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Abstract

3D Hand reconstruction from a single RGB image is challenging due to the ar-
ticulated motion, self-occlusion, and interaction with objects. Existing SOTA
methods employ attention-based transformers to learn the 3D hand pose and shape,
yet they do not fully achieve robust and accurate performance, primarily due to
inefficiently modeling spatial relations between joints. To address this problem, we
propose a novel graph-guided Mamba framework, named Hamba, which bridges
graph learning and state space modeling. Our core idea is to reformulate Mamba’s
scanning into graph-guided bidirectional scanning for 3D reconstruction using a
few effective tokens. This enables us to efficiently learn the spatial relationships
between joints for improving reconstruction performance. Specifically, we design
a Graph-guided State Space (GSS) block that learns the graph-structured relations
and spatial sequences of joints and uses 88.5% fewer tokens than attention-based
methods. Additionally, we integrate the state space features and the global features
using a fusion module. By utilizing the GSS block and the fusion module, Hamba
effectively leverages the graph-guided state space features and jointly considers
global and local features to improve performance. Experiments on several bench-
marks and in-the-wild tests demonstrate that Hamba significantly outperforms
existing SOTAs, achieving the PA-MPVPE of 5.3mm and F@15mm of 0.992 on
FreiHAND. At the time of this paper’s acceptance, Hamba holds the top position,
Rank 1, in two competition leaderboards1 on 3D hand reconstruction.

1 Introduction

3D Hand reconstruction has numerous applications across multiple fields, which include robotics,
animation, human-computer interaction, and AR/VR [11, 34, 71, 18, 103]. However, reconstructing
3D hands from a single RGB image without body context or camera parameters remains a difficult
challenge in computer vision. Recent works primarily explored transformers [14, 19, 51, 52, 70,
95, 73, 45, 55] for this task and achieved SOTA performance by utilizing attention mechanism.
METRO [51] introduced a multi-layer transformer, using self-attention to learn vertex-vertex and
vertex-joint relations. MeshGraphormer [52] integrated graph convolutions with a transformer
to further enhance the reconstruction performance. Recently, HaMeR [70] designed a ViT-based
model [19], using ViTPose [95] weights and large datasets to achieve better performance.

However, the above models fail to reconstruct a robust mesh in challenging in-the-wild scenarios
that have occlusions, truncation, and hand-hand or hand-object interactions (See Figure 5 for visual
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Figure 1:In-the-wild visual results of Hamba. Hamba achieves signi�cant performance in various
in-the-wild scenarios, including hand interaction with objects or hands, different skin tones, different
angles, challenging paintings, and vivid animations.

comparison). This is partially due to a lack of accurate modeling of spatial relations among hand
joints. Secondly, transformer-based methods [19, 51, 52, 70, 95] require a large number of tokens for
reconstruction, and applying attention to all image tokens does not ef�ciently model the joint spatial
sequences (i.e., the spatial relationship between joints), which often results in an inaccurate 3D hand
mesh in real-world scenarios.

To address these challenges, we proposeHamba, a novel Mamba-based [26] model that employs
graph learning [44, 104] and state space modeling [26] for robust 3D hand mesh reconstruction.
Mamba is a new state space modeling method with global receptive �eld capability. Most Mamba-
based models [3, 26, 33, 49, 88, 89, 102] are designed for long-range data, and few studies [48, 78]
have adapted Mamba for 3D vision tasks. In this work, we explore Mamba's potential for the
3D hand reconstruction task. We found that directly applying Mamba for 3D hand reconstruction
results in inaccurate meshes due to its unidirectional scanning and the lack of speci�c design
for 3D hand reconstruction. To tackle this challenge, we propose a Graph-guided Bidirectional
Scan (GBS) to effectively capture the semantic and spatial relation between joints, as shown in
Figure 2(c). Besides, the transformer's attention requires calculating correlation among all tokens and
introduces unnecessary background correlations, while our proposed GBS uses 88.5% fewer tokens
(see Section 3.2 for more details). Secondly, though Mamba-based models [3, 26, 33, 49, 88, 102]
excel in modeling long-range sequences, they are not pro�cient at capturing the local-relation
information (in our case, the `semantics' between hand joints). Since graph learning has the capability
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Figure 2: Motivation . Visual comparisons of different scanning �ows. (a) Attention methods
compute the correlation across all patches leading to a very high number of tokens. (b) Bidirectional
scans follow two paths, resulting in less complexity. (c) The proposed graph-guided bidirectional
scan (GBS) achieves effective state space modeling leveraging graph learning with a few effective
tokens (illustrated as scanning by two snakes: forward and backward scanning snakes).

to effectively capture node relations, we integrate graph convolutions into state space modeling,
signi�cantly enhancing the representation by considering the intricate hand joint relations.

