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Both the occurrence and intensity of facial expressions are critical to what the
face reveals. While much progress has been made towards the automatic detec-
tion of facial expression occurrence, controversy exists about how to estimate
expression intensity. The most straight-forward approach is to train multiclass
or regression models using intensity ground truth. However, collecting inten-
sity ground truth is even more time consuming and expensive than collecting
binary ground truth. As a shortcut, some researchers have proposed using the
decision values of binary-trained maximum margin classifiers as a proxy for ex-
pression intensity. We provide empirical evidence that this heuristic is flawed
in practice as well as in theory. Unfortunately, there are no shortcuts when it
comes to estimating smile intensity: researchers must take the time to collect
and train on intensity ground truth. However, if they do so, high reliability with
expert human coders can be achieved. Intensity-trained multiclass and regres-
sion models outperformed binary-trained classifier decision values on smile in-
tensity estimation across multiple databases and methods for feature extraction
and dimensionality reduction. Multiclass models even outperformed binary–
trained classifiers on smile occurrence detection.

c© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The face is an important avenue of communication capable of
regulating social interaction and providing the careful observer
with a wealth of information. Facial expression analysis has
informed psychological studies of emotion (Darwin, 1872, Ek-
man et al., 1980, Zeng et al., 2009), intention (Fridlund, 1992,
Keltner, 1996), physical pain (Littlewort et al., 2009, Prkachin
and Solomon, 2008), and psychopathology (Cohn et al., 2009,
Girard et al., 2013), among other topics. It is also central
to computer science research on human-computer interaction
(Cowie et al., 2001, Pantic and Rothkrantz, 2003) and computer
animation (Pandzic and Forchheimer, 2002).

There are two general approaches to classifying facial ex-
pression (Cohn and Ekman, 2005). Message-based approaches
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seek to identify the meaning of each expression; this often takes
the form of classifying expressions into one or more basic emo-
tions such as happiness and anger (Ekman, 1999, Izard, 1971).
This approach involves a great deal of interpretation and fails
to account for the fact that facial expressions serve a commu-
nicative function (Fridlund, 1992), can be controlled or dissem-
bled (Ekman, 2003), and often depend on context for interpreta-
tion (Barrett et al., 2011). Sign-based approaches, on the other
hand, describe changes in the face during an expression rather
than attempting to capture its meaning. By separating descrip-
tion from interpretation, sign-based approaches achieve more
objectivity and comprehensiveness.

The most commonly used sign-based approach for describ-
ing facial expression is the Facial Action Coding System
(FACS) (Ekman et al., 2002), which decomposes facial expres-
sions into component parts called action units. Action units
(AU) are anatomically-based and correspond to the contraction
of specific facial muscles. AU may occur alone or in combina-
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tion with others to form complex facial expressions. They may
also vary in intensity (i.e., magnitude of muscle contraction).
The FACS manual provides coders with detailed descriptions
of the shape and appearance changes necessary to identify each
AU and its intensity.

Much research using FACS has focused on the occurrence
and AU composition of different expressions (Ekman and
Rosenberg, 2005). For example, smiles that recruit the orbic-
ularis oculi muscle (i.e., AU 6) are more likely to occur during
pleasant circumstances (Ekman et al., 1990, Frank et al., 1993)
and smiles that recruit the buccinator muscle (i.e., AU 14) are
more likely to occur during active depression (Reed et al., 2007,
Girard et al., 2013).

A promising subset of research has begun to focus on what
can be learned about and from the intensity of expressions. This
work has shown that expression intensity is linked to both the
intensity of emotional experience and the sociality of the con-
text (Ekman et al., 1980, Fridlund, 1991, Hess et al., 1995). For
example, Hess et al. (1995) found that participants displayed
the most facial expression intensity when experiencing strong
emotions in the company of friends. Other studies have used
the intensity of facial expressions (e.g., in yearbook photos) to
predict a number of social and health outcomes years later. For
example, smile intensity in a posed photograph has been linked
to later life satisfaction, marital status (i.e., likelihood of di-
vorce), and even years lived (Abel and Kruger, 2010, Harker
and Keltner, 2001, Hertenstein et al., 2009, Oveis et al., 2009,
Seder and Oishi, 2012). It is likely that research has only begun
to scratch the surface of what might be learned from expres-
sions’ intensities.

Intensity estimation is also critical to the modeling of an ex-
pression’s temporal dynamics (i.e., changes in intensity over
time). Temporal dynamics is a relatively new area of study,
but has already been linked to expression interpretation, person
perception, and psychopathology. For example, the speed with
which a smile onsets and offsets has been linked to interpre-
tations of the expression’s meaning and authenticity (Ambadar
et al., 2009), as well as to ratings of the smiling person’s at-
tractiveness and personality (Krumhuber et al., 2007). Expres-
sion dynamics have also been found to be behavioral markers
of depression, schizophrenia, and obsessive-compulsive disor-
der (Mergl et al., 2003, 2005, Juckel et al., 2008).

