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Spontaneous facial expression in unscripted social interactions can be
measured automatically
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Methods to assess individual facial actions have potential to shed light on important behavioral
phenomena ranging from emotion and social interaction to psychological disorders and health.
However, manual coding of such actions is labor intensive and requires extensive training. To
date, establishing reliable automated coding of unscripted facial actions has been a daunting
challenge impeding development of psychological theories and applications requiring facial
expression assessment. It is therefore essential that automated coding systems be developed
with enough precision and robustness to ease the burden of manual coding in challenging data
involving variation in participant gender, ethnicity, head pose, speech, and occlusion. We report
a major advance in automated coding of spontaneous facial actions during an unscripted social
interaction involving three strangers. For each participant (n = 80, 47% women, 15% Non-
white), 25 facial action units (AUs) were manually coded from video using the Facial Action
Coding System. Twelve AUs occurred more than 3% of the time and were processed using
automated FACS coding. Automated coding showed very strong reliability for the proportion
of time that each AU occurred (mean intraclass correlation = 0.89), and the more stringent
criterion of frame-by-frame reliability was moderate to strong (mean Matthew’s correlation =

0.61). With few exceptions, differences in AU detection related to gender, ethnicity, pose, and
average pixel intensity were small. Fewer than 6% of frames could be coded manually but not
automatically. These findings suggest automated FACS coding has progressed sufficiently to
be applied to observational research in emotion and related areas of study.
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Introduction

During the past few decades, some of the most strik-
ing findings about affective disorders, schizophrenia, addic-
tion, developmental psychopathology, and health have been
based on sophisticated coding of facial expressions. For
instance, it has been found that facial expression coding
using the Facial Action Coding System (FACS), which is
the most comprehensive system for coding facial behav-
ior (Ekman, Friesen, & Hager, 2002), identifies which de-
pressed patients are at greatest risk for reattempting sui-
cide (Archinard, Haynal-Reymond, & Heller, 2000); consti-
tutes an index of physical pain with desirable psychometric
properties (Prkachin & Solomon, 2008); distinguishes dif-
ferent types of adolescent behavior problems (Keltner, Mof-
fitt, & Stouthamer-Loeber, 1995); and distinguishes between
European-American, Japanese, and Chinese infants (Camras
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et al., 1998). These findings have offered glimpses into criti-
cal areas of human behavior that were not possible using ex-
isting methods of assessment, often generating considerable
research excitement and media attention.

As striking as these original findings were, it is just as
striking how little follow-up work has occurred using these
methods. The two primary reasons for this curious state of
affairs are the intensive training required to learn facial ex-
pression coding and the extremely time-consuming nature of
the coding itself. Paul Ekman, one of the creators of FACS,
notes that certification in FACS requires about 6 months of
training and that FACS coding a single minute of video can
take over an hour (Ekman, 1982).

FACS (Ekman & Friesen, 1978; Ekman et al., 2002) is an
anatomically-based system for measuring nearly all visually-
discernible facial movement. FACS describes facial activ-
ities in terms of unique facial action units (AUs), which
correspond to the contraction of one or more facial mus-
cles. Any facial expression may be represented as a single
AU or a combination of multiple AUs. For example, the
Duchenne smile (i.e., enjoyment smile) is indicated by si-
multaneous contraction of the zygomatic major (AU 12) and
orbicularis oculi pars lateralis (AU 6). Although there are
alternative systems for characterizing facial expression (e.g.,
Izard, 1979; Abrantes & Pereira, 1999), FACS is recognized
as the most comprehensive and objective means for measur-
ing facial movement currently available, and it has become
the standard for facial measurement in behavioral research
(Cohn & Ekman, 2005; Ekman & Rosenberg, 2005).

Given the often-prohibitive time commitment of FACS
coding, there has been great interest in developing computer
vision methods for automating facial expression coding. If
successful, these methods would greatly improve the effi-
ciency and reliability of AU detection, and importantly make
its use feasible in applied settings outside of research.

Although the advantages of automated facial expression
coding are apparent, the challenges of developing such sys-
tems are considerable. While human observers easily ac-
commodate variations in pose, scale, illumination, occlusion,
and individual differences (e.g., gender and ethnicity), these
and other sources of variation represent considerable chal-
lenges for a computer vision system. Further, there is the ma-
chine learning challenge of automatically detecting actions
that require significant training and expertise even for human
coders.

