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Abstract

Generative models (e.g., GANs and diffusion models) learn the underlying data
distribution in an unsupervised manner. However, many applications of interest
require sampling from a specific region of the generative model’s output space or
evenly over a range of characteristics. To allow efficient sampling in these scenarios,
we propose Generative Visual Prompt (PromptGen), a framework for distributional
control over pre-trained generative models by incorporating knowledge of arbitrary
off-the-shelf models. PromptGen defines control as an energy-based model (EBM)
and samples images in a feed-forward manner by approximating the EBM with
invertible neural networks, avoiding optimization at inference. We demonstrate how
PromptGen can control several generative models (e.g., StyleGAN2, StyleNeRF,
diffusion autoencoder, and NVAE) using various off-the-shelf models: (1) with
the CLIP model, PromptGen can sample images guided by text, (2) with image
classifiers, PromptGen can de-bias generative models across a set of attributes,
and (3) with inverse graphics models, PromptGen can sample images of the same
identity in different poses. (4) Finally, PromptGen reveals that the CLIP model
shows “reporting bias” when used as control, and PromptGen can further de-bias
this controlled distribution in an iterative manner.1

1 Introduction

Generative models learn the underlying high-dimensional data distribution and have achieved promis-
ing performance on image synthesis [4, 73, 35, 21]. Though being well praised, they still face two
main criticisms. First, since generative models are typically trained in an unsupervised way, they
lack controllability, meaning that it is unclear how to sample from a specific region of the space.
Second, generative models are prone to inherit the imbalance and bias of training data [58, 30]. For
instance, StyleGAN2 is more likely to produce images of white individuals, see Figure 1(e). Previous
works have studied these challenges separately, and typical methods include editing of “style” codes
[22, 66, 30] and explicit conditions [41, 67]. However, these methods are either model-dependent
(i.e., requiring a well-structured style space) or label-intensive (i.e., requiring all training samples to
be labeled for explicit conditions), limiting their generality and practical use.

To address the above challenges, this paper advocates a unified formulation, distributional control
of generative models, which enables controllability by incorporating the knowledge of off-the-shelf
models (e.g., CLIP [56], classifiers, or inverse graphics models [16]). Based on this unified view, we
propose to learn distributions in the latent space of a pre-trained generative model while keeping the
pre-trained weights fixed. Given its conceptual similarity to prompt learning [40, 83, 84, 29], we term
our framework as Generative Visual Prompt (PromptGen). PromptGen requires no training data,
and the only supervision comes from off-the-shelf models that help define the control. Specifically,
PromptGen allows the user to define controls using an energy-based model (EBM) approximated

1Our code is available at https://github.com/ChenWu98/Generative-Visual-Prompt.
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(b) race-debiased (c) gender-debiased "w/o makeup"(a) "baby"-controlled

(e) Pre-trained StyleGAN2

CLIP

Race Classifier

Pose

(f) "w/o makeup"-controlled(d) pose-controlled

Inverse Graphics Model

CLIP Gender Classifier

A photo of a person without makeup

A photo of a baby

Figure 1: PromptGen uses different off-the-shelf models (e.g., CLIP [56], inverse graphics models,
and classifiers) to control the output distribution of a pre-trained and fixed generative model (e.g.,
StyleGAN2). Colored boxes (e.g., the blue CLIP) indicate the control. See the text for details.

by an invertible neural network (INN). Unlike methods that require optimization at inference in
EBM sampling [47, 14, 43, 50], PromptGen samples images in a feed-forward manner, which is
highly efficient. Moreover, PromptGen stands alone at inference, meaning that we can discard the
off-the-shelf models, which define the control, after training.

We illustrate the benefits of PromptGen with several experiments. Figure 1 demonstrates our main
findings with StyleGAN2 trained on FFHQ [34] without any labels, while we also show results for
StyleNeRF [21], diffusion autoencoder [55], and NVAE [73] in Section 4. Figure 1(a) illustrates how
we can sample from StyleGAN2 based on text descriptions such as “a photo of a baby”. Figure 1(b)
shows that PromptGen can leverage a race classifier (potentially trained on a different dataset) to
sample uniformly across all races, de-biasing the pre-trained StyleGAN2. Figure 1(d) illustrates that
PromptGen can generate images of the same identity in different poses, guided by a pose regressor.

Finally, it is worth pointing out that PromptGen not only offers generality for algorithmic design
and modularity for control composition, but also enables iterative controls when some controls are
contingent on others. For instance, one may train a text-controlled distribution and then de-bias this
distribution. To achieve this, we view the composition of the INN and the generative model as a new
“generative model” to be controlled. Figure 1(f) illustrates that PromptGen reveals “reporting bias” of
the CLIP model [56], where “without makeup” is – perhaps surprisingly – positively correlated with
female, and Figure 1(c) shows that PromptGen can further mitigate this bias with iterative control.

Table 1: Comparison between methods.

StyleFlow [1] PPGM [47] / Guided PromptGenLACE [50] DDPM [10]

Arbitrary control (e.g., CLIP) 7 X X X
Low-dimensional latent space X X 7 X
Stands alone at inference X 7 7 X
Feed-forward (i.e., no inference-time optim.) X 7 7 X
Iterative distributional control 7 7 7 X

2 Related Work

Over the past few years, generative models have gained the ability to generate images with high visual
quality. A few of the most widely used methods include generative adversarial networks (GANs) [18],
VAE [38], invertible neural networks [11, 12], and diffusion models [24, 69]. In particular, generative
models trained on large amounts of unlabeled data, e.g., BigGAN [4], StyleGANs [34, 35, 33, 62],
Glow [37], and diffusion models [49, 10], achieve promising image synthesis results.

Despite their success, controllability and de-biasing are still two fundamental challenges generative
models face. For controllability, existing methods include explicit conditioning at training [41, 67]
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Figure 2: Overview of Generative Visual Prompt (PromptGen). Given a pre-trained generative model
G and a control C, we learn a distribution p(z|C) in G’s latent space, while keeping G fixed. Each
control C can have multiple components, e.g., C = {text = “a photo of a baby”, gender = male}.
PromptGen views the composition G ◦ fθ as a new “generative model” for iterative control.

or local editing of the learned representation, e.g, “style” codes [1, 54, 44, 66, 78]. For de-biasing,
existing methods include local editing of “style” codes [58, 30] and importance sampling for either
training [20] or inference [28]. Existing works study these problems separately, each requiring a
specific design for the task studied. On the contrary, PromptGen is a unified framework for arbitrary
controls defined by off-the-shelf models. The benefits of unifying tasks have been shown by a recent
trend of works in multiple research areas across vision and language [57, 46, 61, 79, 59]. Moreover,
one can fine-tune generative models [17] for domain adaptation, which is orthogonal to PromptGen:
since PromptGen maps a generative model to another generative model (Algorithm 1), fine-tuning
can be applied before or after PromptGen training. We leave this exploration to future studies.