Efforts in automatic facial expression analysis have focused
primarily on the detection of AU occurrence (Zeng et al., 2009),
rather than the estimation of AU intensity. In shape-based ap-
proaches to automatic facial expression analysis, intensity dy-
namics can be measured directly from the displacement of fa-
cial landmarks (Valstar and Pantic, 2006, 2012). Shape-based
approaches, however, are especially vulnerable to registration
error (Chew et al., 2012), which is common in naturalistic set-
tings. Appearance-based approaches are more robust to regis-
tration error, but require additional steps to estimate intensity.
We address the question of how to estimate intensity from ap-
pearance features.

In an early and influential work on this topic, Bartlett et al.
(2003) applied standard binary expression detection techniques
to estimate expressions’ peak intensity. This and subsequent

work (Bartlett et al., 2006a,b) encouraged the use of the mar-
gins of binary-trained maximum margin classifiers as proxies
for facial expression intensity. The assumption underlying this
practice is that the classifier’s decision value will be positively
correlated with the expression’s intensity. However, this as-
sumption is theoretically problematic because nothing in the
formulation of a maximum margin classifier guarantees such a
correlation (Yang et al., 2009). Indeed, many factors other than
intensity may affect a data point’s decision value, such as its
typicality in the training set, the presence of other facial actions,
and the recording conditions (e.g., illumination, pose, noise).
The decision-value-as-intensity heuristic is purely an assump-
tion about the data. The current study tests this assumption
empirically, and compares it with the more labor-intensive but
theoretically-informed approaches of training multiclass and re-
gression models using intensity ground truth.

1.1. Previous Work

Since Bartlett et al. (2003), many studies have used classi-
fier decision values to estimate expression intensity (Bartlett
et al., 2006a,b, Littlewort et al., 2006, Reilly et al., 2006, Koel-
stra and Pantic, 2008, Whitehill et al., 2009, Yang et al., 2009,
Savran et al., 2011, Shimada et al., 2011, 2013). However, only
a few of them have quantitatively evaluated their performance
by comparing their estimations to manual (i.e., “ground truth”)
coding. Several studies (Bartlett et al., 2006b, Whitehill et al.,
2009, Savran et al., 2011) found that decision value and expres-
sion intensity were positively correlated during posed expres-
sions. However, such correlations have typically been lower
during spontaneous expressions. In a highly relevant study,
Whitehill et al. (2009) focused on the estimation of spontaneous
smile intensity and found a high correlation between decision
value and smile intensity. However, this was in five short video
clips and it is unclear how the ground truth intensity coding was
obtained.

Recent studies have also used methods other than the
decision-value-as-intensity heuristic for intensity estimation,
such as regression (Ka Keung and Yangsheng, 2003, Savran
et al., 2011, Dhall and Goecke, 2012, Kaltwang et al., 2012, Jeni
et al., 2013b) and multiclass classifiers (Mahoor et al., 2009,
Messinger et al., 2009, Mavadati et al., 2013). These studies
have found that the predictions of support vector regression
models and multiclass classifiers were highly correlated with
expression intensity during both posed and spontaneous expres-
sions. Finally, several studies (Cohn and Schmidt, 2004, Deniz
et al., 2008, Messinger et al., 2008) used extracted features to
estimate expression intensity directly. For example, Messinger
et al. (2008) found that mouth radius was highly correlated with
spontaneous smile intensity in five video clips.

Very few studies have compared different estimation meth-
ods using the same data and performance evaluation methods.
Savran et al. (2011) found that support vector regression out-
performed the decision values of binary support vector machine
classifiers on the intensity estimation of posed expressions. Ka
Keung and Yangsheng (2003) found that support vector regres-
sion outperformed cascading neural networks on the intensity
estimation of posed expressions, and Dhall and Goecke (2012)
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found that Gaussian process regression outperformed both ker-
nel partial least squares and support vector regression on the
intensity estimation of posed expressions. Yang et al. (2009)
also compared decision values with an intensity-trained model,
but used their outputs to rank images by intensity rather than to
estimate intensity.

Much of the previous work has been limited in three ways.
First, many studies (Deniz et al., 2008, Dhall and Goecke, 2012,
Ka Keung and Yangsheng, 2003, Yang et al., 2009) adopted a
message-based approach, which is problematic for the reasons
described earlier. Second, the majority of this work (Deniz
et al., 2008, Dhall and Goecke, 2012, Ka Keung and Yang-
sheng, 2003, Savran et al., 2011, Yang et al., 2009) focused
on posed expressions, which limits the external validity and
generalizability of their findings. Third, most of these studies
were limited in terms of the ground truth they compared their
estimations to. Some studies (Bartlett et al., 2003, 2006a,b)
only coded expressions’ peak intensities, while others (Mahoor
et al., 2009, Messinger et al., 2008, 2009, Whitehill et al., 2009)
obtained frame-level ground truth, but only for a handful of
subjects. Without a large amount of expert-coded, frame-level
ground truth, it is impossible to truly gauge the success of an
automatic intensity estimation system.