In particular, to effectively leverage state space modeling (SSM) and graph learning capabilities for
3D hand reconstruction, we �rst carefully design a Token Sampler (TS) under guidance with hand
joints predicted by Joint Regressor (JR), then feed sampled token into the Graph-guided State Space
block (GSS) under the Graph-guided Bidirectional Scan (GBS). Lastly, we introduce a fusion module
to integrate the state space tokens and global features to further improve performance. As shown in
Figure 1, Hamba achieves signi�cant visual performance in challenging scenarios. We summarize
our contributions as follows:

• We are the�rst to incorporate graph learning and state space modeling (SSM) for reconstructing
robust 3D hand mesh. Our key idea is to reformulate the Mamba scanning into graph-guided
bidirectional scanning for 3D reconstruction using a few effective tokens.

• We propose a simple yet effective Graph-guided State Space (GSS) block to capture structured
relations between hand joints using graph convolution layers and Mamba blocks.

• We introduce a token sampler that effectively boosts performance. A fusion module is also
introduced to further enhance performance by integrating state space tokens and global features.

• Extensive experiments on multiple challenging benchmarks demonstrate Hamba's superiority over
current SOTAs, achieving impressive performance for in-the-wild scenarios.

2 Related Works

3D Hand Reconstruction.Multiple approaches have been proposed to reconstruct 3D hand mesh [2,
41, 62, 66, 67, 77, 80, 83, 85], with most works leveraging the MANO [75] parametric representation
of the 3D hand. Zhanget al. [101] utilized a CNN encoder to iteratively regress the hand mesh based
on heatmaps under 2D, 3D, silhouette, and geometric constraints. I2L-MeshNet [63] proposed line
pixel-based 1D heatmaps for estimating joint locations and regressing MANO parameters, while
HandAR [81] estimated parameters through three stages: joint, mesh, and a re�ning stage to combine
previous features. The joint stage applies a multitask decoder to predict both hand joints and the
segmentation mask. MeshGraphormer [52] introduced a graph residual block into the transformer
to enhance the spatial structure. HaMeR [70] showed that a simple but large transformer-based
architecture trained on a large dataset can achieve SOTA performance. SimpleHand [107] sampled
tokens with UV predictions on a high-resolution feature map, cooperating with a cascade upsampling
decoder. They further compare different combinations of token generation strategies are compared,
including global feature, grid sampling, keypoint sampling,4� upsampling feature map, and coarse-
mesh-guided point sampling. Recently, HHMR [47] proposed a graph diffusion model to learn a
prior of gestures and inpaint the occluded hand portion. To further enhance performance, we propose
the graph-guided state space model to leverage joint relations and capture spatial joint sequences.

State Space Models (SSMs).State space was originally elaborated in Kalman �ltering [39] that de-
scribed states and transitions with �rst-order differential equations. Structured State Space Sequence
(S4) models [27, 28] have the capability to model dependencies. Recently, Mamba [26] further
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improved the S4 models by expanding their �xed projection matrices linearly with the input sequence
length. Many recent works have adapted Mamba for visual learning, leveraging its global receptive
�eld and dynamic weights. Liuet al. [57] and Yanget al. [108] used Mamba for classi�cation,
segmentation, and object detection tasks. To effectively capture the spatial relations, they scanned the
input image patches forward and backward horizontally. VMamba [57] further added two vertical
directions creating a cross-scan. Zhanget al. [102] designed a mamba model for motion generation,
scanning unidirectionally along the temporal sequence and bidirectionally along channel dimensions
in a hierarchy. Behrouzet al. [3] and Wanget al. [89] designed Graph-mamba to address traditional
graph representation learning tasks, enhancing long-range context learning using Mamba blocks.
Hamba makes the �rst attempt to adapt Mamba and graph learning to solve 3D hand reconstruction.

3 Proposed Methodology

We propose a novel Mamba-based method that incorporates graph learning and state space modeling
to learn the joint relations from the joint spatial sequence (Figure 3). First, we introduce the concept
of state space models (SSMs). Next, we provide the detailed principle of the proposed Token Sampler
(TS), Graph-guided Bidirectional Scan (GBS), and Graph-guided State Space (GSS) modules.

3.1 Preliminaries

S6 Models. Selective Scan Structured State Space Sequence (S6) models [26] is a category of
sequence models that have demonstrated superior ability in handling sequences. These models are
primarily an extension of the previously proposed S4 models [27], which maps an input sequence
x(t) 2 R ! y(t) 2 R, through the latent stateh(t) 2 RN , following ordinary linear differential equa-
tions (Eq. 1), whereA 2 RN � N , B 2 RN � 1, C 2 R1� N andD 2 R1 are the weighting parameters.

h0(t) = A h(t) + B x(t);
y(t) = C h(t) + Dx (t);

(1)
ht = A ht � 1 + B x t ;
yt = C h(t):

(2)

For practical computation, these continuous dynamical systems are discretized (Eq. 2). This is
achieved by using the zero-order hold (ZOH) discretization rule (Eq. 3).