Previous methods usually sample from EBM [39] with Markov Chain Monte Carlo (MCMC) [71, 74,
14, 19, 13, 43]. Among them, plug-and-play generative models (PPGMs) [47] and LACE [50] define
latent-space EBMs. However, MCMC requires inference-time optimization, which is inefficient and
requires the off-the-shelf models to be available at inference; this is also the criticism for diffusion
models, regardless of being gradient-guided [49, 65] or not [24, 25, 48]. In contrast, PromptGen
achieves efficient, feed-forward sampling. Table 1 shows a comparison with previous methods. Our
INN training is similar to that proposed by [52] to sample from physical systems, which is later used
by [76] to solve inverse problems with two composed INNs. Notably, [52] and [76] do not leverage a
low-dimensional latent space, and [76] requires training a separate model for each image sample. In
this paper, we use INN to model arbitrary EBMs for various generative models.

3 Method

Figure 2 illustrates our PromptGen framework. To begin, the user selects a pre-trained generative
model G. PromptGen then lets the user specify a control C as an energy-based model (EBM) p(z|C).
We train an INN fθ to approximate p(z|C). PromptGen views the functional composition G ◦ fθ as a
new generative model and can perform iterative control. Algorithm 1 describes the overall procedure.

Algorithm 1: Generative Visual Prompt (PromptGen)

Input: Generative model G : Rd → X
repeat

1. Input: control C of the current iteration
2. Define an EBM p(z|C) for C (Section 3.1)
3. Train an INN fθ : Rd → Rd to approximate p(z|C) (Section 3.2)
4. G← G ◦ fθ

until user stops the iteration
return G : Rd → X

3.1 Latent-Space EBM for Distributional Control

The plug-and-play generative model [47] was first proposed to use a latent-space EBM for controllable
image synthesis. If a fixed generative model is used, then theoretically, any image-space EBM can be
viewed as a latent-space EBM, as shown by [19] and [50]. We define the latent-space EBM following
similar formulation as [47, 19, 50], with some new energy functions. We then extend the formulation
to incorporate the moment constraint [7], which was adopted for language modeling [36], but unlike
[36], we define the moment constraint in the latent space to accommodate generative vision models.
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We define a control C as M independent properties {y1, . . . ,yM}, e.g., y1 can be a text description
and y2 can be an attribute. The controllability can be defined as the EBM (detailed in Appendix B.1)

p(x|C) = px(x)e
−EC(x)

ZX
, EC(x) =

M∑
i=1

λiEi(x,yi), ZX =

∫
x′
px(x

′)e−EC(x
′)dx′, (1)

which reweights the image prior px(x) with energy EC(x), where images with smaller energy are
preferred. Using a pre-trained generative model G : Rd → X that maps a latent code z to an image
x, the image prior px(x) is defined by sampling a latent code z from pz = N (0, I) and mapping it
to x = G(z). Appendix B.2 shows that this EBM is equivalent to the latent-space EBM

p(z|C) = pz(z)e
−EC(G(z))

Z
, EC(x) =

M∑
i=1

λiEi(x,yi), Z =

∫
z′
pz(z

′)e−EC(G(z′))dz′. (2)

Latent-space EBM allows us to use any off-the-shelf model to specify the control. The following are
some examples that are discussed in this paper (explained in Appendix B.1):

Classifier energy: Given a classifier P (·|x) and the target class a that we want to sample images
from, we define the classifier energy as Eclassifier(x, a) = − logP (a|x).
CLIP energy: Using the CLIP model [56], we define the CLIP energy as the cosine distance between
the embeddings of the image and the text t, averaged over L differentiable augmentations [82, 44]:

ECLIP(x, t) =
1

L

L∑
l=1

(
1− cos

〈
CLIPimg

(
DiffAugl(x)

)
,CLIPtext(t)

〉)
. (3)

Inverse graphics energy: Given an inverse graphics model, fX→P , which infers image parameters
(e.g., pose and expression), and the target parameters ρ, we define the inverse graphics energy as

Einv-graphics(x,ρ) = d
〈
fX→P(x),ρ

〉2
, (4)

where d〈·, ·〉 is the geodesic distance between the inferred parameters and the target parameters.

Moment constraint: Some controls cannot be directly defined by off-the-shelf models, and the
moment constraint [7, 36] is one of them. Given a mapping γ : X → RK (e.g., γ can be a classifier
that outputs the probability simplex), the moment constraint defines the target distribution p(x|C) as

p(x|C) = argmin
p(x|C)

DKL(p(x|C)‖px(x))︸ ︷︷ ︸
Deviation from the pre-trained distribution

, s.t. Ex∼p(x|C)
[
γ(x)

]
= µ︸ ︷︷ ︸

Moment constraint

, (5)

where µ is the user-specified vector. For example, if we want to generate images that are uniformly
distributed across races, we may use a race classifier as γ and define µ =

(
|A|−1, . . . , |A|−1

)
where

A is the set of races. In this paper, we generalize the moment constraint to the latent space, and
approximate the above objective as (detailed in Appendix B.6):

p(z|C) =
pz(z) exp

(
β̂>γ

(
G(z)

))
Z

, Z =

∫
z′
pz(z

′) exp
(
β̂>γ

(
G(z′)

))
dz′, (6)

β̂ = argmin
β

E
z(1),...,z(N) i.i.d.∼ pz(z),x(j)=G(z(j))

∥∥∥∥
∑N
j=1 exp

(
β>γ(x(j))

)
γ(x(j))∑N

j′=1 exp
(
β>γ(x(j′))

) − µ
∥∥∥∥2
2

. (7)

3.2 Approximating EBM with Invertible Neural Network

Given the functional form of the EBM p(z|C), our next step is to approximate it with an efficient
sampling network. To achieve this, we train a distribution pθ(z) that minimizes the KL divergence
DKL(pθ(z)‖p(z|C)). Estimating DKL(pθ(z)‖p(z|C)) requires easily sampling z ∼ pθ and tractably
computing pθ(z). Inspired by [52], we model pθ with an INN fθ that defines a bijection z = fθ(ε),
which has two merits besides the invertibility: (1) one can easily sample z by sampling ε ∼ N (0, I)
and mapping it to z = fθ(ε), and (2) pθ(z) has a closed-form solution:

log pθ(z) = logN (ε|0, I)− log |det(∂fθ
∂ε

)|, z = fθ(ε). (8)
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Figure 3: Illustration for Algorithm 2. In the forward pass (solid curves), we sample ε ∼ N (0, I),
map ε to latent code z = fθ(ε) with an INN fθ, and map z to an image x = G(z) with a fixed
generative model G. Dashed curves show the gradients. Details are provided in Section 3.2.

Algorithm 2: Approximating Latent-Space EBM with INN
while not converged do

1. Sample ε ∼ N (0, I)
2. Map ε to latent code z = fθ(ε)
3. Map z to an image x = G(z)

4. Optimize θ with gradient∇θ
(
− log |det(∂fθ

∂ε
)| − log pz(z) + EC(x)

)

Based on these properties of INN, we can rewrite our KL divergence objective DKL(pθ(z)‖p(z|C))
as (full derivations in Appendix B.3) the following form:

DKL(pθ(z)‖p(z|C)) = Ez∼pθ(z),x=G(z)

[
log

pθ(z)

pz(z)e−EC(x)/Z

]
= Eε∼N (0,I),z=fθ(ε),x=G(z)

[
− log |det(∂fθ

∂ε
)| − log pz(z) + EC(x)

]
−HN (0,I) + logZ.