1.2. The Current Study

The current study challenges the use of binary classifier de-
cision values for the estimation of expression intensity. Primar-
ily, we hypothesize that intensity-trained (i.e., multiclass and
regression) models will outperform binary-trained (i.e., two-
class) models for expression intensity estimation. Secondar-
ily, we hypothesize that intensity-trained models will offer a
smaller but significant boon to binary expression detection over
binary-trained models.

We compared these approaches using multiple methods for
feature extraction and dimensionality reduction, using the same
data and the same performance evaluation methods. We also
improve upon previous work by using a sign-based approach,
two large datasets of spontaneous expressions, and expert-
coded ground truth. Smiles were chosen for this in-depth anal-
ysis because they are the most commonly occurring facial ex-
pression (Bavelas and Chovil, 1997), are implicated in affective
displays and social signaling (Hess et al., 2000, 2005), and ap-
pear in much of the previous work on both automatic intensity
estimation and the psychological exploration of facial expres-
sion intensity.

2. Methods

2.1. Participants and Data

In order to increase the sample size and explore the gener-
alizability of the findings, data was drawn from two separate
datasets. Both datasets recorded and FACS coded participant
facial behavior during a non-scripted, spontaneous dyadic inter-
action. They differ in terms of the context of the interaction, the
demographic makeup of the sample, constraints placed upon
data collection (e.g., illumination, frontality, and head motion),
base rates of smiling, tracking, and inter-observer reliability of

manual FACS coding. Because of how its segments were se-
lected, the BP4D database also had more frequent and intense
smiles.

2.1.1. BP4D Database
FACS coded video was available for 30 adults (50% fe-

male, 50% white, mean age 20.7 years) from the Binghamton-
Pittsburgh 4D (BP4D) spontaneous facial expression database
(Zhang et al., 2014). Participants were filmed with both a
3D dynamic face capturing system and a 2D frontal camera
(520x720 pixel resolution) while engaging in eight tasks de-
signed to elicit emotions such as anxiety, surprise, happiness,
embarrassment, fear, pain, anger, and disgust. Facial behavior
from the 20-second segment with the most frequent and intense
facial expressions from each task was coded from the 2D video.
The BP4D database is publicly available.

2.1.2. Spectrum Database
FACS coded video was available for 33 adults (67.6% fe-

male, 88.2% white, mean age 41.6 years) from the Spec-
trum database (Cohn et al., 2009). The participants suffered
from major depressive disorder (American Psychiatric Asso-
ciation, 1994) and were recorded during clinical interviews to
assess symptom severity over the course of treatment (Hamil-
ton, 1967). A total of 69 interviews were recorded using four
hardware-synchronized analogue cameras. Video from a cam-
era roughly 15 degrees to the participant’s right was digitized
into 640x480 pixel arrays for analysis. Facial behavior during
the first three interview questions (about depressed mood, feel-
ings of guilt, and suicidal ideation) was coded; these segments
were an average of 100 seconds long. The Spectrum database
is not publicly available due to confidentiality restrictions.

2.2. Manual Expression Annotation

2.2.1. AU Occurrence
For both the BP4D and Spectrum databases, participant fa-

cial behavior was manually FACS coded from video by cer-
tified coders. Inter-observer agreement - the degree to which
coders saw the same AUs in each frame - was quantified us-
ing F1 score (van Rijsbergen, 1979). For the BP4D database,
34 commonly occurring AU were coded from onset to offset;
inter-observer agreement for AU 12 occurrence was F1=0.96.
For the Spectrum database, 17 commonly occurring AU were
coded from onset to offset, with expression peaks also coded;
inter-observer agreement for AU 12 occurrence was F1=0.71.
For both datasets, onsets and offsets were converted to frame-
level occurrence (i.e., present or absent) codes for AU 12.

2.2.2. AU Intensity
The manual FACS coding procedures described earlier were

used to identify the temporal location of AU 12 events. Separate
video clips of each event were generated and coded for inten-
sity by certified coders using custom continuous measurement
software. This coding involved assigning each video frame a la-
bel of “no smile” or “A” through “E” representing trace through
maximum intensity (Fig. 1) as defined by the FACS manual
(Ekman et al., 2002). Inter-observer agreement was quantified
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Fig. 1. Smile (AU 12) intensity levels from no contraction (left) to maximum contraction (right)

using intraclass correlation (ICC) (Shrout and Fleiss, 1979).
Ten percent of clips were independently coded by a second cer-
tified FACS coder; inter-observer agreement was ICC=0.92.