A = exp(� A ); B = (� A ) � 1(exp(� A ) � I ) � � B ; (3)

where� represents the discrete step size. Since both the weighting parameters and discretizing rules
are �xed over time, S4 models can be viewed as linear time invariance systems. Mamba [26] further
expands S4 models' projection matrices to scan the entire input sequence through a selective scan.

Mamba for Visual Representation. Since Mamba [26] is primarily designed for 1D data, it is
challenging to directly apply it to image data with global spatial context and local relation information.
Recent works [57, 109] have extended Mamba for learning visual representations. VMamba [57]
developed a 2D selective scan (SS2D) block and integrated it into the VSS Block (Figure 4(b)). The
VSS block is then stacked consecutively with convolution layers for downsampling image patches
via patch merging [58]. The main difference between Mamba and VSS [57] block (Figure 4(a-b)) is
replacing the S6 block with SS2D to adapt selective scanning for image data.

3.2 Hamba

Problem Formulation. Given a single hand imageI , our goal is to reconstruct the 3D hand mesh. We
learn the mapping functionf (I ) = f �; �; � g that regresses MANO [75] parameters from the imageI ,
where� 2 R48, � 2 R10, and� 2 R3 represent the pose, shape, and camera parameters, respectively.
Finally, the MANO modelM (�; � ) generates the corresponding hand meshM 2 R778� 3.

Model Architecture. Figure 3 illustrates the Hamba model architecture. First, we feed the hand
imageI 2 RH � W � 3 into a ViT [19, 95] backbone to extract tokensT 2 R

H
16 � W

16 � 1280 where
H =256andW=192. Tokens from the backbone are downsampled from dimensions 1280 to 512
using convolution layers (Conv2D). Second, we sample effective tokens using a Token Sampler
(TS), which utilizes the 2D joint locations predicted by a Joints Regressor (JR). These tokens are
fed into the Graph-guided State Space (GSS) block, which exploits the joint spatial sequence by
modeling its state space using the proposed Graph-guided Bidirectional scan (GBS). Finally, we fuse
the GSS tokens with the global mean feature, the sampled tokens, and the 2D joint features via a
fusion module. Lastly, the MANO parameters are regressed using MLP.
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Figure 3:Overview of Hamba's architecture. Given a hand imageI , tokens are extracted via a
trainable backbone model and downsampled. We design a graph-guided SSM as a decoder to regress
hand parameters. The hand joints (J2D) are regressed by Joints Regressor (JR) and fed into the Token
Sampler (TS) to sample tokens (TTS). The joint spatial sequence tokens (TGSS) are learned by the
Graph-guided State Space (GSS) blocks. Inside each GSS block, the GCN network takesTTS as input
and its output is concatenated with the mean down-sampled tokens. GSS leverages graph learning
and state space modeling to capture the joint spatial relations to achieve robust 3D reconstruction.

Token Sampler (TS) and Joints Regressor (JR).To prevent the GSS Block from being in�uenced
by the background and unnecessary features during the early stages of the training, it is important to
select effective tokens that encode the relations between hand joints. We propose a Token Sampler
(TS), which selects effective tokens utilizing the initial 2D hand joint prediction from the Joints
Regressor (JR). While it is possible to use off-the-shelf 2D joint estimator like OpenPose [5] or
MediaPipe [60], this would increase model complexity. Previous works [74, 107] primarily used
Conv-Pooling-FC schemes for initial joints regression. In our work, the JR consists of stacked SS2D
blocks followed by an MLP head which regresses the initial MANO parametersf �̂; �̂; �̂ g. After the
JR regresses 3D jointŝJ3D 2 R21� 3, these are projected back to the 2D image plane using perspective
projection� with the predicted camera translation�̂ to obtainĴ2D 2 R21� 2. We denote a prede�ned
focal lengthFfocal = 5000 mm. Those are formulated as,

�̂; �̂; �̂ = JR(T); Ĵ3D = MANO (�̂; �̂ ); Ĵ2D = � ( Ĵ3D; Ffocal; �̂ ): (4)

To align the sampled tokens with 2D joints, we use bilinear interpolation. The sampled token
TTS 2 RC � J is formulated as,

TTS = TS(Conv2D(T); Ĵ2D); (5)

whereJ denotes the total of 21 joints, andC is the token dimension of 512.

Graph-guided Bidirectional Scan (GBS).To achieve robust reconstruction and leverage effective
tokens, we reformulate Mamba's unidirectional scanning as a graph-guided bidirectional scan, thus
adapting it for 3D reconstruction tasks. GBS is designed to follow a speci�c graph pattern, considering
the spatial and topological connection of the hand joints with image features. A naive approach would
be scanning all tokenized image patches (Figure 2(b)). However, this involves redundant tokens,
making it challenging to learn joint spatial relations effectively. To address this, we propose two novel
ideas. First, instead of scanning all tokens unidirectionally, we perform hand joint-level bidirectional
scanning of sampled tokensTTS. This effectively reduces the number of tokens to be scanned from
192 to 22 (� 88.5% reduction). We adapt VMamba [57]'s SS2D block for bidirectional scanning
to be suitable for our joint spatial sequence. Second, to capture the local and global joint relations,
we introduce a Semantic GCN block [105]. Mamba learns long-range dependencies, but it is less
effective at capturing �ne-grained local information in intricate structures like the 3D mesh. The
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Figure 4: The illustration of the proposed Graph-guided State Space (GSS) block.