(9)

Since HN (0,I) and logZ are independent of θ, our training objective becomes

argmin
θ

Eε∼N (0,I),z=fθ(ε),x=G(z)

[
− log |det(∂fθ/∂ε)|︸ ︷︷ ︸

Ljac

− log pz(z)︸ ︷︷ ︸
Llatent-prior

+ EC(x)︸ ︷︷ ︸
Lenergy

]
. (10)

Figure 3 gives an illustration of our process, and Algorithm 2 describes the algorithmic details.

PromptGen in a class-embedding space (Figure 5(e)) Previous works [4, 62] have shown that
class conditioning boosts generative models’ performances on ImageNet [60]. Specifically, class-
conditioned generative models map a latent code z and a class embedding y to x = G(z,y). To
extend PromptGen to these models, we train an INN hθ to map ξ ∼ N (µ,σ2I) to y = hθ(ξ), where
µ and σ are the mean and standard deviation of G’s class embeddings. The motivation for defining
the distribution of ξ asN (µ,σ2I) but notN (0, I) is that we want the learned INN hθ to be volume-
preserving, which is easier to train. The training objective is to minimize DKL(pθ(z,y)‖p(z,y|C)),
which is equivalent to (full derivations in Appendix B.4)

argmin
θ

Eε∼N (0,I),ξ∼N (µ,σ2I),z=fθ(ε),y=hθ(ξ),x=G(z,y)

[
− log |det(∂fθ

∂ε
)| − log pz(z)

− log |det(∂hθ
∂ξ

)| − log py(y) + EC
(
x
)]
,

(11)

where py(y) = N (y|µ,σ2I) is the estimated class-embedding distribution.

PromptGen with conditional INN To generalize the control to continuous values, e.g., the scene
parameters ρ in Eq. (4), we condition the INN on ρ. The condition is modeled by replacing z = fθ(ε)
with z = fθ(ε,ρ). Space limited, we provide details and derivations in Appendix B.5. This extension
results in a similar architecture to StyleFlow [1], but StyleFlow [1] uses MLE training on image-label
pairs and is only applicable to explicit condition, which is not capable of modeling EBMs. When the
condition is modeled by the equivariant operations proposed by [77], PromptGen also satisfies the
homomorphism property [77] in the latent space.
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(a) StyleCLIP [54] (b) StyleGAN2-NADA [17] (c) PromptGen (ours) w/ StyleGAN2

Figure 4: Image synthesis based on text description, guided by the CLIP model. As the pre-trained
generative model, we use StyleGAN2 trained on FFHQ 10242 [34] with truncation ψ = 0.7. The text
description used in this experiment is a photo of a baby. StyleCLIP requires optimization at inference,
while StyleGAN2-NADA and PromptGen do not. All images are resized for visualization.

(a) PromptGen w/ StyleNeRF (text:
a photo of a baby)

(b) PromptGen w/ NVAE (text: a
photo of a baby)

(c) PromptGen w/ StyleGAN2 (text:
a photo of a British shorthair)

(d) PromptGen w/ DiffAE (baby) (e) PromptGen w/ BigGAN trained on ImageNet 5122

Figure 5: PromptGen is applicable to different generative models in various domains. Figure 5(a),
Figure 5(d), and Figure 5(b) are PromptGen applied to StyleNeRF [21], diffusion autoencoder [55],
and NVAE [73]. Figure 5(c) is PromptGen applied to StyleGAN2 [35] trained on AFHQ-Cats [6].
Figure 5(e) is the extension to the embedding space of BigGAN [4] on ImageNet [60]. All images
are resized for visualization. See Appendix C for results on more datasets and text descriptions.

4 Experiments

This section describes the experimental validation of PromptGen. See Appendix A for experiments
on synthetic data and Appendix C, D, E, and F for additional experiments on images and 3D meshes.
Additional experimental details are provided in Appendix B.8.

4.1 Image Synthesis based on Text Description

This experiment illustrates the capability of PromptGen to sample images from a generative model
driven by a text description t using the pre-trained CLIP model [56] (the ViT-B/32 version). We used
the CLIP energy from Eq. (3), with text descriptions such as a photo of a baby.

Figure 4 shows a comparison between PromptGen and two previous CLIP-guided image generation
methods, StyleCLIP [54] and StyleGAN2-NADA [17]. We observe that PromptGen generates diverse
and high-quality images of babies, while StyleCLIP struggles in controllability and image quality, and
StyleGAN2-NADA generates baby-like adults.2 These results show that (1) locally editing the latent
code (i.e., StyleCLIP) is not always an effective method for controlling generative models (e.g., not all
images’ latent code can be locally edited into a baby); (2) domain adaptation (i.e., StyleGAN-NADA)
is not effective in seeking modes in a generative model. Figure 5(a), Figure 5(b), and Figure 5(d) show
how PromptGen applies to StyleNeRF [21], NVAE [73], and diffusion autoencoder (DiffAE; [55]).
Although these generative models are all trained on FFHQ, baby images sampled from them have
distinct characteristics. Figure 5(c) shows the ability of PromptGen to generate cats of a particular
species. Figure 5(e) shows the extension (Section 3.2) of our PromptGen to the class-embedding space
of BigGAN [4], a class-conditional GAN trained on ImageNet [60]. We observe that PromptGen
helps BigGAN generate images with complex text descriptions, which are out of BigGAN’s training
image distribution; however, the diversity seems to be limited in this extension.

2Since we care about distributions, none of the images in this paper are cherry- or lemon-picked.
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StyleGAN2 PromptGen (λ = 1) PromptGen (λ = 2)
Model

0.0

0.2

0.4

0.6

0.8

Pr
op

or
ti

on

Race
White
Black
Latino Hispanic
East Asian

Southeast Asian
Indian
Middle Eastern

(c) Race dist. (MetFaces)

Figure 6: With the moment constraint, PromptGen de-biases StyleGAN2 (on FFHQ and MetFaces
10242, truncation ψ = 0.7). See Appendix D for image samples and Table 5 for quantitative results.

Table 2: Comparison with baselines for de-biasing binary attributes and their correlations. Following
[30], we use classifiers on CelebA [45]. Baseline performances are copied from [30]. PromptGen has
competitive performance, even in the cases where FairStyle achieves nearly perfect performance.

FFHQ (binary attributes)

Dgender
KL ↓ Deyeglasses

KL ↓ Dblond hair
KL ↓ Dage+gender

KL ↓ Dage+eyeglasses
KL ↓ Dgender+eyeglasses

KL ↓
FFHQ (real data) 0.015 0.186 – 0.246 0.355 0.242
StyleGAN2 [35] 0.018 0.180 – 0.279 0.384 0.250
StyleFlow [1] 0.023 0.061 – 0.214 0.162 0.121
FairGen [70] 4.21 ×10−4 7.07 ×10−4 – 0.0373 0.0330 0.00185
FairStyle [30] 3.20 ×10−7 0 – 0.0257 0.0157 0.000241

PromptGen (ours) 1.71 ×10−5 1.72 ×10−5 0.0008 0.000558 0.000415 0.000628

4.2 De-Biasing Pre-Trained Generative Models

An important problem in generative models is to generate fair distributions w.r.t a set of attributes of
interest. For instance, Figure 6(a) shows that StyleGAN2 generates images with bias across races and
ages. PromptGen de-biases StyleGAN2 models trained on FFHQ 10242 and MetFaces 10242 [32] in
terms of categorical attributes, using the moment constraint defined in Eq. (5) and Eq. (6). As control,
we used a classifier trained on FairFace 2242 [31] as γ. We defined µ =

(
|A|−1, . . . , |A|−1

)
, where

A is the set of races. Similar to the energy weights λi defined in Eq. (2), we propose to rescale the
trained β̂ as λβ̂. Figure 6 shows that PromptGen de-biases the race and age effectively.