2.3. Automatic Expression Annotation

Smiles were automatically coded for both occurrence and in-
tensity using each combination of the techniques listed in Fig. 2
for tracking, extraction, reduction, and prediction.

2.3.1. Tracking
Facial landmark points indicate the location of important fa-

cial components (e.g., eye and lip corners). For the BP4D
database, sixty-four facial landmarks were tracked in each
video frame using Live DriverTM from Image Metrics (Image
Metrics, 2013). Overall, 4% of video frames were untrackable,
mostly due to occlusion or extreme out-of-plane rotation. A
global normalizing (i.e., similarity) transformation was applied
to the data for each video frame to remove variation due to rigid
head motion. Finally, each image was cropped to the area sur-
rounding the detected face and scaled to 128x128 pixels.

For the Spectrum database, sixty-six facial landmarks were
tracked using active appearance models (AAM) (Cootes et al.,
2001). AAM is a powerful approach that combines the shape
and texture variation of an image into a single statistical model.
Approximately 3% of video frames were manually annotated
for each subject and then used to build the AAMs. The frames
then were automatically aligned using a gradient-descent AAM
fitting algorithm (Matthews and Baker, 2004). Overall, 9% of
frames were untrackable, again mostly due to occlusion and ro-
tation. The same normalization procedures used on the Live
Driver landmarks were also used on the AAM landmarks. Ad-
ditionally, because AAM includes landmark points along the
jawline, we were able to remove non-face information from the
images using a convex hull algorithm.

2.3.2. Extraction
Two types of appearance features were extracted from the

tracked and normalized faces. Following previous work on
expression detection (Chew et al., 2012) and intensity estima-
tion (Bartlett et al., 2003, Savran et al., 2011), Gabor wavelets
(Daugman, 1988, Fellenz et al., 1999) were extracted in local-
ized regions surrounding each facial landmark point. Gabor
wavelets are biologically-inspired filters, operating in a similar
fashion to simple receptive fields in mammalian visual systems
(Jones and Palmer, 1987). They have been found to be robust
to misalignment and changes in illumination (Liu et al., 2001).
By applying a filter bank of eight orientations and five scales
(i.e., 17, 23, 33, 46, 65 pixels) at each localized region, specific
changes in facial texture and orientation (which map onto facial
wrinkles, folds, and bulges) were quantified. Scale-invariant

feature transform (SIFT) descriptors (Lowe, 1999, Vedali and
Fulkerson, 2008) were also extracted in localized regions sur-
rounding each facial landmark point. SIFT descriptors are par-
tially invariant to illumination changes. By applying a geomet-
ric descriptor to each facial landmark, changes in facial texture
and orientation were quantified.

2.3.3. Reduction
Both types of features exhibited high dimensionality, which

makes classification/regression difficult and resource-intensive
problems. Two approaches for dimensionality reduction were
compared on their ability to yield discriminant features for clas-
sification. For each model, only one of these approaches was
used. The sample and feature sizes were motivated by the com-
putational limitations imposed by each method.

Laplacian Eigenmap (Belkin and Niyogi, 2003) is a nonlin-
ear technique used to find the low dimensional manifold that the
original (i.e., high dimensional) feature data lies upon. Follow-
ing recent work by Mahoor et al. (2009), supervised Laplacian
Eigenmaps were trained on a randomly selected sample of 2500
frames and used in conjunction with spectral regression (Cai
et al., 2007). Two manifolds were trained for the data: one us-
ing two classes (corresponding to FACS occurrence codes) and
another using six classes (corresponding to the FACS intensity
codes). The two-class manifolds were combined with the two-
class models and the six-class manifolds were combined with
the multiclass and regression models (described below). The
Gabor and SIFT features were each reduced to 30 dimensions
per video frame using this technique.

Principal Component Analysis (PCA) (Jolliffe, 2005) is a lin-
ear technique used to project a feature vector from a high di-
mensional space into a low dimensional space. Unsupervised
PCA was used to find the smallest number of dimensions that
accounted for 95% of the variance in a randomly selected sam-
ple of 100,000 frames. This technique reduced the Gabor fea-
tures to 162 dimensions per video frame and reduced the SIFT
features to 362 dimensions per video frame.

2.3.4. Prediction
Three techniques for supervised learning were used to pre-

dict the occurrence and intensity of smiles using the reduced
features. Two-class models were trained on the binary FACS
occurrence codes, while multiclass and regression models were
trained on the FACS intensity codes. Data from the two
databases were not mixed and contributed to separate models.