There has been significant effort to develop computer-
vision based approaches to automated facial expression anal-
ysis. Most of this work has focused on prototypic emotion
expressions (e.g., joy and anger) in posed behavior. Zeng,
Pantic, Roisman, and Huang (2009) have reviewed this lit-
erature through 2009. Within the past few years, studies
have progressed to AU detection in actor portrayals of emo-
tion (Valstar, Bihan, Mehu, Pantic, & Scherer, 2011) and the

more challenging task of AU detection during spontaneous
facial behavior. Examples of the latter include AU detec-
tion in physical pain (G. C. Littlewort, Bartlett, & Lee, 2009;
P. Lucey, Cohn, Howlett, Member, & Sridharan, 2011), inter-
views (Bartlett et al., 2006; Girard, Cohn, Mahoor, Mavadati,
Hammal, & Rosenwald, 2013; S. Lucey, Matthews, Am-
badar, De la Torre, & Cohn, 2006), and computer-mediated
tasks such as watching a video clip or filling out a form
(Hoque, McDuff, & Picard, 2012; Grafsgaard, Wiggins,
Boyer, Wiebe, & Lester, 2013; G. Littlewort et al., 2011;
Mavadati, Mahoor, Bartlett, Trinh, & Cohn, 2013; McDuff,
El Kaliouby, Kodra, & Picard, 2013).

While much progress has been made, the current state of
the science is limited in several key respects. Stimuli to elicit
spontaneous facial actions have been highly controlled (e.g.,
watching pre-selected video clips or replying to structured
interviews) and camera orientation has been frontal with lit-
tle or no variation in head pose. Non-frontal pose matters
because the face looks different when viewed from different
orientations and parts of the face may become self-occluded.
Rapid head movement also may be difficult to automatically
track through a video sequence. Head motion and orienta-
tion to the camera are important if AU detection is to be
accomplished in social settings where facial expressions of-
ten co-occur with head motion. For example, the face and
head pitch forward and laterally during social embarrassment
(Keltner et al., 1995; Ambadar, Cohn, & Reed, 2009). Kraut
and Johnston (1979) found that successful bowlers smile
only as they turn away from the bowling lane and toward
their friends.

Whether automated methods can detect spontaneous fa-
cial expressions in the presence of head pose variation is un-
known, as too few studies have encountered or reported on
it. Messinger, Mahoor, Chow, and Cohn (2009) encountered
out-of-plane head motion in video of infants, but neglected
to report whether it affected AU detection. Cohn and Sayette
(2010) reported preliminary evidence that AU detection may
be robust to pose variation up to 15 degrees from frontal.
Similarly, we know little about the effects of gender and eth-
nicity on AU detection. Face shape and texture vary between
men and women (Bruce & Young, 1998), and may be further
altered through the use of cosmetics. Skin color is an addi-
tional factor that may affect AU detection. Accordingly, little
is known about the operational parameters of automated AU
detection. For these reasons, automated FACS coding must
prove robust to these challenges.

The current study evaluates automated FACS coding us-
ing a database that is well-suited to testing just how far au-
tomated methods have progressed, and how close we are to
using them to study naturally-occurring facial expressions.
This investigation focuses on spontaneous facial expression
in a far larger database (over 400,000 video frames from 80
people) than ever attempted; it includes men and women,
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Whites and Nonwhites, and a wide range of facial AUs that
vary in intensity and head orientation. Because this database
contains variation in head pose and participant gender, as
well as moderate variation in illumination and participant
ethnicity, we can examine their effect on AU detection. To
demonstrate automated AU detection in such a challenging
database would mark a crucial step toward the goal of es-
tablishing fully-automated systems capable of use in varied
research and applied settings.

Methods

Participants

The current study used digital video from 80 participants
(53% male, 85% white, average age 22.2 years) who were
participating in a larger study on the impact of alcohol on
group formation processes (for elaboration, see Sayette et
al., 2012). They were randomly assigned to groups of 3 un-
acquainted participants. Whenever possible, all three partic-
ipants in a group were analyzed. Some participants were not
analyzable due to excessive occlusion from hair or head wear
(n = 6) or gum chewing (n = 1). Participants were randomly
assigned to drink isovolumic alcoholic beverages (n = 31),
placebo beverages (n = 21), or nonalcoholic control bever-
ages (n = 28); all participants in a group drank the same
type of beverage. The majority of participants were from
groups with a mixed gender composition of two males and
one female (n = 32) or two females and one male (n = 26),
although some were from all male (n = 12) or all female
(n = 10) groups. All participants reported that they had not
consumed alcohol or psychoactive drugs (except nicotine or
caffeine) during the 24 hour period leading up to the obser-
vations.

Setting and Equipment

All participants were previously unacquainted. They first
met only after entering the observation room where they were
seated approximately equidistantly from each other around a
circular (75 cm diameter) table. They were asked to con-
sume a beverage consisting of cranberry juice or cranberry
juice and vodka (a 0.82 g/kg dose of alcohol for males and a
0.74 g/kg dose of alcohol for females) before engaging in a
variety of cognitive tasks. We focus on a portion of the 36-
minute unstructured observation period in which participants
became acquainted with each other (mean duration 2.69 min-
utes). Separate wall-mounted cameras faced each person.
It was initially explained that the cameras were focused on
their drinks and would be used to monitor their consump-
tion rate from the adjoining room, although participants later
were told of our interest in observing their behavior and a
second consent form was signed if participants were willing.
All participants consented to this use of their data.
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Figure 1. Base rates of all the coded facial action units from
a subset of the data (n = 56)

The laboratory included a custom-designed video control
system that permitted synchronized video output for each
participant, as well as an overhead shot of the group. The
individual view for each participant was used in this report.
The video data collected by each camera had a standard
frame rate of 29.97 frames per second and a resolution of
640×480 pixels. Audio was recorded from a single micro-
phone. The automated FACS coding system was processed
on a Dell T5600 workstation with 128GB of RAM and dual
Xeon E5 processors. The system also runs on standard desk-
top computers.

