively adapted until the

synthesized face matches the target image. For example,

by leveraging the photometric error in both shape and

texture, AAMs [8] have shown strong efficiency and

expressibility to register faces in images. More recently,

Deep Appearance Model (DAM) [27] extends the AAMs

with deep neural networks in-place of linear generative

functions. DAM learns the latent presentation of geometry

and texture using a conditional variational autoencoder [19]

and is able to reconstruct a high-fidelity view-dependent

avatar with the aid of the multi-view camera system.

In-the-Wild Face Reconstruction. Face reconstruction

under an in-the-wild scenario is known as a challenging

problem since the rigid, lighting, and expression are un-

known. For example, the surface information presented by

a single image [15, 24, 34, 38, 42, 43, 57, 48, 54, 58, 56,

45, 17, 12] or even an image collection [35, 36, 25, 37, 50,

41, 46] is limited. Thus, achieving high-fidelity face recon-

struction from in-the-wild imagery usually relies on prior

knowledge like 3DMMs [3], FLAME [23], or DAM [27].

For example, instead of directly regressing the geometry,

MoFA [43] uses a CNN-based image encoder to extract

the semantically meaningful parameters (e.g., facial expres-

sion, shape, and skin reflectance) from a single 2D image

and then uses the parametric model-based decoder to ren-

der the output image. Tran et al. [48] propose a weakly

supervised model that jointly learns a nonlinear 3DMM and

its fitting algorithm from 2D in-the-wild image collection.

Gecer et al. [13] train a facial texture generator in the UV

space with self-supervision as their statistical parametric

representation of the facial texture. Lin et al. [24] propose

a GCN-based network to refine the texture generated by a

3DMM-based method with facial details from the input im-

age. Yoon et al. [54] propose a network (I2ZNet) to learn a

latent vector z and head pose for DAM from a single image

to reconstruct the texture and geometry.

Lighting Estimation for In-the-Wild Imagery. Most ex-

isting face reconstruction works [24, 26, 39, 42, 43, 47,

48, 29] estimate the illumination using spherical harmonics

(SH) basis function. For instance, Tewari et al. [42] regress

the illumination parameters from the input image, and the

rendering loss is computed after combining the estimated

illumination and skin reflectance in a self-supervised fash-

ion. In this way, it is hard to analyze the quality of the es-

timated illumination and skin albedo. Moreover, low-order

spherical harmonics cannot produce hard shadows cast from

point light sources, which will decrease the face reconstruc-

tion quality in many real-world scenarios. I2ZNet [54] pro-

poses a MOTC module to convert the color of the predicted

texture to the in-the-wild texture of the input image. The

MOTC can be viewed as a color correction matrix that cor-

rects the white-balance between the two textures. However,

the MOTC can only model the low-frequent lighting infor-

mation, which will decrease the face registration perfor-

mance if the lighting environment is complicated. Mean-

while, the surface information presented by a single im-

age is limited, which leads to some artifacts such as over-

smoothing and incorrect expression. To explicitly model the

13060



lighting, we propose a physics-based lighting model to learn

the high-frequent lighting pattern (e.g., shading, and bright-

ness) from data captured in a lab-controlled environment.

Besides, a domain adaptation schema is proposed to bridge

the domain mismatch between lab and wild environments.

3. Adaptive Lighting Model

This section describes existing work on DAMs [27]

(Sec. 3.1), construction of the lighting model with light-

stage data (Sec. 3.2), and the adaptation of the model for

in-the-wild settings in Sec. 3.3.

3.1. Deep Appearance Models

Our work is based on the face representation described

in DAM [27]. It uses a variational auto-encoder (VAE) [20]

to jointly represent the 3D facial geometry and appearance

that are captured from a multi-view capture light-stage. The

decoder, D, can generate instances of a person’s face by tak-

ing, as input, a latent code z, which encodes the expression,

and a vector vv that represents viewing direction as a nor-

malized vector pointing from the center of the head to the

camera v:

M̂, T̂v ← D(z,vv) . (1)

Here, M̂ denotes the 3D face mesh (geometry) and T̂v , the

view-dependent texture.

In this work, we assume the availability of a pre-trained

DAM decoder of a subject, and propose a system to fit the

model to images by estimating the rigid and non-rigid mo-

tion (i.e., facial expression). A major challenge in imple-

menting such a system is how to account for illumination

differences between the high controlled studio lighting sys-

tem where the avatar was captured, and the in-the-wild cap-

tures where the avatar is deployed. In the following, we will

describe an adaptive lighting model that extends the origi-

nal DAM formulation to enable high precision tracking in

uncontrolled and complex environments.