Following previous work on binary expression detection
(Fasel and Luettin, 2003, Whitehill et al., 2009), two-class sup-
port vector machines (SVM) (Vapnik, 1995) were used for bi-
nary classification. We used a kernel SVM with a radial basis
function kernel in all our approaches. SVMs were trained us-
ing two classes corresponding to the FACS occurrence codes
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Fig. 2. Techniques Used for Automatic Expression Annotation

described earlier. Training sets were created by randomly sam-
pling 10,000 frames with roughly equal representation for each
class. The choice of sample size was motivated by the com-
putational limitations imposed by model training during cross-
validation. Classifier and kernel parameters (i.e., C and γ,
respectively) were optimized using a “grid-search” procedure
(Hsu et al., 2003) on a separate validation set. The decision
values of the SVM models were fractions corresponding to the
distance of each frame’s high dimensional feature point from
the class-separating hyperplane. These values were used for
smile intensity estimation and also discretized using the stan-
dard SVM threshold of zero to provide predictions for binary
smile detection (i.e., negative values were labeled absence of
AU 12 and positive values were labeled presence of AU 12).
Some researchers have proposed converting the SVM decision
value to a pseudo-probability using a sigmoid function (Platt,
1999), but because the SVM training procedure is not intended
to encourage this, it can result in a poor approximation of the
posterior probability (Tipping, 2001).

Following previous work on expression intensity estimation
using multiclass classifiers (Messinger et al., 2009, Mahoor
et al., 2009, Mavadati et al., 2013), the SVM framework was ex-
tended for multiclass classification using the “one-against-one”
technique (Hsu and Lin, 2002). In this technique, if k is the
number of classes, then k(k−1)/2 subclassifiers are constructed
and each one trains data from two classes; classification is then
resolved using a subclassifier voting strategy. Multiclass SVMs
were trained using six classes corresponding to the FACS inten-
sity codes described earlier. Training sets were created by ran-
domly sampling 10,000 frames with roughly equal representa-
tion for each class. Classifier and kernel parameters (i.e., C and
γ, respectively) were optimized using a “grid-search” proce-
dure (Hsu et al., 2003) on a separate validation set. The output
values of the multiclass classifiers were integers corresponding
to each frame’s estimated smile intensity level. These values
were used for smile intensity estimation and also discretized to
provide predictions for binary smile detection (i.e., values of 0
were labeled absence of AU 12 and values of 1 through 5 were

labeled presence of AU 12).

Following previous work on expression intensity estimation
using regression (Jeni et al., 2013b, Kaltwang et al., 2012,
Savran et al., 2011, Dhall and Goecke, 2012, Ka Keung and
Yangsheng, 2003), epsilon support vector regression (ε-SVR)
(Vapnik, 1995) was used. As others have noted (Savran et al.,
2011), ε-SVR is appropriate to expression intensity estimation
because its ε-insensitive loss function is robust and generates a
smooth mapping. ε-SVRs were trained using a metric derived
from the FACS intensity codes described earlier. The intensity
scores of “A” through “E” were assigned a discrete numerical
value from 1 to 5, with “no smile” assigned the value of 0. Al-
though this mapping deviates from the non-metric definition of
AU intensity in the FACS manual, wherein the range of some
intensity scores is larger than others, it enables us to provide
a more efficient computational model that works well in prac-
tice. Training sets were created by randomly sampling 10,000
frames with roughly equal representation for each class. Model
and kernel parameters (i.e., C and γ, respectively) were opti-
mized using a “grid-search” procedure (Hsu et al., 2003); the
epsilon parameter was left at the default value (ε=0.1). The out-
put values of the regression models were fractions correspond-
ing to each frame’s estimated smile intensity level. This output
was used for smile intensity estimation and also discretized us-
ing a threshold of 0.5 (so that low numbers rounded down) to
provide predictions for binary smile detection.

It is important to note the differences between the three ap-
proaches that were tested. In the two-class approach, the five
intensity levels of a given AU were collapsed into a single pos-
itive class. In the multiclass approach, each of the intensity
levels was treated as a mutually-exclusive but unrelated class.
Finally, in the regression approach, each intensity level was as-
signed a discrete numerical value and modeled on a continuous
dimension. These differences are clarified by examination of
the respective loss functions. The penalty of incorrect estima-
tion in the regression approach is based on the distance between
the prediction value y and the ground truth label t, given a buffer
area of size ε (Equation 1). In contrast, the penalty of misclas-



6

sification in the two-class approach is based on the classifier’s
decision value y (Equation 2). In this case, the ground truth
label is collapsed into present at any intensity level (t = 1) or
absent (t = −1). As an extension of the two-class approach,
similar phenomena occur for the multiclass approach.

lε(y) =

{
0 if |y − t| < ε
|y − t| − ε otherwise. (1)

l(y) =

{
0 if (1 − y · t) < 0
1 − y · t otherwise (2)

2.3.5. Cross-validation
To prevent model over-fitting, stratified k-fold cross-

validation (Geisser, 1993) was used. Cross-validation pro-
cedures typically involve partitioning the data and iterating
through the partitions such that all the data is used but no it-
eration is trained and tested on the same data. Stratified cross-
validation procedures ensure that the resultant partitions have
roughly equal distributions of the target class (in this case
AU 12). This property is desirable because many performance
metrics are highly sensitive to class skew (Jeni et al., 2013a).
By using the same partitions across methods, the randomness
introduced by repeated repartitioning can also be avoided.