GCN learns input-independent weight matrix to model the edges between hand joints, re�ecting how
one joint in�uences another based on prior embedded in graph structures. Introducing graph learning
makes it possible to explicitly encode the graph structure within our GSS module. LetG = f V ; Eg
be the graph,V is the set ofJ nodes andE are the edges.TGCNl represents the output of thel-th
GCN block, while the complete output of the GSS block isTGSSl . For a graph-based propagation,
we multiply the token with a learnable parameter matrixW 2 RC � C . Thus, the GCN operation is
formulated as,

TGCNl =

(
� (W TTS P i (M � G)) ; l = 1;
� (W T f 1;::; 21g

GSSl � 1
P i (M � G)) ; l > 1;

(6)

whereM 2 RJ � J is the learnable weighting matrix,P i denotes the softmax non-linearity that
is applied to normalize the input matrix for all nodei choices, whileG 2 [0; 1]J � J denotes the
adjacency matrix of graphGand� denotes element-wise multiplication.J denotes the total of 21
joints, andC is the token dimension of 512.

Graph-guided State Space (GSS) Block.Overall, our decoder consists ofL GSS blocks. The GSS
architecture is illustrated comparatively in Figure 4. In the �rst GSS block, the sampled tokensTTS
are passed through graph convolution (GCN) layers. The GCN layer consists of a PGraphConv [44],
a Batch Norm, and a ReLU activation. For the GCN, the adjacency matrix is de�ned based on the
hand joint skeleton in the joint order of MANO. To provide the global context, the output from the
GCN is concatenated with the global mean token along the joint token sequence. This global mean
token is the mean of the downsampled image tokens. This concatenated sequenceT c

GCNl
is then fed

into the SS2D block and summed with the output through a residual connection. The SS2D block is
followed by a Layer Norm (LN), a Feed-Forward Network (FFN), and another residual connection.
For subsequent GSS blocksl 2 f 2; ::; L g, the input is the output from the previous blockTGSSl � 1 .
Before this sequence passes through its GCN layer, it is split, and only the �rst 21 tokensT f 1;::; 21g

GSSl � 1
are

fed to the GCN. The global mean tokenT f 22g
GSSl � 1

is concatenated back with the GCN's output before it
enters the SS2D block as shown in Eq. 7 below:

T c
GCNl

=

(
TGCNl � Mean(Conv2D(T)) ; l = 1;
TGCNl � T f 22g

GSSl � 1
; l > 1;

(7)

TGSSl = FFN(LN(SS2D(T c
GCNl

) + T c
GCNl

)) + SS2D(T c
GCNl

) + T c
GCNl

: (8)

where� denotes concatenation. The GSS block not only leverages features from state space modeling
and graph learning but also considers global features. This design enables Hamba to learn effective
features to enhance performance by incorporating state space modeling and graph learning with few
tokens, shown in our ablation study Section 4.2.

State Space Modeling for Joint Spatial Sequence.Different from the video-based Mamba models [7,
22, 46], which learns the temporal feature with the frame sequence, Hamba focuses on the joint
spatial sequence per frame and reveals that modeling joint relations with Mamba [26] can signi�cantly
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improve the 3D reconstruction performance. In particular, as shown in Eq. 1,x(t) representst-th
token of the joint spatial sequence, which is �rst sampled by the TS using the JR and then encoded
with the GCN. Note thatt denotes the index of the hand joint iteration. Lastly,y(t) is the updated
token of thet-th of the joint spatial sequence after passing through GSS Blocks. The proposed GSS
block effectively enhances 3D reconstruction performance by learning the joint spatial sequence
relations with graph learning and state space modeling.

Loss Functions.Following [70], we train Hamba using a combined loss which includes 2D joint
lossL 2D, 3D joint lossL 3D, pose lossL � , shape lossL � , and an adversarial lossL adv. L 2D andL 3D
are calculated using the L1 Norm, whileL � andL � use the L2 Norm. The training lossL total is
de�ned as Equation 9, where� 2D; � 3D; � � ; � � , and� adv denote each term's weight respectively.

L total = � 2DL 2D + � 3DL 3D + � � L � + � � L � + � advL adv; (9)

4 Experiments
Datasets.We train Hamba on 2.7M training samples from multiple datasets (same setting as [70]
for a fair comparison) that had either both 2D and 3D hand annotations or just 2D annotations. This
included FreiHAND [111], HO3D [29], MTC [91], RHD [110], InterHand2.6M [64], H2O3D [29],
DexYCB [6], COCO-Wholebody [36], Halpe [21], and MPII NZSL [79] datasets.