Existing de-biasing baselines consider binary attributes [30]. For a fair comparison with them, we
adopted their setting to use binary classifiers trained on CelebA [45] for de-biasing and evaluation.
Since classifiers trained on CelebA also suffer from the spurious correlation between attributes, we
did not use the moment constraint for this experiment. Instead, since PromptGen allows conditional
image generation with the classifier energy, we generated the same number of samples conditioned on
each attribute or attribute combination. Table 2 shows that PromptGen has competitive performance
on de-biasing for attributes and attribute combinations.

4.3 Pose-Guided Face Synthesis

With an inverse graphics model, PromptGen can control the pose of faces generated by StyleGAN2.
We used the DECA model [16], which infers the parameters of FLAME [42], a parametric facial
graphics model. We set ρ ∈ SO(3) as FLAME’s three neck poses and used the conditional INN
extension introduced in Section 3.2. To enable generating different poses of the same identity (ID),
we propose ID energy using the IR-SE50 model [8]. Specifically, given a canonical pose ρ0, we
define z0 = fθ(ε,ρ0), and the ID energy is defined as (detailed in Appendix B.7)

EID(x0,x) = 1− cos
〈
R(x0), R(x)

〉
, x0 = G(z0),x = G(z), (12)

where R is the IR-SE50 model [8] that computes face embeddings. Figure 7 shows that PromptGen
generates faces of the same ID in different poses, even without being explicitly trained with poses as
conditions. We computed the FID score [23] of each model using Clean-FID [53]; following [35],

7



Figure 7: Using inverse graphics model DECA [16] and scene parameters ρpose ∈ SO(3), PromptGen
controls the pose of StyleGAN2 while preserving the identity. All images are resized for visualization.

Table 3: Pose-controlled face generation. In this experiment, PromptGen uses StyleGAN2 as the
pre-trained generative model. Results for GRAF [64], pi-GAN [5], GIRAFFE [51], and StyleNeRF
[21] are from [21]; results for DiscoFaceGAN (DFG) [9] and GAN-Control [67] are from [67].

StyleGAN2 GRAF pi-GAN GIRAFFE StyleNeRF DFG GAN-Control PromptGen

Resolution 10242 2562 2562 2562 10242 2562 5122 10242
Pose 7 X X X X X X X
FID↓ 3 71 85 35 8 13 6 4
Dist. w/ same ID↓ – – – – – 0.83 0.68 0.45
Dist. w/ diff. ID – – – – – 1.73 1.90 1.37

we did not use the truncation trick when computing the FID score. Table 3 shows that PromptGen
outperforms existing models in terms of the FID score. Following [67], we then reported the average
IR-SE50 [8] embedding distances for images with the same ID and with different IDs. Results show
that PromptGen achieves the best ID preservation, with a slight sacrifice of ID diversity.

4.4 Decomposing Complex Control via Energy Composition

Energy composition EC(x) =
∑M
i=1 λiEi(x,yi) allows us to decompose controls into simple ones.

We show that y1 = photo of a bald black man with beard (λ1 = 6000) is not successful (Figure 8(a));
by decomposing it as y1 = photo of a bald man (λ1 = 1500), y2 = photo of a black man (λ1 =
3000), and y3 = photo of a man with beard (λ1 = 1500), we have better control (Figure 8(b)).

(a) CLIP with one complex sentence (b) CLIP with three simple sentences

Figure 8: Decomposing complex controls (e.g., photo of a bald black man with beard) into simpler
ones improves control performance. See details in Section 4.4.

4.5 Iterative Distributional Control via Functional Composition

This section discusses an interesting bias that PromptGen reveals about the CLIP model. Figure 9(a)
shows images generated by PromptGen (with StyleGAN2) with the CLIP model and the text de-
scription a photo of a person without makeup, where more females are generated than males. This
bias should not be attributed to image pre-training data since images contain a bias in the opposite
direction, i.e., men are less likely to have makeup. We argue that this bias should be explained by
CLIP having learned a “reporting bias” in vision-language pre-training data: people are more likely
to say “a person without makeup” when the person is a female (detailed analysis in Appendix F).

Besides revealing the above “reporting bias”, PromptGen can also mitigate this bias via an iterative
control, enabled by the functional composition in Algorithm 1. Specifically, in the second iteration,
we de-biased the gender distribution of G ◦ fθ instead of G, where fθ is the INN learned for the text
control. For de-biasing, we used the moment constraint with β̂ trained for G ◦ fθ . Figure 9(b) shows
that females and males are uniformly distributed after the moment constraint in the second iteration.
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(a) PromptGen (iteration 1). Image synthesis with
text description a photo of a person without makeup.
Gender distribution: female: 81.6%; male: 18.4%.

(b) PromptGen (iteration 2). Gender de-biasing (λ =
2) for the distribution learned in iteration 1. Gender
distribution: female: 49.3%; male: 50.7%.

Figure 9: A curious case of the CLIP model: with description a photo of a person without makeup,
PromptGen generates more female images than male, showing that CLIP learns a “reporting bias”.
Besides revealing this “reporting bias”, PromptGen can also mitigate this bias via an iterative control,
allowing us to de-bias the text-controlled distribution. All images are resized for visualization.

4.6 Inference Latency

We compared our PromptGen and the plug-and-play generative model (PPGM) [47] in terms of the
inference latency. PPGM uses Langevin dynamics [74] to optimize over the latent space at inference,
while PromptGen samples images in a feed-forward manner. In this experiment, we used PPGM and
our PromptGen to approximate the same EBM with CLIP energy. Inference times were estimated on
an NVIDIA RTX A4000 GPU. Table 4 shows that our PromptGen has the highest performance and
efficiency. Compared to our PromptGen, PPGM requires 100× inference time to achieve comparable
results. Moreover, learning fθ in PromptGen requires training-time optimization, and this amortized
optimization is useful when one wants to reuse a controlled distribution many times.

Table 4: Comparison between PromptGen and PPGM, when approximating the same EBM with CLIP
energy. n is the number of inference-time optimization steps used by PPGM. All models used Style-
GAN2 as the pre-trained generative model. The text descriptions are a photo of a {baby, boy, girl}.