3.2. Lighting Model

In order to incorporate a generative model of lighting

into the DAM formulation, we extend the capture system

in [27] to include 460 controllable lights that are synchro-

nized with the multi-view camera system. The captured

sequence was extended to include a portion where non-

overlapping groups of approximately 10 lights were turned

on, interleaved with fully lit frames that were used for track-

ing. This data was used to build a relightable face model

using the scheme illustrated in Figure 2.

Our formulation is inspired by the light-varying residual

proposed by Nestmeyer et al. [31], where illumination vari-

ations are represented using gain and bias maps, g and b,

each matching DAM’s texture dimensions (H ×W × 3):

Tv = T̂v ⊙ gv + bv, (2)

Figure 2. Training the lighting model on the light-stage data. We

update the lighting model G and per-frame expression code z

while fixing the other parameters.

where ⊙ denotes the element-wise product, Tv is the relit

texture, and T̂v is the DAM avatar’s original texture (fully-

lit). The gain and bias maps depend on the lighting, head

pose1, viewpoint, and expression. These inputs, represented

by l, hv , and T̂v , are processed by MLPs and are spatially

repeated for concatenation with the DAM’s texture followed

by additional convolution operations to produce the final re-

lit texture. This lighting model is, thus, defined as follows:

gv, bv ← G(l,hv, T̂v;φ) , (3)

where φ denotes the weights of the network. Further details

about G are in Sec. 4.1 and in the supplementary material.

Since the goal of our lighting model is to enable accu-

rate registration in uncontrolled scenarios, we do not require

a lighting representation that is geometrically interpretable,

only one that can span the space of facial illuminations. As

such, we represent lighting conditions using a one vector

that specifies which of the lights, in each color channel, are

active for a given training frame. We use a binary vector

of 150 dimensions, which comprises the 50 lighting groups

with three color channels each. The fully-lit frames are en-

coded as the all-one vector. In combination with the contin-

uously parameterized head pose, this representation allows

for continuous and smoothly varying illumination synthe-

sis on the face that can model complex effects such as how

shadows move as the subject’s head rotates in the scene.

To train G, we take a pre-trained DAM decoder and fix

its weights while minimizing the reconstruction error over

all camera views in the subject’s sequence, that is:

Lrender(φ,Z) =
∑

t,v

∥

∥

∥

(

Ivt −R(T
v
t , M̂t)

)

⊙mv
∥

∥

∥

1
, (4)

1Here, the rigid head pose consists of two parts: rigid rotation r ∈

R
3 and camera viewpoint vector vv

∈ R
3. Similar to [27], we assume

that the viewpoint vector is relative to the rigid head orientation that is

estimated from the tracking algorithm.
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Algorithm 1 Lighting Model Adaptation

Input: lighting model G with weights φ, K key frames

with initial face parameters {(I, p̃)k}, camera viewpoint

vector vv

Output: adapted lighting model G and lighting code l

Initialization: set l to zeros, φ to pre-trained weights by

Sec. 3.2, face parameters {pk} to {p̃k}
for number of iterations do

# Fitting l

for number of iterations do

Unfreeze l, freeze φ and {pk}
Calculate Lpix using Eq. 7

l← Adam{Lpix}

# Fitting φ and {pk}
for number of iterations do

Freeze l, unfreeze φ and {pk}
Calculate Lpix using Eq. 7

φ, {pk} ← Adam{Lpix}

where the minimization is performed over the lighting

model’s weights, φ, as well as the expression codes for

each frame Z = {zt}. In Equation 4, mv is a foreground

mask from view v and R is a differentiable rasterization

function [32]. To ensure stable convergence, we employ

L2-shrinkage on the expression codes, Z, and use the tech-

nique in [52] to obtain a tracked mesh, Mt, from the fully-

lit frames, that are used to geometrically constrain the opti-

mization, resulting in the following total objective:

L = Lrender + λgeo

∑

t

‖Mt − M̂t‖
2 + λreg‖Z‖

2. (5)

Regularization weights of λgeo = 1.0 and λreg = 0.1 were

chosen for all experiments in Sec. 4 by cross validation.

3.3. Registration IntheWild

With the lighting model described in Sec. 3.2, we have a

personalized face model that can synthesize realistic vari-

ations in expression as well as lighting suitable for an

analysis-by-synthesis approach to register the model to in-

the-wild video with uncontrolled illumination. However,

to achieve robust and precise results, special care needs to

be applied in how registration is performed. Our algorithm

comprises three steps (Fig. 3) outlined below, each designed

to address initialization, accuracy, and computational effi-

ciency, respectively.