Each video segment was assigned to one of five partitions.
Segments, rather than participants, were assigned to partitions
to allow greater flexibility for stratification. However, this
choice allowed independent segments from the same partici-
pant to end up in multiple partitions. As such, this procedure
was a less conservative control for generalizability. For each it-
eration of the cross-validation procedure, three partitions were
used for training, one partition was used for validation (i.e., op-
timization), and one partition was used for testing.

2.4. Performance Evaluation

The majority of previous work on expression intensity es-
timation has utilized the Pearson product-moment correlation
coefficient (PCC) to measure the correlation between intensity
estimations and ground truth coding. PCC is invariant to linear
transformations, which is useful when using estimations that
differ in scale and location from the ground truth coding (e.g.,
decision values). However, this same property is problematic
when the estimations are similar to the ground truth (e.g., multi-
class classifier predictions), as it introduces an undesired hand-
icap. For instance, a classifier that always estimates an expres-
sion to be two intensity levels stronger than it is will have the
same PCC as a classifier that always estimates the expression’s
intensity level correctly.

For this reason, we performed our analyses using another
performance metric that grants more control over its relation
to linear transformations: the intraclass correlation coefficient
(ICC) (Shrout and Fleiss, 1979). Equation 3 was used to com-
pare the multiclass SVM and ε-SVR approaches to the manual
intensity annotations as their outputs were consistently scaled;
it was calculated using Between-Target Mean Squares (BMS)
and Within-Target Mean Squares (WMS). Equation 4 was used

for the decision value estimations because it takes into ac-
count differences in scale and location; it was calculated us-
ing Between-Target Mean Squares (BMS) and Residual Sum
of Squares (EMS). For both formulas, k is equal to the number
of coding sources being compared; in the current study, there
are two: the automatic and manual codes. ICC ranges from −1
to +1, with more positive values representing higher agreement.

ICC(1, 1) =
BMS −WMS

BMS + (k − 1)WMS
(3)

ICC(3, 1) =
BMS − EMS

BMS + (k − 1)EMS
(4)

The majority of previous work on binary expression detec-
tion has utilized receiver operating characteristic (ROC) analy-
sis. When certain assumptions are met, the area under the curve
(AUC) is equal to the probability that the classifier will rank
a randomly chosen positive instance higher than a randomly
chosen negative instance (Fawcett, 2006). The fact that AUC
captures information about the entire distribution of decision
points is a benefit of the measure, as it removes the subjectiv-
ity of threshold selection. However, in the case of automatic
expression annotation, a threshold must be chosen in order to
create predictions that can be compared with ground truth cod-
ing. In light of this issue, we performed our analyses using a
threshold-specific performance metric: the F1 score, which is
the harmonic mean of precision and recall (Equation 5) (van
Rijsbergen, 1979). F1 score is computed using true positives
(TP), false positives (FP), and false negatives (FN); it ranges
from 0 to 1, with higher values representing higher agreement
between coders.

F1 =
2 × T P

2 × T P + FN + FP
(5)

2.5. Data Analysis
Main effects and interaction effects among the different

methods were analyzed using two univariate general linear
models (IBM Corp, 2012) (one for binary smile detection and
one for smile intensity estimation). F1 and ICC were entered
as the sole dependent variable in each model, and database, ex-
traction type, reduction type, and classification type were en-
tered as “fixed factor” independent variables. The direction of
significant differences were explored using marginal means for
all variables except for classification type. In this case, post-
hoc Tukey HSD tests (IBM Corp, 2012) were used to explore
differences between the three types of classification.

3. Results

3.1. Smile Intensity Estimation
Across all methods and databases, the average intensity es-

timation performance was ICC=0.64. However, performance
varied widely between databases and methods, from a low of
ICC=0.23 to a high of ICC=0.92.