PPGM (n = 10) PPGM (n = 50) PromptGen (ours)

CLIP energy (baby)↓ 0.7327 0.7134 0.7038
CLIP energy (girl)↓ 0.7257 0.7184 0.7199
CLIP energy (boy)↓ 0.7263 0.7114 0.7081
Inference time per sample (sec.)↓ 4.4 21.5 0.2
Back-propagation through CLIP at inference 10 50 0
When is it equal to the EBM? n→∞ n→∞ DKL(pθ(z)‖p(z|C)) = 0

5 Conclusions and Future Work

This paper proposes PromptGen, a unified framework to learn latent distributions for distributional
control of pre-trained generative models. PromptGen leverages the knowledge of various off-the-shelf
models and, unlike previous methods, it does not require the availability of these models at inference.
PromptGen can sample images in a feed-forward manner, which is more efficient than methods
that require optimization at inference. PromptGen offers the generality for algorithmic design and
modularity for control composition, and it also enables iterative controls. Experiments validate that
PromptGen applies to various generative models (StyleGAN2, StyleNeRF, NVAE), control types
(continuous, discrete, and moment constraint), off-the-shelf models (CLIP, classifiers, and inverse
graphics models), and data domains (faces, churches, animals, ImageNet, and landscapes).

Limitation and future work: We provide an error analysis in Appendix F and a discussion on
societal impact in Appendix G. PromptGen is restricted by the pre-trained generative model’s coverage
[3, 27]. PromptGen focuses on mode-seeking and -reweighting instead of domain adaptation, and it is
possible to combine PromptGen and domain adaptation of generative models [17]. Also, PromptGen
depends on the off-the-shelf models that provide knowledge about the control (Appendix F). In
subsequent work, it can be beneficial to explore how to learn energy functions [15, 26] (besides our
moment constraint used for de-biasing), which may provide fine-grained control with less bias.
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Figure 10: PromptGen on synthetic data. (a) The real distribution is a Gaussian mixture distribution
biased towards one mode. We derive a closed-form fair classifier. (b) A GAN trained on this real
distribution. (c) With the fair classifier as control, PromptGen learns a distribution concentrated in
a specific region. (d) We derive the moment constraint following Section 3.1 and Section 4.2, and
PromptGen learns to up-weight the under-represented regions.

A PromptGen on Synthetic Data

We demonstrate the behavior of our PromptGen with two-dimensional synthetic data, using GAN as
the generative model. This synthetic experiment is illustrated in Figure 10. Specifically, we created
a “real” distribution that is a Gaussian mixture distribution biased towards one mode. We derive a
closed-form fair classifier based on this distribution, detailed in the purple block in Figure 10. When
a GAN is trained to approximate this distribution, its outputs are biased towards the over-represented
mode, as shown by Figure 10(b). Figure 10(c) illustrates the controllability experiment: using the fair
classifier as control, PromptGen learns a distribution concentrated in a specific region of the output
space. Figure 10(d) illustrates the de-biasing experiment: using the moment constraint (Section 3.1
and Section 4.2), PromptGen upweights the under-represented regions of the output space.

B Method Details and Derivations

B.1 Controllability as EBM

In Section 3, we defined a control C asM independent properties {y1, . . . ,yM}. For example, y1 can
be a text description, and y2 can be an attribute. In this part, we first elaborate on why controllability
can be formed as EBMs in Eq. (1). We then provide concrete examples of the distributions derived
from different energy functions defined in Section 3.1.

We denote the image prior as px(x), the only distribution that can be estimated from data when
labels for the control are not provided during generative model pre-training. Given the control
C = {y1, . . . ,yM}, we resort to Bayes’ theorem to rewrite the conditional distribution p(x|C) as

p(x|C) ∝ px(x)p(C|x) (13)

= px(x)p(y1|x)
M∏
i=2

p(yi|x,y<i) (14)

= px(x)

M∏
i=1

p(yi|x) (independence assumption). (15)

For Eq. (15) to be well-defined, we need to define p(yi|x) for each yi. In order to incorporate the
knowledge of arbitrary off-the-self models (besides image classifiers), we define each p(yi|x) as

p(yi|x) =
exp(−λiEi(x,yi))

Zi
, Zi =

∫
y′
i

exp(−λiEi(x,y′i))dy′i. (16)
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Eq. (16) says that p(yi|x) is proportional to the exponential of an energy function Ei(x,yi), where
yi with lower energy has higher density or mass. Note that Eq. (16) defines a distribution over all
possible values of yi instead of all possible values of x. Combining Eq. (15) and Eq. (16), we have

p(x|C) = px(x)e
−EC(x)

ZX
, EC(x) =

M∑
i=1

λiEi(x,yi), ZX =

∫
x′
px(x

′)e−EC(x
′)dx′, (17)

which is the same equation as Eq. (1).

In the following, we use Eq. (16) to derive the distributions from the classifier energy, CLIP energy,
and inverse graphics energy defined in Section 3.1.

Classifier energy: Given a classifier P (·|x) and the target class a, we define the classifier energy as
Eclassifier(x, a) = − logP (a|x). Using Eq. (16), we arrive at:

pclassifier(a|x) =
exp(λclassifier logP (a|x))∑
a′ exp(λclassifier logP (a′|x))

=
P (a|x)λclassifier∑
a′ P (a

′|x)λclassifier
, (18)

which is equivalent to a temperature-adjusted distribution of the original classifier.

CLIP energy: Using Eq. (16), the CLIP energy in Eq. (3) is equivalent to

pCLIP(t|x) ∝ exp

(
− λCLIP

L

L∑
l=1

(
1− cos

〈
CLIPimg

(
DiffAugl(x)

)
,CLIPtext(t)

〉))
. (19)

Inverse graphics energy: Using Eq. (16), the inverse graphics energy in Eq. (4) is equivalent to

pinv-graphics(ρ|x) ∝ exp(−λinv-graphicsd
〈
fX→P(x),ρ

〉2
). (20)

If the geodesic distance d
〈
·, ·
〉

is the Euclidean distance, then pinv-graphics(ρ|x) is a Gaussian distribu-
tion whose mean is ρ and whose variance depends on the hyperparameter λinv-graphics; if the geodesic
distance d

〈
·, ·
〉

is the spherical distance (e.g., the distance between pose parameters defined on a unit
sphere), then pinv-graphics(ρ|x) is a vMF distribution.

B.2 Equivalence between Image-Space EBM and Latent-Space EBM

Proposition 1. Define x ∼ px(x) as z ∼ pz(z),x = G(z) and p(x|C) as z ∼ p(z|C),x = G(z),
where p(z|C) is defined as the following EBM:

p(z|C) = pz(z)e
−EC(G(z))

Z
, EC(x) =

M∑
i=1

λiEi(x,yi), Z =

∫
z′
pz(z

′)e−EC(G(z′))dz′. (21)

We have

p(x|C) = px(x)e
−EC(x)

ZX
, ZX =

∫
x′
px(x

′)e−EC(x
′)dx′. (22)

In spirit, our proof follows the proof in [50], which follows [19]. The difference between our proof
and that in [50] is that we derive p(x|C) from p(z|C) while they derived p(z|C) from p(x|C).