Step 1: Initialization. To avoid registration terminating

in poor local minima, we initialize the pose and expression

parameters by matching against facial keypoints in the im-

age found via an off-the-shelf detector (e.g.,[22]). Specifi-

cally, face landmarks, {Li}, describing facial features such

as eye corners, lip contours, and the face silhouette corre-

spond to fixed vertices in the face model’s geometry, {ℓi}.

The initial face parameters, p̃ = [̃r, t̃, z̃], are then found

by minimizing the reprojection error over these landmark

points in all camera views, v, for every frame:

Lland(p̃) =
∑

v,i

∥

∥

∥
Πv

(

r̃M̃(ℓi) + t̃
)

− Lv
i

∥

∥

∥

2

, (6)

where Πv is the projection operator based on camera param-

eters that are assumed to be available. The face mesh, M̃,

is calculated using Eq. 1 with the expression code z̃. Due

to the landmarks’ sparsity and detection noise, minimizing

Lland results in only a rough alignment of the face in each

frame (e.g., Fig. 4 (b)). Nonetheless, it places the model

within the vicinity of the solution, allowing the more elabo-

rated optimization procedure described next to converge.

Step 2: Lighting Model Adaptation. Although the light-

ing model described in Sec. 3.2 equips us with the abil-

ity to synthesize variations in facial illumination, using the

light-stage to simulate the total span of lighting variations

encounter in the wild remains challenging. Effects such

as nearfield lighting, cast shadows, and reflections from

nearby objects are commonly observed in uncontrolled set-

tings. To account for variations not spanned by our lighting

model, G, in addition to solving for the lighting parame-

ters, l, we simultaneously fine-tune the model’s weights, φ,

to obtain a better fit to in-the-wild images. Specifically, we

minimize the following loss over a collection of K frames 2

from the target environment:

Lpix(l, φ, {pk}) =
∑

k

‖rk ⊙ wk‖1 + λ△ ‖△rk ⊙ wk‖1 ,

(7)

where rk = Ik − Î(pk) is the reconstruction residual, wk

is the foreground mask, and pk = [rk, tk, zk]. Here, ∆
denotes the image Laplacian operator that makes the loss

more robust to residual differences due to illumination and

generally improves results.

Step 3: Face Tracking. The procedure described previ-

ously can generate accurate estimates of facial expression,

but requires batch processing to adapt the lighting model si-

multaneously over several frames. However, once the light-

ing model has been adapted, the parameters p = [r, t, z]
for any new frames can be estimated independently of the

lighting model G. Thus, in practice, we adapt the lighting

model using only a small subset of K frames and estimate

p with the updated model G. To further improve accuracy,

in addition to the optimizing the loss in Eq. 7, similarly to

[5], we use dense optical flow [21] between the rendered

model and the image to further constrain the optimization.

It is computed over all projected mesh vertices in all camera

2We can select K frames out of the testing sequence for adaptation if

the lighting of the K frames is the same as the testing sequence.
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Figure 3. The pipeline of in-the-wild registration. We estimate the initial tracking parameters in step 1, adapt the lighting model and

tracking parameters l, φ, {pk} with K reference frames in Step 2, and further optimize the tracking parameters in step 3.

Figure 4. Result of each step in Sec. 3.3. From left to right: (a)

captured image, (b) avatar output by step 1, (c) relit avatar after

step 2, (d) fully-lit avatar after step 3, and (e) relit avatar after

step 3. The last column shows the zoom-in of corresponding color

rectangle, please notice the lip shapes and gaze directions.

views as follows:

Lflow(p) =
∑

v,i

∥

∥

∥

(

rM(i) + t
)

−Πv

(

r̃M̃(i) + t̃
)

− dv
i

∥

∥

∥

2

,

(8)

where mesh M and M̃ are calculated using Eq. 1 with the

latent face code z and z̃ respectively, and (r̃, t̃, z̃) are ini-

tial parameters from Step 1. We optimize the per-frame

face parameters p = {r, t, z} by minimizing the total loss

L = Lpix + λflowLflow, where λflow = 3.0 was chosen via

cross validation. Fig. 4 (d-e) shows some examples of re-

sults obtained through this process, demonstrating accurate

alignment and reconstruction of lip shape and gaze direction

that were absent in Step 1.

4. Experiments

In this section, we conduct quantitative and qualitative

experiments to show the performance of the proposed face

tracking framework on in-the-wild videos. Sec. 4.1 explains

dataset and implementation details. Sec. 4.2 compares our

method to state-of-the-art methods, and Sec. 4.3 describes

the ablation studies.