Implementation Details. We set learning rate as10� 5, weight decay factor as10� 4, with the `sum'
loss. Weights for each term in the loss function are� 3D = 0 :05 for 3D keypoint loss,� 2D = 0 :01
for 2D keypoint loss,� � = 0 :001for global orientation and hand pose loss. Weights for beta and
adversarial loss, i.e.,� � and� adv were set as 0.0005. Ablations were run for 60k steps due to
computational limitations on 2.7M dataset. Additional details are included in the Appendix A.

Evaluation Metrics. Following the same protocols employed in previous works [52, 70, 107], we
used PA-MPJPE andAUCJ as the metrics for evaluating the reconstructed 3D joints and PA-MPVPE,
AUCV , F@5mm, and F@15mm for evaluating the reconstructed 3D mesh vertices.

4.1 Main Results

3D Joints and Mesh Reconstruction Evaluation.We test Hamba on 3 widely used benchmarks:
FreiHAND [111], HO3Dv2 [29], and HO3Dv3 [30]. The quantitative comparison with state-of-the-
art 3D hand reconstruction models is presented in Table 1, Table 2, and Table 3 respectively. Since
almost all previous methods (including the popular MobRecon [9], MeshGraphormer [52], and the
recent HHMR [47], SimpleHand [107]) were trained only using the FreiHAND [111], for a fair com-
parison, we compared them with the Hamba version trained using only the FreiHAND [111] dataset.
Meanwhile, for a fair comparison with HaMeR [70], we trained Hamba on the same datasets as
HaMeR [70] for all other comparisons. Many methods, including the popular MeshGraphormer [52]
and METRO [51], report their metrics using Test-Time Augmentation (TTA) which boosts the �-
nal results. We report our performances, both with and without TTA. In both scenarios, Hamba
signi�cantly achieves better results, outperforming SOTAs in all benchmarks.

In-the-wild Generalizability Evaluation. Approximately95%of datasets used for training previous
models [9, 14, 47, 51, 52, 70, 86, 107] were collected in controlled indoor environments, such as
studios or multi-camera setups. This includes the FreiHAND [111], HO3Dv2 [29], and HO3Dv3 [30]
benchmarks that are popularly used for both training and evaluation. However, training models on
datasets collected in controlled environments often leads to decreased performance in real-world sce-
narios. Thus, solely evaluating performance over indoor-collected datasets might not provide a correct
evaluation of the robustness of 3D hand reconstruction. We additionally evaluate Hamba's in-the-wild
performance on the recently proposed HInt [70] benchmark, which has variations in visual conditions,
viewpoints, and hand interactions. Since HInt-NewDays [13] and HInt-EpicKitchensVISOR [16, 17]
annotations are 2D keypoints, PCK [97] computed at varying thresholds is used as the evaluation
metrics. As shown in Table 5, Hamba outperforms existing models by a large margin and surpasses
HaMeR [70], showing improvement in model robustness for in-the-wild scenarios. None of the
models (including Hamba) have been trained on/ previously ever seen HInt dataset.

Qualitative Comparison. Figure 5 presents the qualitative comparison of Hamba's 3D hand mesh
reconstruction with SOTA models on in-the-wild images from HInt-EpicKitchens. This includes
models that directly regress vertices (METRO [51], MeshGraphormer [52]), and parametric methods,
which regress MANO parameters (FrankMocap [76], HaMeR [70]). These images are particularly
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Figure 5: Qualitative in-the-wild comparison of the proposed Hamba with SOTAs on HInt-
EpicKitchensVISOR [16, 70]. None of the models (including Hamba) have been trained on HInt.

Table 1: Comparison with SOTAs onFreiHAND dataset [111]. � Stacked Structure;yused Test-Time
Augmentation (TTA). Best scores highlightedGreen, while second best are highlightedLight Green.
PA-MPJPE and PA-MPVPE are measured in mm. -: Info not reported by model.

Method Venue BackbonePA-MPJPE# PA-MPVPE# F@5mm" F@15mm"