Proof. Based on Lemma 1 in [19] and Lemma 1 in [50], p(z|C) is equivalent to rejection sampling
with proposal distribution pz(z) and acceptance probability

r(z) =
e−EC(G(z))

MC · Z
, where ∀z,MC >

e−EC(G(z))

Z
. (23)

Since p(x|C) is defined as z ∼ pz(z|C),x = G(z), p(x|C) is equivalent to rejection sampling with
proposal distribution pz(z),x = G(z) and acceptance probability

r(x) =
e−EC(x)

MC · Z
. (24)
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Note that the above proposal distribution z ∼ pz(z),x = G(z) is the same as px(x) by definition.
Based on Lemma 1 in [19] and Lemma 1 in [50], we arrive at:

p(x|C) = px(x)r(x)

Ex′∼px(x′)[r(x′)]
(25)

=
px(x)e

−EC(x)/(MC · Z)
Ex′∼px(x′)[e−EC(x′)/(MC · Z)]

(26)

=
px(x)e

−EC(x)

Ex′∼px(x′)[e−EC(x′)]
(27)

=
px(x)e

−EC(x)

ZX
, ZX =

∫
x′
px(x

′)e−EC(x
′)dx′. (28)

B.3 Derivation of Eq. (9): Approximating EBM with INN

The full derivation of Eq. (9) is given by:

DKL(pθ(z)‖p(z|C))

= Ez∼pθ(z)
[
log

pθ(z)

p(z|C)

]
= Ez∼pθ(z),x=G(z)

[
log

pθ(z)

pz(z)e−EC(x)/Z

]
= Eε∼N (0,I),z=fθ(ε),x=G(z)

[
logN (ε|0, I)− log |det(∂fθ

∂ε
)|

− log pz(z) + EC(x) + logZ
]

= Eε∼N (0,I),z=fθ(ε),x=G(z)

[
− log |det(∂fθ

∂ε
)| − log pz(z)

+ EC(x)
]
−HN (0,I) + logZ.

(29)

B.4 Derivation of Eq. (11): Extension to Generative Models with a Class-Embedding Space

The full derivation of Eq. (11) is given by:

DKL(pθ(z,y)‖p(z,y|C))

= E(z,y)∼pθ(z,y)

[
log

pθ(z,y)

p(z,y|C)

]
= E(z,y)∼pθ(z,y),x=G(z,y)

[
log

pθ(z,y)

pz,y(z,y)e−EC(x)/Z

]
= E(z,y)∼pθ(z,y),x=G(z,y)

[
log

pθ(z,y)

pz(z)py(y)e−EC(x)/Z

]
(z and y are independent)

= Eε∼N (0,I),ξ∼N (µ,σ2I),z=fθ(ε),y=hθ(ξ),x=G(z,y)

[
logN (ε|0, I)− log |det(∂fθ

∂ε
)|

+ logN (ξ|µ,σ2I)− log |det(∂hθ
∂ξ

)| − log pz(z)− log py(y) + EC(x) + logZ
]

= Eε∼N (0,I),ξ∼N (µ,σ2I),z=fθ(ε),y=hθ(ξ),x=G(z,y)

[
− log |det(∂fθ

∂ε
)| − log |det(∂hθ

∂ξ
)|

− log pz(z)− log py(y) + EC(x)
]
−HN (0,I) −HN (µ,σ2I) + logZ.

(30)
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Algorithm 3: Extension of Algorithm 2 to Conditional INN
while not converged do

1. Sample ε ∼ N (0, I),ρ ∼ pρ(ρ)
2. Map ε to latent code z = fθ(ε,ρ)
3. Map z to an image x = G(z)

4. Optimize θ with gradient∇θ
(
− log |det(∂fθ

∂ε
)| − log pz(z) + ECρ(x)

)

B.5 Extension to Conditional INN

Algorithm 3 illustrates how we extend the training algorithm (Algorithm 2) to conditional INN, which
helps generalize to controls specified by continuous values ρ. The training objective becomes

argmin
θ

Eρ∼pρ(ρ)
[
DKL

(
pθ(z|ρ)‖p(z|Cρ)

)]
, (31)

where Cρ means that the control is specified by value ρ. The derivation of Algorithm 3 is given by:

Eρ∼pρ(ρ)
[
DKL

(
pθ(z|ρ)‖p(z|Cρ)

)]
= Eρ∼pρ(ρ),z∼pθ(z|ρ)

[
log

pθ(z|ρ)
p(z|Cρ)

]
= Eρ∼pρ(ρ),z∼pθ(z|ρ),x=G(z)

[
log

pθ(z|ρ)
pz(z)e

−ECρ (x)/Z

]
= Eρ∼pρ(ρ),ε∼N (0,I),z=fθ(ε,ρ),x=G(z)

[
logN (ε|0, I)− log |det(∂fθ

∂ε
)|

− log pz(z) + ECρ(x) + logZ
]

= Eρ∼pρ(ρ),ε∼N (0,I),z=fθ(ε,ρ),x=G(z)

[
− log |det(∂fθ

∂ε
)| − log pz(z)

+ ECρ(x)
]
−HN (0,I) + logZ.

(32)

B.6 Derivation for Latent-Space Moment Constraint

Given a mapping γ : X → RK , moment constraint [7, 36] defines the target distribution p(x|C) as

p(x|C) = argmin
p(x|C)

DKL(p(x|C)‖px(x))︸ ︷︷ ︸
Deviation from the pre-trained distribution

, s.t. Ex∼p(x|C)
[
γ(x)

]
= µ︸ ︷︷ ︸

Moment constraint

, (33)

where µ is the user-specified constraint. Examples are provided in the main text, and we omit them
here for brevity. [7] showed that Eq. (33) can be approximated to an arbitrary precision by

p(x|C) ∝ px(x) exp
(
β̂>γ(x)

)
, (34)

where β̂ needs to be computed. [36] estimates β̂ by solving the following regression problem:

β̂ = argmin
β

E
x(1),...,x(N) i.i.d.∼ px(x)

∥∥∥∥
∑N
j=1 exp

(
β>γ(x(j))

)
γ(x(j))∑N

j′=1 exp
(
β>γ(x(j′))

) − µ
∥∥∥∥2
2

. (35)

In [36], sampling x ∼ px(x) is straightforward since they focus on autoregressive language models.
In the context of latent-variable vision generative models, where x ∼ px(x) is implicitly defined as
z ∼ pz(z),x = G(z), Eq. (35) is equivalent to

β̂ = argmin
β

E
z(1),...,z(N) i.i.d.∼ pz(z),x(j)=G(z(j))

∥∥∥∥
∑N
j=1 exp

(
β>γ(x(j))

)
γ(x(j))∑N

j′=1 exp
(
β>γ(x(j′))

) − µ
∥∥∥∥2
2

. (36)
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Finally, based on Proposition 1, we can generalize the moment constraint to the latent space as

p(z|C) =
pz(z) exp

(
β̂>γ

(
G(z)

))
Z

, Z =

∫
z′
pz(z

′) exp
(
β̂>γ

(
G(z′)

))
dz′. (37)

Note that Eq. (36) and Eq. (37) are verbatim copies of Eq. (7) and Eq. (6), respectively.