Manual FACS Coding

The FACS manual (Ekman et al., 2002) defines 32 distinct
facial action units. All but 7 were manually coded. Omitted
were three “optional” AUs related to eye closure (AUs 43, 45,
and 46), three AUs related to mouth opening or closure (AUs
8, 25, and 26), and one AU that occurs on the neck rather
than the face (AU 21). The remaining 25 AUs were manually
coded from onset (start) to offset (stop) by one of two certi-
fied and highly experienced FACS coders using Observer XT
software (Noldus Information Technology, 2013). AU onsets
were annotated when they reached slight or B level intensity
according to FACS; the corresponding offsets were annotated
when they fell below B level intensity. AU of lower intensity
(i.e., A level intensity) are ambiguous and difficult to detect
for both manual and automated coders. The original FACS
manual (Ekman & Friesen, 1978) did not code A level inten-
sity (referred to there as “trace.”). All AUs were annotated
during speech.

Because highly skewed class distributions severely atten-
uate measures of classifier performance (Jeni, Cohn, & De
la Torre, 2013), AUs that occurred less than about 3% of the
time were excluded from analysis. Thirteen AUs were omit-
ted on this account. Five of them either never occurred or
occurred less than 1% of the time. Manual coding of these
five AUs was suspended after the first 56 subjects. Visual
inspection of Figure 1 reveals that there was a large gap be-
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Figure 2. Automated FACS Coding Pipeline.

tween the AUs that occurred approximately 10% or more of
the time and those that occurred approximately 3% or less of
the time. The class distributions of the excluded AUs were
at least 3 times more skewed than those of the included AUs.
In all, 12 AUs met base-rate criteria and were included for
automatic FACS coding.

To assess inter-observer reliability, video from 17 partici-
pants was annotated by both coders. Mean frame-level reli-
ability was quantified with the Matthews Correlation Coeffi-
cient (MCC), which is robust to agreement due to chance as
described below. The average MCC was 0.80, ranging from
0.69 for AU 24 to 0.88 for AU 12; according to convention,
these numbers can be considered strong to very strong re-
liability (Chung, 2007). This high degree of inter-observer
reliability is likely due to extensive training and supervision
of the coders.

Automatic FACS Coding

Figure 2 shows an overview of the AU detection pipeline.
The face is detected automatically and facial landmarks are
detected and tracked. The face images and landmarks are
normalized to control for variation in size and orientation,
and appearance features are extracted. The features then are
input to classification algorithms, as described below. Please
note that the mentioned procedures do not provide incremen-
tal results; all the procedures are required to perform classi-
fication and calculate an inter-system reliability score.

Landmark Registration. The first step in automatically
detecting AUs was to locate the face and facial landmarks.
Landmarks refer to points that define the shape of perma-
nent facial features, such as the eyes and lips. This step
was accomplished using the LiveDriver SDK (Image Met-
rics, 2013), which is a generic tracker that requires no indi-
vidualized training to track facial landmarks of persons it has
never seen before. It locates the two-dimensional coordinates
of 64 facial landmarks in each image. These landmarks cor-
respond to important facial points such as the eye and mouth
corners, the tip of the nose, and the eyebrows. LiveDriver
SDK also tracks head pose in three dimensions for each video
frame: pitch (i.e., vertical motion such as nodding), yaw (i.e.,
horizontal motion such as shaking the head), and roll (i.e.,
lateral motion such as tipping the head sideways).

Shape and texture information can only be used to iden-
tify facial expressions if the confounding influence of head
motion is controlled (De la Torre & Cohn, 2011). Because
participants exhibited a great deal of rigid head motion dur-
ing the group formation task, the second step was to remove
the influence of such motion on each image. Many tech-
niques for alignment and registration are possible (Zeng et
al., 2009); we chose the widely-used similarity transforma-
tion (Szeliski, 2011) to warp the facial images to the average
pose and a size of 128×128 pixels, thereby creating a com-
mon space in which to compare them. In this way, variation
in head size and orientation would not confound the mea-
surement of facial actions.