Zimmermannet al. [111] ICCV 19 ResNet50 - 10.7 0.529 0.935
Boukhaymaet al. [4] CVPR 19 ResNet50 - 13.0 0.435 0.898
ObMan [32] CVPR 19 ResNet18 - 13.2 0.436 0.908
MobileHand [50] ICONIP 20 MobileNet - 13.1 0.439 0.902
YoutubeHand [43] CVPR 20 ResNet50 8.4 8.6 0.614 0.966
Pose2Mesh [15] ECCV 20 � 7.7 7.8 0.674 0.969
I2L-MeshNet [63] ECCV 20 ResNet50� 7.4 7.6 0.681 0.973
HIU-DMTL [100] ICCV 21 Custom� 7.1 7.3 0.699 0.974
CMR [10] CVPR 21 ResNet50� 6.9 7.0 0.715 0.977
I2UV-HandNet [8] ICCV 21 ResNet50 6.7 6.9 0.707 0.977
Tanget al. [82] ICCV 21 ResNet50 6.7 6.7 0.724 0.981
METROy [51] CVPR 21 HRNet 6.3 6.5 0.731 0.984
MeshGraphormery[52] ICCV 21 HRNet 5.9 6.0 0.764 0.986
MobRecon [9] CVPR 22 ResNet50� 5.7 5.8 0.784 0.986
FastMETRO [14] ECCV 22 HRNet 6.5 7.1 0.687 0.983
FastViT [86] ICCV 23 FastViT 6.6 6.7 0.722 0.981
AMVUR [35] CVPR 23 ResNet50 6.2 6.1 0.767 0.987
Deformer [98] CVPR 23 HRNet 6.2 6.4 0.743 0.984
PointHMR [42] CVPR 23 HRNet 6.1 6.6 0.720 0.984
Zhouet al. [107] CVPR 24 FastViT 5.7 6.0 0.772 0.986
HaMeR [70] CVPR 24 ViTPose 6.0 5.7 0.785 0.990
HaMeR-170k [70] CVPR 24 ViTPose 6.1 5.8 0.782 0.990
HHMRy [47] CVPR 24 ResNet50 5.8 5.8 - -

Hamba Ours ViTPose 5.8 5.5 0.798 0.991
Hambay Ours ViTPose 5.7 5.3 0.806 0.992

challenging since they comprise real-world cooking videos of a person with highly occluded hands,
hand-hand, and/or hand-object interactions. For visual comparison, we select images where the hand
lies in the corners, causing a truncation scenario thus increasing the complexity further. Hamba
consistently outperforms other models and achieves a much better reconstruction. From Figure 5, we
can observe that in severe in-the-wild truncation scenarios, Hamba achieves better hand reconstruction,
even though the hand is truncated or occluded. We attribute this performance to effectively learning
the spatial hand joint sequence with the state space model. The same is veri�ed in the ablation study
presented in Sec. 4.2. Figure S5 presents in-the-wild results on various movies, interviews, etc.,
scenarios. Figure S6 and Figure S7 presents additional visual results on HInt-NewDays and HInt-
EpicKitchensVISOR respectively. Hamba can robustly reconstruct 3D hands in various complicated
hand gestures like grasping, holding, grabbing, �nger-pointing, and �attening from different viewing
directions, even in heavily occluded and truncated scenarios.
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Table 2: Comparison with SOTAs onHO3Dv2 [29] hand-object interaction benchmark.

Method Venue PA-MPJPE# PA-MPVPE# F@5mm" F@15mm" AUCJ " AUCV "

ObMan [32] CVPR 19 11.0 11.2 0.464 0.939 0.780 0.777
Pose2Mesh [15] ECCV 20 12.5 12.7 0.441 0.909 0.754 0.749
I2L-MeshNet [63] ECCV 20 11.2 13.9 0.409 0.932 0.775 0.722
Hampaliet al. [29] CVPR 20 10.7 10.6 0.506 0.942 0.788 0.790
S2Hand [12] CVPR 21 11.4 11.2 0.450 0.930 0.773 0.777
METRO [51] CVPR 21 10.4 11.1 0.484 0.946 0.792 0.779
Liu et al. [56] CVPR 21 9.9 9.5 0.528 0.956 0.803 0.810
I2UV-HandNet [8] ICCV 21 9.9 10.1 0.500 0.943 0.804 0.799
Tseet al. [84] CVPR 22 - 10.9 0.485 0.943 - -
ArtiBoost [96] CVPR 22 11.4 10.9 0.488 0.944 0.773 0.782
KPT-Transf [31] CVPR 22 10.8 - - - 0.786 -
MobRecon [9] CVPR 22 9.2 9.4 0.538 0.957 - -
HandOccNet [68] CVPR 22 9.1 8.8 0.564 0.963 0.819 0.819
HFL-Net [54] CVPR 23 8.9 8.7 0.575 0.965 - -
H2ONet [94] CVPR 23 8.5 8.6 0.570 0.966 0.829 0.828
AMVUR [35] CVPR 23 8.3 8.2 0.608 0.965 0.835 0.836
HOISDF [72] CVPR 24 9.2 - - - - -
HandBooster [93] CVPR 24 8.2 8.4 0.585 0.972 0.836 0.832
HaMeR [70] CVPR 24 7.7 7.9 0.635 0.980 0.846 0.841
HaMeR-170k [70] CVPR 24 7.6 7.9 0.639 0.981 0.848 0.843

Hamba Ours 7.5 7.7 0.648 0.982 0.850 0.846

Table 3: Evaluation onHO3Dv3 [30] benchmark. We only list SOTAs that reported on HO3Dv3.