Algorithm 4: Extension of Algorithm 3 with ID Energy (Section 4.3)
while not converged do

1. Sample ε ∼ N (0, I),ρ ∼ pρ(ρ)
2. Map ε to latent codes z = fθ(ε,ρ) and z0 = fθ(ε,ρ0)
3. Map z to an image x = G(z) and z0 to an image x0 = G(z0)
4. Optimize θ with gradient

∇θ
(
− log |det(∂fθ

∂ε
)| − log pz(z) + ECρ(x) + λIDEID(x0,x)

)

B.7 Inverse Graphics Control with Identity Energy

This subsection provides more detail on how we use an inverse graphics model, DECA [16], to control
the pose of faces generated by StyleGAN2 trained on FFHQ 10242, as introduced in Section 4.3.
Recall that we use the conditional INN extension, detailed in Algorithm 3, for this experiment. To
enable generating different poses of the same identity, we add additional identity energy using the
IR-SE50 model [8]. The training algorithm is detailed in Algorithm 4. Specifically, we generate a
canonical latent code z0 = fθ(ε,ρ0) for each ε, where ρ0 is the canonical pose. The latent code z
and the canonical latent code z0 are mapped to the image x and the canonical image x0. The identity
energy in Eq. (12), copied below, encourages the embeddings of the two images to be similar:

EID(x0,x) = 1− cos
〈
R(x0), R(x)

〉
, x0 = G(z0),x = G(z). (38)

B.8 Experimental Details

Our INN architecture contains 8 blocks. Each block consists of a soft permutation of channels [2], an
affine coupling layer [12], and an ActNorm layer [37]. In the affine coupling layer, we model the
sub-network as an MLP with one hidden layer, where the hidden dimension is 256 and the non-linear
activation is LeakyReLU0.1.

For the prior distribution pρ(ρ) of the pose parameter ρ in the inverse graphics experiments (Sec-
tion 4.3), we sample the x-axis and y-axis rotations relative to a canonical pose ρ0, whose x-axis
and y-axis rotations are 0.3 and 0, respectively. The relative pose’s x-axis and y-axis rotations are
uniformly sampled from [−(1/9)π, (1/9)π].
Each experiment was run on an NVIDIA RTX A4000 GPU (with 16G memory). Our code imple-
mentation is based on the PyTorch framework. Our code can be found at https://github.com/
ChenWu98/Generative-Visual-Prompt.
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(a) PromptGen (description: autumn scene) (b) PromptGen (description: winter scene)

Figure 11: Additional results for image synthesis based on text description, guided by the CLIP
model. As the backbone, we use StyleGAN2 trained on Landscape-HQ with truncation ψ = 0.7. All
images are 2562 and resized for visualization.

Table 5: Quantitative results for de-biasing categorical attributes (Figure 6). See details in Appendix D.
PromptGen de-biases StyleGAN2 in terms of race, age, and gender.

FFHQ MetFaces

Drace
KL ↓ Dage

KL↓ Drace
KL ↓ Dage

KL↓ Dgender
KL ↓

StyleGAN2 0.860 0.597 1.624 0.546 0.019

PromptGen (ours; λ = 1) 0.286 0.357 0.687 0.397 0.000
PromptGen (ours; λ = 2) 0.099 0.172 0.189 0.247 0.005

C Additional Results for Image Synthesis based on Text Description

This section presents additional results of PromptGen for image synthesis from text, using the CLIP
model as control. As the pre-trained generative model, we explore StyleGAN2 trained on AFHQ-Cats
[6], LSUN-Churches [81], FFHQ [34], and Landscape-HQ [68]. Figure 11 and Figure 12 present
more results of PromptGen with diverse text descriptions.

D Additional Results for De-Biasing Generative Models

Table 5 provides quantitative results of de-biasing StyleGAN2 across categorical attributes (Figure 6).
Specifically, we used the pre-trained classifier provided by FairFace [31] to classify the attributes
of the generated images. We then report the KL divergence between the attribute distribution of the
generated images and the uniform distribution. Figure 13 and Figure 14 visualize the de-biasing
results. We report the KL divergence between the generated distribution and the uniform distribution.
Interestingly, on MetFaces, de-biasing the race results in more sculptures, and we postulate that the
reason is that almost all paintings and sketches in MetFaces are for white individuals.
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(a) photo of a cat with closed eyes (AFHQ-Cats) (b) photo of a cat with eyes wide open (AFHQ-Cats)

(c) photo of a church during day (LSUN-Churches) (d) photo of a church at night (LSUN-Churches)

(e) photo of a happy person (FFHQ) (f) photo of a sad person (FFHQ)

(g) photo of a woman with glasses (FFHQ)

Figure 12: Additional results for image synthesis based on text description, guided by the CLIP
model. As the pre-trained generative model, we use StyleGAN2 trained on FFHQ, AFHQ-Cats and
LSUN-Churches datasets. The captions are the text descriptions given to the CLIP model.
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(a) Pre-trained StyleGAN2

(b) PromptGen (race de-biasing; λ = 1) (c) PromptGen (race de-biasing; λ = 2)

(d) PromptGen (age de-biasing; λ = 1) (e) PromptGen (age de-biasing; λ = 2)

StyleGAN2 PromptGen (λ = 1) PromptGen (λ = 2)
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(f) Race distribution

StyleGAN2 PromptGen (λ = 1) PromptGen (λ = 2)
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Figure 13: Using our moment constraint, PromptGen de-biases the racial and age distributions
of StyleGAN2 trained on FFHQ with truncation ψ = 0.7. All synthesized images are 10242 in
resolution and resized for visualization. We fixed the random seed for PromptGen, so please zoom in
to see detailed differences between images.
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(a) Pre-trained StyleGAN2

(b) PromptGen (race de-biasing; λ = 1) (c) PromptGen (race de-biasing; λ = 2)

(d) PromptGen (age de-biasing; λ = 2) (e) PromptGen (gender de-biasing; λ = 2)
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(f) Gender distribution
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StyleGAN2 PromptGen (λ = 1) PromptGen (λ = 2)
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(h) Age distribution

Figure 14: Using the moment constraint, PromptGen de-biases the racial, age, and gender distribu-
tions of StyleGAN2 trained on MetFaces with truncation ψ = 0.7. All images are 10242 and resized
for visualization. Interestingly, de-biasing the race results in more sculptures, and we postulate that
the reason is that almost all paintings and sketches in MetFaces are for white individuals. We fixed
the random seed for PromptGen, so we recommend zooming in to see differences between images.
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Figure 15: PromptGen with intra-sample signed-distance constraints that generate 3D face models
with varying distances in the mouth, eye openness, nose-tip stretch, and lip forward.

E Experiments on Generative 3D Face Models

3D face modeling has been an active area of research that has recently gained major interest due to
applications in virtual humans, deep faces, and digital actors. Existing 3D deep learning generative
models build 3D compact representations of shape and appearance capable of modeling non-linearity
(e.g., scatter effects, specularities) that is necessary for generating photo-realistic faces. Providing
a generative model with the capability of generating 3D faces with a particular geometry (e.g., a
specific distance between eyes or nose length) is particularly useful for technical artists when creating
new characters. However, this problem remains unaddressed, partially due to the lack of publicly
available 3D databases labeled with such constraints. We refer to this capability as the intra-sample
constraint in 3D generative models, and this section shows how our PromptGen framework is able to
achieve this by defining a new energy function based on signed distances.