Feature Extraction. Once the facial landmarks had
been located and normalized, the third step was to measure
the deformation of the face caused by expression. This was
accomplished by extracting Scale-Invariant Feature Trans-
form (SIFT) descriptors (Lowe, 1999) in localized regions
surrounding each facial landmark. SIFT applies a geomet-
ric descriptor to an image region and measures features that
correspond to changes in facial texture and orientation (e.g.,
facial wrinkles, folds, and bulges). It is robust to changes in
illumination and shares properties with neurons responsible
for object recognition in primate vision (Serre et al., 2005).
SIFT feature extraction was implemented using the VLFeat
open-source library (Vedali & Fulkerson, 2008). The diame-
ter of the SIFT descriptor was set to 24 pixels, as illustrated
above the left lip corner in Figure 2.

Classifier Training. The final step in automatically de-
tecting AUs was to train a classifier to detect each AU using
SIFT features. By providing each classifier multiple exam-
ples of an AU’s presence and absence, it was able to learn
a mapping of SIFT features to that AU. The classifier then
extrapolated from the examples to predict whether the AU
was present in new images. This process is called super-
vised learning and was accomplished using support vector
machine (SVM) classifiers (Vapnik, 1995). SVM classifiers
extrapolate from examples by fitting a hyperplane of maxi-
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mum margin into the transformed, high dimensional feature
space. SVM classification was implemented using the LIB-
LINEAR open-source library (Fan, Wang, & Lin, 2008).

The performance of a classifier is evaluated by testing the
accuracy of its predictions. To ensure generalizability of the
classifiers, they must be tested on examples from people they
have not seen previously. This is accomplished by cross-
validation, which involves multiple rounds of training and
testing on separate data. Stratified k-fold cross-validation
(Geisser, 1993) was used to partition participants into 10
folds with roughly equal AU base rates. On each round of
cross-validation, a classifier was trained using data (i.e., fea-
tures and labels) from eight of the ten folds. The classifier’s
cost parameter was optimized using one of the two remaining
folds through a “grid-search” procedure (Hsu, Chang, & Lin,
2003). The predictions of the optimized classifier were then
tested through extrapolation to the final fold. This process
was repeated so that each fold was used once for testing and
parameter optimization; classifier performance was averaged
over these 10 iterations. In this way, training and testing of
the classifiers was independent.

Inter-system Reliability

The performance of the automated FACS coding system
was measured in two ways. Following the example of Girard,
Cohn, Mahoor, Mavadati, Hammal, and Rosenwald (2013),
we measured both session-level and frame-level reliability.
Session-level reliability asks whether the expert coder and
the automated system are consistent in their estimates of the
proportion of frames that include a given AU. Frame-level
reliability represents the extent to which the expert coder and
the automated system make the same judgments on a frame-
by-frame basis. That is, for any given frame, do both detect
the same AU? For many purposes, such as comparing the
proportion of positive and negative expressions in relation to
severity of depression, session-level reliability of measure-
ment is what matters. Session-level reliability was assessed
using intraclass correlation (ICC) (Shrout & Fleiss, 1979).
Frame-level reliability was quantified using the Matthews
Correlation Coefficient (MCC) (D. M. Powers, 2007).

ICC(1, 1) =
BMS −WMS

BMS + (k − 1)WMS
(1)

The Intraclass Correlation Coefficient (ICC) is a measure
of how much the units in a group resemble one another
(Shrout & Fleiss, 1979). It is similar to the Pearson Cor-
relation Coefficient, except that for ICC the data are centered
and scaled using a pooled mean and standard deviation rather
than each variable being centered and scaled using its own
mean and standard deviation. This is appropriate when the
same measure is being applied to two sources of data (e.g.,
two manual coders or a manual coder and an automated AU

detector), and prevents an undesired handicap from being in-
troduced by invariance to linear transformation. For exam-
ple, an automated system that always detected a base rate
twice as large as that of the human coder would have a per-
fect Pearson Correlation Coefficient, but a poor ICC. For this
reason, the behavior of ICC is more rigorous than that of the
Pearson Correlation Coefficient when applied to continuous
values. We used the one-way, random effects model ICC
described in Equation 1.

MCC =
T P × T N − FP × FN

√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

(2)

The Matthews Correlation Coefficient (MCC), also known
as the phi coefficient, can be used as a measure of the quality
of a binary classifier (D. M. Powers, 2007). It is equivalent
to a Pearson Correlation Coefficient computed for two binary
measures and can be interpreted in the same way: an MCC
of 1 indicates perfect correlation between methods, while an
MCC of 0 indicates no correlation (or chance agreement).
MCC is related to the chi-squared statistic for a 2×2 con-
tingency table, and is the geometric mean of Informedness
(DeltaP) and Markedness (DeltaP’). Using Equation 2, MCC
can be calculated directly from a confusion matrix. Although
there is no perfect way to represent a confusion matrix in a
single number, MCC is preferable to alternatives (e.g., the
F-measure or Kappa) because it makes fewer assumptions
about the distributions of the data set and the underlying pop-
ulations (D. M. W. Powers, 2012).