Method Venue PA-MPJPE# PA-MPVPE# F@5mm" F@15mm" AUCJ " AUCV "

S2HAND [12] CVPR 21 11.5 11.1 0.448 0.932 0.769 0.778
KPT-Transf. [31] CVPR 22 10.9 - - - 0.785 -
ArtiBoost [96] CVPR 22 10.8 10.4 0.507 0.946 0.785 0.792
Yu et al. [99] BMVC 22 10.8 10.4 - - - -
HandGCAT [90] ICME 23 9.3 9.1 0.552 0.956 0.814 0.818
AMVUR [35] CVPR 23 8.7 8.3 0.593 0.964 0.826 0.834
HMP [20] WACV 24 10.1 - - - - -
SPMHand [59] TMM 24 8.8 8.6 0.574 0.962 - -

Hamba Ours 6.9 6.8 0.681 0.982 0.861 0.864

4.2 Ablation Studies

Effect of Branch-wise Features.We verify the effectiveness of each branch feature by excluding
their respective tokens from the fusion module as shown in Table 4. First, we verify the contribution
of the proposed GSS branch. When the GSS tokens are excluded (Row 3), we observe a major drop
in model performance. Speci�cally, F@5mm (" ) drops from 0.738! 0.717, and the PA-MPJPE
(#) and PA-MPVPE (#) errors increase from 6.6! 6.9 and 6.3! 6.6. Thus, in addition to local
and global contexts, incorporating structured state-space representations can be effective for 3D
hand reconstruction. Moreover, it is important to note that modeling spatial joint sequence relations
provides better tokens than directly using the 2D joint locations, even though the latter has a clear
semantic meaning for all the hand joints. We attribute this to cases of occlusions where the 2D joints
cannot be precisely predicted.

Table 4:Ablation study on FreiHAND [111] to verify pro-
posed components. All variants are trained for same number
of steps. PA-MPJPE, PA-MPVPE and without are abbreviated
as PJ, PV, `w/o'.

Ablation PJ# PV # F@5" F@15"

Branch-wise

1 w/o Token_Sampler_Branch 6.8 6.5 0.722 0.987
2 w/o 2D_Joints_Feature_Branch 6.8 6.6 0.718 0.986
3 w/o GSS_Token_Branch 6.9 6.6 0.717 0.986
4 w/o Global_Mean_Token_Branch 7.3 7.2 0.680 0.982

Component-wise

5 w/o Token_Sampler 6.8 6.6 0.717 0.986
6 w/o Bidirectional_Scan 6.9 6.6 0.718 0.986
7 w/o GCN 7.3 7.2 0.673 0.983
8 w/o Graph-guided_Bi_Scan 7.3 7.1 0.680 0.983
9 w/o Mamba (SS2D+LN+FFN) 7.3 7.2 0.675 0.983

Hamba (Full) 6.6 6.3 0.738 0.988

Removing the Token sampler (Row
1) or the 2D joints (Row 2) features
also shows a performance drop, but
is less signi�cant than removing the
GSS branch, since they only pro-
vide the local context while GSS to-
kens provide both local and spatial-
relations information. Note that
the Global Mean token (Row 4) re-
mains important since it captures
the global context, which is dis-
carded in the ablation.

Effect of proposed Components.
Since the GSS Block stands as a
major contribution, we additionally
evaluate the effectiveness of each
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Table 5: In-the-wild generalizability evaluation onHInt [70]. PCK is used as the evaluation metric.

Method Venue NewDays VISOR Ego4D
@0.05" @0.1" @0.15" @0.05" @0.1" @0.15" @0.05" @0.1" @0.15"

A
ll

Jo
in

ts
METRO [51] CVPR 21 14.7 38.8 57.3 16.8 45.4 65.7 13.2 35.7 54.3
FrankMocap [76] ICCVW 21 16.1 41.4 60.2 16.8 45.6 66.2 13.1 36.9 55.8
MeshGraphormer [52] ICCV 21 16.8 42.0 59.7 19.1 48.5 67.4 14.6 38.2 56.0
HandOccNet (param) [68] CVPR 22 9.1 28.4 47.8 8.1 27.7 49.3 7.7 26.5 47.7
HandOccNet (no param) CVPR 22 13.7 39.1 59.3 12.4 38.7 61.8 10.9 35.1 58.9
HaMeR [70] CVPR 24 48.0 78.0 88.8 43.0 76.9 89.3 38.9 71.3 84.4
HaMeR-170k [70] CVPR 24 46.9 78.6 89.7 44.4 79.3 91.1 37.3 71.6 85.1
Hamba Ours 48.7 79.2 90.0 47.2 80.2 91.2 41.7 72.9 85.5