We conducted the experiments on the FaceScape dataset [80], a large-scale 3D human face dataset
consisting of 16, 940 topologically uniformly registered 3D face meshes along with high-quality
textures. The dataset contains 847 identities with 20 expressions per identity, and each mesh consists
of 26, 317 vertices of which 68 are 3D landmark vertices covering eyes, nose, mouth, jaw, and
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eyebrows. With some abuse of notation, we denote a 3D face mesh as x ∈ R3V (recall that x
is used to represent an image in other parts of this paper), where V = 26, 317 is the number of
vertices. Given an index l of a vertex (e.g., one of the 68 landmark vertices), the 3D coordinate of this
vertex is defined as x[l] ∈ R3. We pre-train a generative mesh model G that maps each latent code
z ∼ N (0, I) to a 3D mesh x. PromptGen allows us to obtain geometric control on the 3D meshes.
Specifically, given two landmark vertex indices l1 and l2, we define an intra-sample constraint that
enforces the signed distance (along a given direction) between the two vertices to be s. To this effect,
we define the signed-distance energy as

Esigned-distance(x) = |d(v1,v2)− s|, v1 = x[l1],v2 = x[l2] (39)

where d(·, ·) is the signed-distance (along a given direction), and | · | is the absolute value.

Figure 15 presents several examples of 3D mesh control, in which random textures are applied to the
generated meshes. It shows that PromptGen successfully controls the generative 3D mesh model in
terms of the mouth stretch, eye openness, nose-tip stretch, and lip forward.

F Error Analysis

As we discussed in Section 5, the controlled distribution depends on (1) the pre-trained generative
model’s coverage and (2) the off-the-shelf models used for the control. In this section, we provide
some examples of PromptGen failing to generate satisfactory images using the CLIP energy. For the
pre-trained generative model, we use StyleGAN2 trained on FFHQ, AFHQ-Wild, or LSUN-Churches.

(a) photo of a man without beard (FFHQ)

(b) a photo of a person without makeup (FFHQ)

(c) photo of a church with three windows (LSUN-Churches)

Figure 16: When the text description contains certain linguistic properties (e.g., negation, numerical
reasoning), CLIP sometimes fails or shows the “reporting bias” that we discuss in Section 4.5. For a
deeper understanding of these failures and biases, in Figure 17, we provide some image samples from
the LAION-400M dataset [63] with CLIP retrieval, using the same text descriptions as this figure.
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Our first observation is that the CLIP model sometimes fails in modeling linguistic negation. For
instance, the text description photo of a man without beard results in a distribution of photos of men
with beard (Figure 16(a)). Meanwhile, Figure 16(b) shows that CLIP is capable of modeling the nega-
tion of having makeup, but with the “reporting bias” discussed in Section 4.5. Moreover, CLIP seems
to have difficulty in numerical reasoning, and gaining control over the count of specific objects in a
scene tends to be unsuccessful. We showed this by specifying photo of a church with three windows,
which did not result in the desired specification (Figure 16(c)).

To gain a deeper understanding of the above failures and biases, in Figure 17, we provide some image
samples from the LAION-400M dataset [63] with CLIP retrieval, using the same text descriptions as
Figure 16. CLIP retrieval is based on the CLIP embedding similarity between the web images and text
descriptions, while the original text below each individual image is not used. We observe an impressive
consistency between CLIP retrieval and PromptGen: in both Figure 16(a) and Figure 17(a), most
images have beard; in both Figure 16(b) and Figure 17(b), all images are female; in both Figure 16(c)
and Figure 17(c), some images do not have exactly three windows. This consistency suggests that
the failures and biases in Figure 16 should be mostly attributed to the CLIP model rather than to our
PromptGen algorithm. We believe that our observation sheds light on the intricacy of contrastive
multi-modal (vision-language) pre-training, which is worthy of being further investigated.

(a) photo of a man without beard (CLIP retrieval from LAION-400M)

(b) a photo of a person without makeup (CLIP retrieval from LAION-400M)

(c) photo of a church with three windows (CLIP retrieval from LAION-400M)

Figure 17: For a deeper understanding of the failures and biases illustrated in Figure 16, we provide
some image samples from the LAION-400M dataset [63] with CLIP retrieval, using the same text
descriptions as Figure 16. CLIP retrieval is based on the CLIP embedding similarity between the
web images and text descriptions, while the original text below each individual image is not used. In
Figure 17(a), most images have a beard; in Figure 17(b), all images are female; in Figure 17(c), some
images do not have exactly three windows. These observations are consistent with those in Figure 16.
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Another observation is that the control tends to fail when the text description requires sampling from
low-density regions of the pre-trained generative model’s output space. In other words, the control usu-
ally fails if the pre-trained generative model does not cover the mode we are trying to gain control over.
For example, images faithful to photo of a person yawning and photo of a baby with long hair are not
commonly observed in the FFHQ dataset and, hence, these two text descriptions result in degeneration
(Figure 18(a)) or weird images (Figure 18(b)). Another example is photo of an animal from the side,
which is not commonly observed in the AFHQ-Wild dataset, and Figure 18(c) shows that the gener-
ated images fail to follow this description. Even when the control is successful (e.g., when a complex
description is decomposed in Figure 8(b)), sampling from low-density regions results in limited
diversity (e.g., the backgrounds in Figure 8(b) look similar to each other).

Finally, we also ran some failure controls using PPGM, showing that PromptGen and PPGM reveal
similar failure cases of pre-trained generative models and CLIP. Results are shown in Figure 19.

(a) photo of a person yawning (FFHQ)

(b) photo of a baby with long hair (FFHQ)

(c) photo of an animal from the side (AFHQ-Wild)

Figure 18: When the pre-trained generative model fails in covering certain modes required by the
text description, unsatisfactory outputs are produced. In this figure, we show several text descriptions
that require sampling from low-density regions of the pre-trained generative model’s output space.

(a) photo of a man without beard (FFHQ; w/ PPGM) (b) photo of a person yawning (FFHQ; w/ PPGM)

Figure 19: Failure modes revealed by PromptGen (Figure 16 and Figure 18) also hold for PPGM.
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G Societal Impact

With the improvements in generative models for images, DeepFake technology [75, 72] has become
more accessible. Like any new technology, it is a double-edged sword, and it is crucial to research
and comprehend the possible advantages and disadvantages of generative models for society.

On the positive side, we show that PromptGen can be used to de-bias pre-trained generative models
and to reveal biases learned by text-image models (like CLIP), indicating that PromptGen might be
a useful tool for fair AI if used appropriately. The efficient inference provided by PromptGen also
helps reduce the computational expense, which has a positive impact on the environment. Better
controllability, however, unavoidably makes it simpler to synthesize targeted pictures, which might
have detrimental social effects in creating deceptive media (e.g., DeepFakes) or privacy leaks (e.g.,
identity-conditioned human face synthesis). To battle these cases, there are current technologies that
can detect fake media effectively, and we expect companies and users to use these technologies to
distinguish what is real from fake. We encourage practitioners to consider these risks when using
PromptGen to develop systems.
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