Because ICC and MCC are both correlation coefficients,
they can be evaluated using the same heuristic, such as the
one proposed by Chung (2007): that coefficients between 0.0
and 0.2 represent very weak reliability, coefficients between
0.2 and 0.4 represent weak reliability, coefficients between
0.4 and 0.6 represent moderate reliability, coefficients be-
tween 0.6 and 0.8 represent strong reliability, and coefficients
between 0.8 and 1.0 represent very strong reliability.

Error Analysis

We considered a variety of factors that could potentially
influence automatic AU detection. These were participant
gender, ethnicity, mean pixel intensity of the face, seating
location, and variation in head pose. Mean pixel intensity
is a composite of several factors that include skin color, ori-
entation to overhead lighting, and head pose. Orientation to
overhead lighting could differ depending on participants’ lo-
cation at the table. Because faces look different when viewed
from different angles, pose for each frame was considered.

The influence of ethnicity, sex, average pixel intensity,
seating position, and pose on classification performance was
evaluated using hierarchical linear modeling (HLM; Rau-
denbush & Bryk, 2002). HLM is a powerful statistical tool
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for modeling data with a “nested” or interdependent struc-
ture. In the current study, repeated observations were nested
within participants. By creating sub-models (i.e., partition-
ing the variance and covariance) for each level, HLM ac-
counted for the fact that observations from the same partic-
ipant are likely to be more similar than observations from
different participants.

Classifier predictions for each video frame were assigned
a value of 1 if they matched the manual coder’s annotation
and a value of 0 otherwise. These values were entered into
a two-level HLM model as its outcome variable; a logit-
link function was used to transform the binomial values into
continuous log-odds. Four frame-level predictor variables
were added to the first level of the HLM: z-scores of each
frame’s head pose (yaw, pitch, and roll) and mean pixel in-
tensity. Two participant-level predictor variables were added
to the second level of the HLM: dummy codes for participant
gender (0=male, 1=female) and ethnicity (0=White, 1=Non-
white). A sigmoid function was used to transform log-odds
to probabilities for ease of interpretation.

Results

Descriptive Statistics

Using manual FACS coding, the mean base rate for AUs
was 27.3% with a relatively wide range. AU 1 and AU 15
were least frequent, with each occurring in only 9.2% of
frames; AU 12 and AU 14 occurred most often, in 34.3%
and 63.9% of frames, respectively (Table 1). Occlusion, de-
fined as partial obstruction of the view of the face, occurred
in 18.8% of all video frames.

Base rates for two AUs differed between men and women.
Women displayed significantly more AU 10 than men,
t(78) = 2.79, p < .01, and significantly more AU 15 than
men, t(78) = 3.05, p < .01. No other significant differences
between men and women emerged, and no significant differ-
ences in base rates between Whites and Nonwhites emerged.

Approximately 5.6% of total frames could be coded man-
ually but not automatically. 9.7% of total frames could be
coded neither automatically nor manually. Occlusion was
responsible for manual coding failures. Tracking failure was
responsible for automatic coding failures.

Head pose was variable, with most of that variation occur-
ring within the interval of 0 to 20◦ from frontal view. (Abso-
lute values are reported for head pose.) Mean pose was 7.6◦

for pitch, 6.9◦ for yaw, and 6.1◦ for roll. The 95th percentiles
were 20.1◦ for pitch, 15.7◦ for yaw, and 15.7◦ for roll.

Although illumination was relatively consistent in the ob-
servation room, the average pixel intensity of faces did vary.
Mean pixel intensity was 40.3% with a standard deviation of
9.0%. Three potential sources of variation were considered:
ethnicity, seating location, and head pose. Mean pixel inten-
sity was lower for Nonwhites than for Whites, t(78) = 4.87,
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Figure 3. Mean inter-system reliability for twelve AUs

p < 0.001. Effects of seating location were also significant,
with participants sitting in one of the chairs showing signifi-
cantly lower mean pixel intensity than participants sitting in
the other chairs, F(79) = 5.71, p < .01. Head pose was
uncorrelated with pixel intensity: for yaw, pitch, and roll,
r = −0.09, −0.07, and −0.04, respectively.

Inter-System Reliability

The mean session-level reliability (i.e., ICC) for AUs was
very strong at 0.89, ranging from 0.80 for AU 17 to 0.95 for
AU 12 and AU 7 (Fig. 3). The mean ICC was 0.91 for male
participants and 0.79 for female participants. The mean ICC
was 0.86 for participants self-identifying as White and 0.91
for participants self-identifying as Nonwhite.

The mean frame-level reliability (i.e., MCC) for AUs was
strong at 0.60, ranging from 0.44 for AU 15 to 0.79 for AU
12 (Fig. 3). The mean MCC was 0.61 for male participants
and 0.59 for female participants. The mean MCC was 0.59
for participants self-identifying as White and 0.63 for partic-
ipants self-identifying as Nonwhite.