The overall general linear model for smile intensity estima-
tion was significant (Table 1). Main effects of database, ex-
traction method, and supervised learning method were appar-
ent. Intensity estimation performance was significantly higher
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Table 1. General Linear Model Results for Smile Intensity Estimation

Database ICC F p

BP4D 0.765 158.206 .00
Spectrum 0.521

Extraction ICC F p

Gabor 0.602 17.892 .00
SIFT 0.684

Reduction ICC F p

Laplacian 0.639 0.197 .66
PCA 0.648

Prediction ICC F p

Two-class 0.467a 83.360 .00
Multiclass 0.739b

Regression 0.724b

Interaction Effects F p

Database × Extraction 4.627 .03
Database × Reduction 3.958 .05
Database ×Model 8.873 .00
Reduction ×Model 13.391 .00

for the BP4D database than for the Spectrum database, and in-
tensity estimation performance using SIFT features was sig-
nificantly higher than that using Gabor features. Intensity es-
timation performance using multiclass and regression models
was significantly higher than that using the two-class approach.
There was no significant difference in performance between
Laplacian Eigenmap and PCA for reduction.

These main effects were qualified by four significant inter-
action effects. First, the difference between SIFT features and
Gabor features was greater in the Spectrum database than in the
BP4D database. Second, while Laplacian Eigenmap performed
better in the Spectrum database, PCA performed better in the
BP4D database. Third, while multiclass models performed
better in the Spectrum database, regression models performed
better in the BP4D database. Fourth, PCA reduction yielded
higher intensity estimation performance when combined with
two-class models, but lower performance when combined with
multiclass and regression models.

3.2. Binary Smile Detection

Across all methods and databases, the average binary detec-
tion performance was F1=0.64. However, performance varied
between databases and methods, from a low of F1=0.40 to a
high of F1=0.81.

The overall general linear model for binary smile detection
was significant (Table 2). Main effects of database, extraction
method, and supervised learning method were apparent. De-
tection performance on the BP4D database was significantly
higher than that on the Spectrum database, and detection per-
formance using SIFT features was significantly higher than that
using Gabor features. Detection performance was significantly
higher using multiclass models than using two-class models.

Table 2. General Linear Model Results for Binary Smile Detection

Database F1 Score F p

BP4D 0.772 440.209 .00
Spectrum 0.504

Extraction F1 Score F p

Gabor 0.618 9.740 .00
SIFT 0.658

Reduction F1 Score F p

Laplacian 0.642 0.501 .48
PCA 0.633

Prediction F1 Score F p

Two-class 0.616a 4.175 .02
Multiclass 0.661b

Regression 0.636

Interaction Effects F p

Reduction ×Model 5.753 .00

These main effects were qualified by a significant interac-
tion effect between reduction method and supervised learning
method. PCA reduction yielded higher detection performance
when combined with two-class models, but lower detection per-
formance when combined with multiclass and regression mod-
els. There was no main effect of dimensionality reduction
method and no other interactions were significant.

3.3. Distribution of Output Values

The decision values of the best-performing two-class model
for each database are presented in Figure 4 as box plots (Frigge
et al., 1989). The blue boxes represent the first and third quar-
tiles of each smile intensity level, while the red line in each box
represents the median. The blue lines represent data within 1.5
times the inter-quartile range of the lower and upper quartiles.
The regression values of the best-performing regression model
for each database are similarly presented in Figure 5.

Examination of Figure 4 reveals a slight right-leaning ten-
dency, indicating that more positive SVM decision values are
on average more likely to be higher intensity. However, there is
substantial overlap between the distributions and a great deal of
“clumping” between intensity levels; the distributions for lev-
els 2 through 4 (i.e., “B” through “D”) are very similar for the
BP4D dataset, while the distributions for levels 3 through 5 (i.e.,
“C” through “E”) are very similar for the Spectrum dataset. Fi-
nally, the observed range of values spans -3.6 to 5.5 for BP4D
and -8.4 to 8.1 for Spectrum.

Examination of Figure 5 reveals a stepped and right-leaning
pattern, indicating that more positive regression values are on
average more likely to be higher intensity. There is some over-
lapping between the distributions, although the inter-quartile
ranges for each group are largely distinct. One exception to this
is clumping for levels 4 and 5 (i.e., “D” and “E”), especially for
the Spectrum dataset. The observed range of values spans -3.1
to 5.7 for BP4D and -1.2 to 4.8 for Spectrum.
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4. Discussion

4.1. Smile Intensity Estimation
Intensity estimation performance varied between databases,

feature extraction methods, and supervised learning methods.
Performance was higher in the BP4D database than in the Spec-
trum database. It is not surprising that performance differed
between the two databases, given how much they differed in
terms of participant demographics, social context, and image
quality. Further experimentation will be required to pinpoint
exactly what differences between the databases contributed to
this drop in performance, but we suspect that illumination con-
ditions, frontality of camera placement, and participant head
pose were involved. It is also possible that the participants in the
Spectrum database were more difficult to analyze due to their
depressive symptoms. Previous research has found that non-
verbal behavior (and especially smiling) changes with depres-
sion symptomatology (e.g., Girard et al., 2014). There were
also differences between databases in terms of social context
that likely influenced smiling behavior; Spectrum was recorded
during a clinical interview about depression symptoms, while
BP4D was recorded during tasks designed to elicit specific and
varied emotions. Participants in the Spectrum database smiled
less frequently (20.5% of frames) and less intensely (average in-
tensity 1.5) than did participants in the BP4D database (56.4%
of frames and average intensity 2.4). The inter-observer reli-
ability for manual smile occurrence coding was also higher in
the BP4D database (F1=0.96) than in the Spectrum database
(F1=0.71). These differences may have affected the difficulty
of smile intensity estimation.