V
is

ib
le

Jo
in

ts METRO [51] CVPR 21 19.2 47.6 66.0 19.7 51.9 72.0 15.8 41.7 60.3
FrankMocap [76] ICCVW 21 20.1 49.2 67.6 20.4 52.3 71.6 16.3 43.2 62.0
Mesh Graphormer [52] ICCV 21 22.3 51.6 68.8 23.6 56.4 74.7 18.4 45.6 63.2
HandOccNet (param) [68] CVPR 22 10.2 31.4 51.2 8.5 27.9 49.8 7.3 26.1 48.0
HandOccNet (no param) CVPR 22 15.7 43.4 64.0 13.1 39.9 63.2 11.2 36.2 60.3
HaMeR [70] CVPR 24 60.8 87.9 94.4 56.6 88.0 94.7 52.0 83.2 91.3
HaMeR-170k [70] CVPR 24 58.1 87.8 94.7 57.2 88.7 95.4 49.6 82.5 91.4
Hamba Ours 61.2 88.4 94.9 61.4 89.6 95.6 56.0 84.3 91.9

O
cc

lu
de

d
Jo

in
ts METRO [51] CVPR 21 7.0 23.6 42.4 10.2 32.4 53.9 8.1 26.2 44.7

FrankMocap [76] ICCVW 21 9.2 28.0 46.9 11.0 33.0 55.0 8.4 26.9 45.1
MeshGraphormer [52] ICCV 21 7.9 25.7 44.3 10.9 33.3 54.1 8.3 26.9 44.6
HandOccNet (param) [68] CVPR 22 7.2 23.5 42.4 7.4 26.1 46.7 8.0 26.1 45.7
HandOccNet (no param) CVPR 22 9.8 31.2 50.8 9.9 33.7 55.4 9.6 31.1 52.7
HaMeR [70] CVPR 24 27.2 60.8 78.9 25.9 60.8 80.7 23.0 56.9 76.3
HaMeR-170k [70] CVPR 24 28.9 62.4 80.5 29.4 65.7 83.9 24.6 58.7 77.7
Hamba Ours 28.2 62.8 81.1 29.9 66.6 84.3 25.2 59.2 77.6

component in the proposed GSS block. The same is presented in Table 4. The GSS block models
the hand-joint topological structure, learning the graph-structured relations and spatial sequences of
joints via graph and state space modeling. Adopting graph learning additionally provides the local
context. Excluding the GCN, i.e., when simply using a Mamba block, the structure information will
be neglected from the input to the SS2D block, which leads to a large drop in performance (Row
7). This indicates that the GCN is an essential component of the GSS block and using SS2D blocks
alone does not lead to accurate 3D hand mesh reconstruction. A potential counter-argument may be
that the input features and the GCN alone are suf�cient for 3D hand reconstruction, without much
improvement from the Mamba Blocks. We removed the Mamba blocks and the GSS degenerates
into simple GCN, leading to an equal performance drop (Row 9). Speci�cally, the PA-MPJPE (#)
and PA-MPVPE (#) increase from 6.6! 7.3 and 6.3! 7.2 respectively, while the F@5mm (" ) and
F@15mm (" ) drop from 0.738! 0.675 and 0.988! 0.983 respectively. This con�rms that both the
GCN and the Mamba blocks are equally important in the GSS Block. To verify the effectiveness of the
bidirectional scanning, we replaced it with conventional unidirectional scanning to compare, denoted
as w/o Bidirectional-scan (Row 6), and the reconstruction error increased. An even larger drop in
performance is observed when the proposed GBS scan is removed from the model (Row 8). When
not using the token sampler, we also see a drop in performance (Row 5). Overall, Table 4 veri�es the
effectiveness of each proposed component. We additionally validate this by a qualitative evaluation
(in Figure S3), wherein the visual result gets worse when we remove the proposed modules.

5 Conclusion

We propose Hamba, a novel Mamba-based model for 3D hand reconstruction, which is capable
of reconstructing robust 3D hand meshes with graph learning and state space modeling under
bidirectional scanning. Our key insight is reformulating the Mamba scanning into graph-guided
bidirectional scanning using a few effective tokens. This allows us to leverage the relations between
hand joints and joint spatial sequences, addressing the occlusion and truncation problems using
graph learning and state space modeling. Speci�cally, we designed a new GSS block to capture the
relation between hand joints using graph convolution layers and Mamba blocks. Finally, we introduce
a practical fusion module to boost performance by incorporating state space features and global
features. Experiments on challenging benchmarks and in-the-wild tests demonstrate that Hamba
outperforms all existing SOTA models.

Limitations. Although we leverage the strong representation capability from the graph-guided
Mamba model and train on the large comprehensive datasets, it may still not be enough to cover all
in-the-wild situations. Our current method lacks the capability to explore temporal features in videos
because crawling video datasets requires extensive manual labor for 3D hand reconstruction.

Broader Impacts. Our research focuses on the Hamba model for 3D hand reconstruction, and we
plan to release the pre-trained models and code. However, there is a potential risk that it could be
used for unauthorized surveillance or privacy infringements.
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