Error Analysis

HLM found that a number of participant- and frame-
level factors affected the likelihood that the automated sys-
tem would make classification errors for specific AUs (Ta-
ble 2). For several AUs, participant gender and self-reported
ethnicity affected performance. Errors were 3.45% more
likely in female than male participants for AU 6 (p < .05),
2.91% more likely in female than male participants for AU
15 (p < .01), and 5.15% more likely in White than Non-
white participants for AU 17 (p < .05). For many AUs,
frame-level head pose and mean pixel intensity affected per-
formance. For every one standard deviation increase in the
absolute value of head yaw, the probability of making an er-
ror increased by 0.79% for AU 2 (p < .05), by 0.15% for AU
11 (p < .05), by 1.24% for AU 12 (p < .01), by 1.39% for
AU 23 (p < .05), and by 0.77% for AU 24 (p < .05). For
every one standard deviation increase in the absolute value of
head pitch, the probability of making an error increased by
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Table 1
Action Unit Base Rates from Manual FACS Coding (% of frames)

AU Overall Male Female White Other

1 9.2 7.8 9.3 8.5 9.8
2 11.7 10.0 11.7 10.4 14.3
6 33.4 28.5 38.1 33.2 34.8
7 41.5 37.9 43.7 41.1 38.9

10 40.3 33.0 46.6 38.9 46.3
11 16.9 11.7 21.5 18.1 7.3
12 34.1 30.8 36.4 33.0 38.8
14 63.9 59.7 69.6 63.5 73.1
15 9.2 5.8 11.7 8.3 12.9
17 28.3 30.2 23.4 26.8 25.6
23 20.4 20.7 17.8 19.6 16.5
24 18.8 11.2 12.6 11.9 12.1
Note: Shaded cells indicate significant differences between groups (p < .05).

1.24% for AU 15 (p < .05). No significant effects were found
for deviations in head roll. Finally, for every one standard
deviation increase in mean pixel intensity, the probability of
making an error increased by 2.21% for AU 14 (p < .05).

Discussion

The major finding of the present study was that sponta-
neous facial expression during a three person, unscripted so-
cial interaction can be reliably coded using automated meth-
ods. This represents a significant breakthrough in the field of
affective computing and offers exciting new opportunities for
both basic and applied psychological research.

We evaluated the readiness of automated FACS coding for
research use in two ways. One was to assess session-level re-
liability: whether manual and automated measurement yield
consistent estimates of the proportion of time that different
AUs occur. The other, more-demanding metric was frame-
level reliability: whether manual and automated measure-
ment agree on a frame-by-frame basis. When average rates
of actions are of interest, session-level reliability is the crit-
ical measure (e.g., Sayette & Hufford, 1995; Girard, Cohn,
Mahoor, Mavadati, Hammal, & Rosenwald, 2013). When
it is important to know when particular actions occur in the
stream of behavior, for instance to define particular combi-
nations of AUs, frame-level reliability is what matters (e.g.,
Ekman & Heider, 1988; Reed, Sayette, & Cohn, 2007). For
AUs that occurred as little as 3% of the time, we found evi-
dence of very strong session-level reliability and moderate to
strong frame-level reliability. AUs occurring less than 3% of
the time were not analyzed.

Session-level reliability (i.e., ICC) averaged 0.89, which
can be considered very strong. The individual coefficients
were especially strong for AUs associated with positive af-
fect (AU 6 and AU 12), which is of particular interest in stud-

ies of group formation (Fairbairn, Sayette, Levine, Cohn, &
Creswell, 2013; Sayette et al., 2012) as well as emotion and
social interaction more broadly (Ekman & Rosenberg, 2005).
Session-level reliability for AUs related to brow actions and
smile controls, which counteract the upward pull of the zygo-
matic major (Ambadar et al., 2009; Keltner, 1995), were only
somewhat lower. Smile controls have been related to embar-
rassment, efforts to down-regulate positive affect, deception,
and social distancing (Ekman & Heider, 1988; Girard, Cohn,
Mahoor, Mavadati, & Rosenwald, 2013; Keltner & Buswell,
1997; Reed et al., 2007).

The more demanding frame-level reliability (i.e., MCC)
averaged 0.60, which can be considered strong. Similar to
the session-level reliability results, actions associated with
positive affect had the highest frame-level reliability (0.76
for AU 6 and 0.79 for AU 12). MCC for smile controls was
more variable. For AU 14 (i.e., dimpler), which is associated
with contempt and anxiety (Fairbairn et al., 2013), and AU
10, which is associated with disgust (Ekman, 2003), reliabil-
ity was strong (MCC = 0.60 and 0.72, respectively). MCC
for some others was lower (e.g., 0.44 for AU 15). When
frame-by-frame detection is required, reliability is strong for
some AUs but only moderate for others. Further research
is indicated to improve detection of the more difficult AUs
(e.g., AU 11 and AU 15).