More surprising was that intensity estimation performance
was higher for SIFT features than for Gabor features. This
finding is encouraging from a computational load perspective,
considering the toolbox implementation of SIFT used in this
study (Vedali and Fulkerson, 2008) was many times faster than
our custom implementation of Gabor. However, it is possible
that SIFT was particularly well-suited to our form of registra-
tion with dense facial landmarking. Although we did not test
this hypothesis in the current study, it would have been inter-
esting to compare these two methods of feature extraction in
conjunction with a method of registration using sparse land-
marking (e.g., holistic face detection or eye tracking). It is also
important to note that the difference between SIFT and Gabor
features was larger in the Spectrum database than in BP4D.

For dimensionality reduction, intensity estimation perfor-
mance was not significantly different between Laplacian Eigen-
map and PCA. This may be an indication that the features used
in this study were linearly separable and that manifold learn-
ing was unnecessary. This finding is also encouraging from a
computational load perspective, as PCA is a much faster and
simpler technique. However, it is important to note that the
success of each dimensionality reduction technique depended
on the database and on the classification method used. Lapla-
cian Eigenmap was better suited to the Spectrum database, mul-
ticlass models, and regression models; while PCA was better
suited to the BP4D database and two-class models.

Most relevant to our main hypothesis are the findings re-
garding supervised learning method. In line with our hypoth-

esis that the decision-value-as-intensity heuristic is flawed in
practice, the intensity-trained multiclass and regression mod-
els performed significantly better at intensity estimation than
the decision values of two-class models. However, it is impor-
tant to note that the intensity estimation performance yielded by
binary-trained models was not negligible. Consistent with pre-
vious reports, decision values showed a low to moderate corre-
lation with smile intensity.

4.2. Binary Smile Detection

Binary detection performance also varied between databases,
feature extraction methods, and supervised learning methods.
These differences were very similar to those for expression in-
tensity estimation. Binary detection performance was higher
for the BP4D database than for the Spectrum database, higher
for SIFT features than for Gabor features, and no different be-
tween Laplacian Eigenmap and PCA for reduction.

Examination of the decision values for the two-class models
(Fig. 4) reveals that there is substantial overlap between the dis-
tributions of “no smile” and “A” level smiles. Furthermore, the
first quartile of “A” level smiles is negative in both datasets and
therefore contributes to substantial misclassification. Examina-
tion of the confusion matrices for the multiclass models reveals
a similar pattern: detecting “trace” level smiles is difficult.

Surprisingly, detection performance was higher for multi-
class models than for two-class models; this difference was
modest but statistically significant (Fig. 3). This suggests
that the best classifier for binary detection is not necessarily
the one trained on binary labels. As far as we know, this is
the first study to attempt binary expression detection using an
intensity-trained classifier. Although collecting frame-level in-
tensity ground truth is labor-intensive, our findings indicate that
this investment is worthwhile for both binary expression detec-
tion and expression intensity estimation.

4.3. Conclusions

We provide empirical evidence that the decision-value-as-
intensity heuristic is flawed in practice as well as in theory.
Unfortunately, there are no shortcuts when it comes to esti-
mating smile intensity: researchers must take the time to col-
lect and train on intensity ground truth. However, if they do
so, high reliability with expert human FACS coders can be
achieved. Intensity-trained multiclass and regression models
outperformed binary-trained classifier decision values on smile
intensity estimation across multiple databases and methods for
feature extraction and dimensionality reduction. Multiclass
models even outperformed binary-trained classifiers on binary
smile detection. Examination of the distribution of classifier
decision values indicates that there is substantial overlap be-
tween smile intensity levels and that low intensity smiles are
frequently confused with non-smiles. A much cleaner set of
distributions can be achieved by training a regression model ex-
plicitly on the intensity levels.

4.4. Limitations and Future Directions

The primary limitations of the current study were that it fo-
cused on a single facial expression and supervised learning
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framework. Future work should explore the generalizability of
these findings by comparing different methods for supervised
learning and other facial expressions. Another limitation is the
divergence between the number of reduced features yielded by
Laplacian Eigenmap and PCA. Future work might standardize
the number of features or forego dimensionality reduction en-
tirely (at the cost of computation time or kernel complexity).
Finally, future work would benefit from a comparison of ad-
ditional techniques for facial landmark registration, feature ex-
traction, and dimensionality reduction.
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