4.1. Experimental Settings

Dataset Collection. We recorded our light-stage data in a

calibrated multi-view light-stage consisting of 40 machine

vision cameras capable of synchronously capturing HDR

images at 1334×2048 / 90 fps and a total of 460 white LED

lights. We flash a group of LEDs (at most 10) per frame

and instruct our subjects to make diverse expressions with

head movements. There are 50 different lighting patterns

and one fully-lit pattern. We record a total of 13 minutes

video sequence of one subject (see supplementary videos).

The in-the-wild video test were gathered using the

frontal camera of an iPhone. We captured videos for 10
subjects. We collected around 5 video clips for each sub-

ject, performing different facial expressions and head move-

ments, under various lighting conditions and environments.

Implementation Details. The light-stage training step

(Sec. 3.2) and the lighting adaptation step cost 36 hours and

4mins, respectively, on an NVIDIA DGX machine. In all

our experiments, we used the Adam optimizer [18] to op-

timize the losses. In order to cover more lighting space

during the training of the lighting transfer module, we aug-

mented the RGB channels of the light-stage lighting color

with randomly selected scales, which are also used to scale

the lighting code l in the training data. The architecture of

our lighting decoder G is as follows: we first encode the in-

put head pose hv and l with two MLPs to 256 dimensions.

After concatenating the two latent features, we pass it to a

fully-connected layer and a convolution layer followed by

four transposed convolutions with each layer. The fully-lit

texture T̂v is encoded by four convolution layers with each

layer followed by a down-sampling layer to texture feature.

Then we concatenate the texture feature and lighting feature

and pass it to two separate branches consists of two trans-

pose convolution. The two branches output gain map gv
t and

bias map bv
t with the resolution of 256 × 256, and we up-

sample them 4 times using bilinear interpolation to the same

resolution as texture T̂v . Please refer to supplementary ma-

terials for details. While training the lighting model on the

light-stage data in Sec. 3.2, the rendering loss is optimized

with an initial learning rate of 1e−3, which is decreased by

a quarter after every 10 epochs.

During the registration of the in-the-wild videos in

Sec. 3.3, we fit the DAM code zk in step 1 with 1000 it-

erations. The initial learning rate is 0.1, and we decrease it

by half after every 500 iterations. In step 2, the K frames

are uniformly sampled according to the value of r̃ to cover

diverse head movements. We fit the lighting code l with

250 iterations with a learning rate of 1e−2, then update G’s

network parameter φ and face parameters {pk} with 500
iterations with a learning rate of 1e−3. We alternatively up-

date l, φ, and {pk} for 4 times. In step 3, we update the face
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Figure 5. Qualitative comparison. We suggest to view it using a monitor for better visual quality. We selected 8 subjects from the test set

with different lighting conditions, facial expression, and head motion. From left to right: (a) Captured image, (b) Abrevaya et al. [1], (c)

3DDFAv2 [15], (d) PRNet [11], (e) RingNet [37], (f) FaceScape [53], (g) Deng et al. [10], (h) MGCNet [40], and (i) our method.
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Figure 6. Visual comparison between our method and I2ZNet [54]

on testing video frames. From top to bottom: captured image,

I2ZNet [54], and our method.

parameters {pk} with the same hyper-parameters as step 1.

Evaluation Metrics. We used a variety of perceptual

measures to quantitatively compare the registered image

against the ground-truth in-the-wild image. Besides the

pixel-level L2 distance, we adopted PSNR and structural

similarity (SSIM) [51] for human perceptual response. To

evaluate the realism of the output avatar, we computed the

cosine similarity (CSIM) between embedding vectors of

the state-of-the-art face recognition network [9] suggested

by [55, 7] for measuring identity mismatch between the in-

put image and reconstructed avatar.

4.2. Comparison with stateoftheart methods

To demonstrate the effectiveness of our lighting model

and the face tracking quality, we compared our algorithm

against the following set of related methods using the pre-

trained models provided by the authors: Abrevaya et al. [1],

3DDFAv2 [15], PRNet [11], RingNet [37], FaceScape [53],

Deng et al. [10], MGCNet [40], and I2ZNet [54]. As the

baseline method, we used the same face registration method

proposed in Sec. 3, but use the standard spherical harmonics

(SH) [30] illumination model, which is denoted as ours-SH.

We adopt the same parameter setting as [43] for SH, and

train a regression network to regress the input images to the

27 dimensional SH parameters.

Qualitative Evaluation. Fig. 5 shows the tracked geom-
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