Our findings from a demanding group formation task with
frequent changes in head pose, speech, and intensity are
highly consistent with what has been found previously in
more constrained settings. In psychiatric interview, for in-
stance, we found that automated coding was highly con-
sistent with manual coding and revealed the same pattern
of state-related changes in depression severity over time
(Girard, Cohn, Mahoor, Mavadati, Hammal, & Rosenwald,
2013).

Results from error analysis revealed that several
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Table 2
Standardized Regression Coefficients Predicting the Likelihood of Correct Automated Annotation

Participant Variables Video Frame Variables
AU Female Nonwhite Yaw Pitch Roll Pixel

1 0.01 -0.84 -0.01 0.05 0.09 -0.35
2 -0.18 -0.53 -0.22∗ 0.02 -0.03 -0.27
6 -0.53∗ 0.19 -0.08 -0.03 0.05 0.05
7 -0.26 0.07 -0.11 -0.00 -0.01 -0.13

10 -0.23 0.39 -0.13 -0.01 0.01 0.02
11 -1.29 0.66 -0.23∗ -0.03 0.11 -0.23
12 -0.29 0.16 -0.23∗∗ 0.04 0.00 0.14
14 0.17 -0.08 -0.01 -0.02 0.06 -0.19∗
15 -0.73∗∗ -0.57 0.06 -0.11∗ 0.06 -0.18
17 -0.14 0.59∗ -0.03 -0.02 0.04 0.24
23 -0.24 0.15 -0.16∗∗ 0.02 0.04 0.16
24 -0.50 0.27 -0.19∗ 0.09 -0.00 0.24
Note: Standardized regression coefficients are in log-odds form. ∗ = p < .05 and ∗∗ = p < .01

participant-level factors influenced the probability of mis-
classification. Errors were more common for female than
male participants for AU 6 and AU 15, which may be due
to gender differences in facial shape, texture, or cosmetics-
usage. AU 15 was also more than twice as frequent in female
than male participants, which may have led to false nega-
tives for females. With this caveat in mind, the overall find-
ings strongly support use of automated FACS coding in sam-
ples with both genders. Regarding participant ethnicity, er-
rors were more common in White than Nonwhite participants
for AU 17. This finding may suggest that the facial texture
changes caused by AU 17 are easier to detect on darker skin.
Replication of this finding, however, would be important as
the number of Nonwhite participants was small relative to
the number of White participants (i.e., 12 Nonwhite vs. 68
White).

Several frame-level factors also influenced the probabil-
ity of misclassification. In the group formation task, most
head pose variation was within plus or minus 20◦ of frontal
and illumination was relatively consistent. Five AUs showed
sensitivity to horizontal change in head pose (i.e., yaw): the
probability of errors increased for AU 2, AU 11, AU 12, AU
23, and AU 24 as participants turned left or right and away
from frontal. Only one AU showed sensitivity to vertical
change in head pose (i.e., pitch): the probability of errors
increased for AU 15 as participants turned up or down and
away from frontal. No AUs showed sensitivity to rotational
change in head pose (i.e., roll). Finally, only one AU showed
sensitivity to change in illumination: the probability of errors
increased for AU 14 as mean pixel intensity increased. These
findings suggest that horizontal motion is more of a concern
than vertical or rotational motion. However, the overall relia-
bility results suggest that automated FACS coding is suitable
for use in databases with the amount of head motion that can

be expected in the context of a spontaneous social interac-
tion. For contexts in which larger pose variation is likely,
pose-dependent training may be needed (Guney, Arar, Fis-
cher, & Ekenel, 2013). Although the effects of mean pixel in-
tensity were modest, further research is needed in databases
with more variation in illumination.

Using only a few minutes of manual FACS coding each
from 80 participants, we were able to train classifiers that
repeatedly generalized (during iterative cross-validation) to
unseen portions of the data set, including unseen participants.
This suggests that the un-coded portions of the data set - over
30 minutes of video from 720 participants - could be auto-
matically coded via extrapolation with no additional manual
coding. Given that it can take over an hour to manually code
a single minute of video, this represents a substantial savings
of time and opens new frontiers in facial expression research.

A variety of approaches to AU detection using appearance
features have been pursued in the literature. One is static
modeling; another is temporal modeling. In static modeling,
each video frame is evaluated independently. For this reason,
it is invariant to head motion. Static modeling is the approach
we used. Early work used neural networks for static mod-
eling (Tian, Kanade, & Cohn, 2001). More recently, sup-
port vector machine classifiers such as we used have pre-
dominated (De la Torre & Cohn, 2011). Boosting, an iter-
ative approach, has been used to a lesser extent for classifi-
cation as well as for feature selection (G. Littlewort, Bartlett,
Fasel, Susskind, & Movellan, 2006; Zhu, De la Torre, Cohn,
& Zhang, 2011). Others have explored rule-based systems
(Pantic & Rothkrantz, 2000) for static modeling. In all, static
modeling has been the most prominent approach.

In temporal modeling, recent work has focused on incor-
porating motion features to improve performance. A popular
strategy is to use hidden Markov models (HMM) to tempo-
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rally segment actions by establishing a correspondence be-
tween AU onset, peak, and offset and an underlying latent
state. Valstar and Pantic (2007) used a combination of SVM
and HMM to temporally segment and recognize AUs. In sev-
eral papers, Qiang and his colleagues (Li, Chen, Zhao, & Ji,
2013; Tong, Chen, & Ji, 2010; Tong, Liao, & Ji, 2007) used
what are referred to as dynamic Bayesian networks (DBN)
to detect facial action units. DBN exploits the known cor-
relation between AU. For instance, some AUs are mutually
exclusive. AU 26 (mouth open) cannot co-occur with AU
24 (lips pressed). Others are mutually “excitatory.” AU 6
and AU 12 frequently co-occur during social interaction with
friends. These “dependencies” can be used to reduce uncer-
tainty about whether an AU is present. While they risk false
positives (e.g., detecting a Duchenne smile when only AU 12
is present), they are a promising approach that may become
more common (Valstar & Pantic, 2007).

The current study is, to our knowledge, the first to per-
form a detailed and statistically-controlled error analysis of
an automated FACS coding system. Future research would
benefit from evaluating additional factors that might influ-
ence classification, such as speech and AU intensity. The
specific influence of speech could not be evaluated because
audio was recorded using a single microphone and it was not
feasible to code speech and non-speech separately for each
participant. The current study also focused on AU detection
and ignored AU intensity.

Action units can vary in intensity across a wide range from
subtle, or trace, to very intense. The intensity of facial ex-
pressions is linked to both the intensity of emotional expe-
rience and social context (Ekman, Friesen, & Ancoli, 1980;
Hess, Banse, & Kappas, 1995; Fridlund, 1991), and is essen-
tial to the modeling of expression dynamics over time. In an
earlier study using automated tracking of facial landmarks,
we found marked differences between posed and sponta-
neous facial actions. In the former, amplitude and velocity of
smile onsets were strongly correlated consistent with ballistic
timing (Cohn & Schmidt, 2004). For posed smiles, the two
were uncorrelated. In related work, Messinger et al. (2009)
found strong covariation in the timing of mother and infant
smile intensity. While the present data provide compelling
evidence that automated coding systems now can code the
occurrence of spontaneous facial actions, future research is
necessary to test the ability to automatically code change in
AU intensity.

Some investigators have sought to measure AU intensity
using a probability or distance estimate from a binary classi-
fier. Recall that for an SVM, each video frame can be located
with respect to its distance from a hyper-plane that separates
positive and null instances of AU. When the value exceeds
a threshold, a binary classifier declares the AU is present.
When the value falls short of the threshold, the binary clas-
sifier rules otherwise. As a proxy for intensity, Bartlett and

others have proposed using either the distance measure or
a pseudo-probability based on that distance measure. This
method worked well for posed facial actions but not for spon-
taneous ones (Bartlett et al., 2006; Girard, 2014; Yang, Qing-
shan, & Metaxas, 2009). To automatically measure intensity
of spontaneous facial actions, we found that it is necessary
to train classifiers on manually coded AU intensity (Girard,
2014). In two separate data sets, we found that classifiers
trained in this way consistently out-performed those that re-
lied on distance measures. Behavioral researchers are cau-
tioned to be wary of approaches that use distance measures
in such a way.

Because classifier models may be sensitive to differences
in appearance, behavior, context, and recording environment
(e.g., cameras and lighting), generalizability of AU detection
systems from one data set to another cannot be assumed. A
promising approach is to personalize classifiers by exploit-
ing similarities between test and training subjects (Chu, De
la Torre, & Cohn, 2013; Chen, Liu, Tu, & Aragones, 2013;
Sebe, 2014). For instance, some subjects in the test set may
have similar face shape, texture, or lighting to subsets of sub-
jects in the training. These similarities could be used to op-
timize classifier generalizability between data sets. Prelimi-
nary work of this type has been encouraging. Using an ap-
proach referred to as a selective transfer machine, Chu et al.
(2013) achieved improved generalizability between different
data sets of spontaneous facial behavior.

In summary, we found that automated AU detection can
be achieved in an unscripted social context involving spon-
taneous expression, speech, variation in head pose, and in-
dividual differences. Overall, we found very strong session-
level reliability and moderate to strong frame-level reliabil-
ity. The system was able to detect AUs in participants it had
never seen previously. We conclude that automated FACS
coding is ready for use in research and applied settings,
where it can alleviate the burden of manual coding and en-
able more ambitious coding endeavors than ever before pos-
sible. Such a system could replicate and extend the exciting
findings of seminal facial expression analysis studies as well
as open up entirely new avenues of research.
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