
Data-Free Class-Incremental Hand Gesture Recognition

Shubhra Aich1∗ † Jesus Ruiz-Santaquiteria1∗ Zhenyu Lu1 Prachi Garg1 K J Joseph2

Alvaro Fernandez Garcia1 Vineeth N Balasubramanian2 Kenrick Kin3 Chengde Wan3

Necati Cihan Camgoz3 Shugao Ma3 Fernando De la Torre1

1Carnegie Mellon University 2Indian Institute of Technology Hyderabad 3Meta Reality Labs
∗Equal contribution †Corresponding author: saich@andrew.cmu.edu

BASE TASK 1 TASK 2

Base 
Model

Continual 
Learner

Continual 
Learner

Register Pinch Register Right Swipe

BO
AT

-M
I

BO
AT

-M
ITR

AI
N

IN
G

IN
FE

RE
N

CE

.. ..

Figure 1: Data-Free Class-Incremental Learning for Hand Gesture Recognition. When interacting with gestures in a
virtual reality (VR) environment, the user may want to add new gestures to customize their VR experience. Given that the
training data of the gesture model is proprietary and inaccessible for future tasks, finetuning the existing model on a new
class can lead to catastrophic forgetting of all old classes. Our proposed BOundary Aware ProTotypical Model Inversion
(BOAT-MI) enables the model to continually adapt to new gestures while retaining previous knowledge.

Abstract
This paper investigates data-free class-incremental learn-
ing (DFCIL) for hand gesture recognition from 3D skele-
ton sequences. In this class-incremental learning (CIL)
setting, while incrementally registering the new classes,
we do not have access to the training samples (i.e. data-
free) of the already known classes due to privacy. Ex-
isting DFCIL methods primarily focus on various forms
of knowledge distillation for model inversion to mitigate
catastrophic forgetting. Unlike SOTA methods, we delve
deeper into the choice of the best samples for inversion.
Inspired by the well-grounded theory of max-margin clas-
sification, we find that the best samples tend to lie close
to the approximate decision boundary within a reasonable
margin. To this end, we propose BOAT-MI – a simple and
effective boundary-aware prototypical sampling mechanism
for model inversion for DFCIL. Our sampling scheme out-
performs SOTA methods significantly on two 3D skeleton
gesture datasets, the publicly available SHREC 2017, and
EgoGesture3D – which we extract from a publicly avail-
able RGBD dataset. Both our codebase and the EgoGes-
ture3D skeleton dataset are publicly available: https:
//github.com/humansensinglab/dfcil-hgr.

1. Introduction
Humans innately rely on their hands to communicate, feel
and interact with their environment. Recent studies have
shown that seeing one’s hands tracked in real-time in a vir-
tual environment without controllers is the most compelling
method of user engagement in virtual reality (VR) [49].
The latest VR headsets such as Meta Quest [15, 16], and
VUZIX [3] leverage high-precision hand-tracking features
to render compelling user immersion abilities. The hand-
tracking and individual finger-tracking technologies in these
platforms are mature enough for natural interactions in the
virtual world, and provide a highly immersive “user presence”
in virtual environments [29].
While existing VR systems are equipped with promising
hand gesture recognition performance, they are designed us-
ing a pre-defined set of hand gestures that an end user ought
to follow for interaction with the virtual world. However,
considering the variations in user preferences across cultures
and demographics [1, 2], individual users may also wish to
register custom gesture categories and personalize their VR
experience. Such a provision has several advantages. As
hands play a key role in the recognition and expression of
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human emotions [41], registering custom gestures allows
users to express themselves better, thus enhancing immer-
sion and user presence in the virtual environment. Studies
in psychology show that multi-lingual people tend to use
native language-specific gestures [37], and in a VR system
where hand gestures are the primary medium of natural in-
teraction, it makes users more comfortable with the system
and promotes frequent use. Moreover, such a provision can
significantly enhance accessibility and inclusivity for peo-
ple with disabilities or special needs. Going beyond simple
customization to individual preferences, such a continual ges-
ture learning system can also provide technology developers
with capabilities to add suites of new gestures for different
VR application domains, such as extending a generic gaming
VR system for education, rehabilitation or manufacturing.

A gesture recognition model is typically trained on a large-
scale dataset of pre-defined (‘base class’) gestures before
being deployed on the user’s VR edge device. When a
user or developer registers new gesture categories, a naive
update of the model based on the user’s new data can result
in catastrophic forgetting [32] of the pre-defined gesture
categories. The pre-trained model deployed on each user
device is often trained on proprietary organizational data or
private data that cannot be accessed during re-training in
subsequent time steps when a user registers new gestures.
Additionally, the user-provided novel gesture training data
at each continual step is also private to the user and has to
be discarded after adapting the model. Hence, effectively
registering new gesture classes to an existing model without
access to data pertaining to previous tasks is a significant
problem in AR/VR domains. We address this important
problem in this work, and aim to build a life-long extensible
model, to which a user can register new gesture classes
sequentially throughout its lifetime of deployment. Figure 1
illustrates our problem setting.

A common strategy in continual learning methods, which
focuses on addressing catastrophic forgetting, is to store
a small set of exemplars of previously seen classes and
replay them to the model along with novel class data to
mitigate forgetting of previous knowledge [40]. Such replay-
based methods have been shown to provide state-of-the-art
performance across various continual learning approaches
in recent surveys [30, 28]. However, adding custom user-
specific gestures in a continual manner in AR/VR systems
precludes the possibility of storing or using previous class
samples due to privacy concerns, hence motivating a data-
free class-incremental learning framework. Considering that
we cannot access previous task data but have access to the
inference model after training each task, model inversion to
obtain data impressions of previous tasks becomes a natural
choice of solution (as shown in Figure 1). This is referred
to as Data-Free Class-Incremental Learning (DFCIL) in
recent works [55, 45, 13]. The limited efforts in this prob-

lem setting so far [55, 45, 13] largely rely on a knowledge
distillation strategy to get the inverted samples and further
to regularize the model while fine-tuning to mitigate catas-
trophic forgetting. We instead set out to answer the following
question: How to choose the best samples for model in-
version to minimize catastrophic forgetting in data-free
class-incremental learning? Besides, while existing efforts
are focused on image data, to the best of our knowledge, ours
is the first such effort on 3D skeleton-based dynamic hand
gesture data in an AR/VR context.
To answer this question, we take inspiration from statisti-
cal learning theory, specifically max-margin classification
[17, 47]. We follow the notion that samples near the bound-
ary in the feature space (such as support vectors in a Sup-
port Vector Machine) are relevant candidates to preserve the
decision boundaries among the classes and improve gener-
alization. Therefore, in principle, while performing model
inversion, choosing the support vectors close to the decision
boundaries should keep the decision boundary of the known
classes intact. We hence devise an algorithm first to sam-
ple such points in the model’s latent representation space,
perform model inversion on such samples and finetune the
model on a new task with these inverted samples. In order to
choose a diverse set of support vectors, we also consider class
prototypes and guide the choice of such samples using these
prototypes. We hence call the proposed approach BOundary
Aware proTotypical Model Inversion (BOAT-MI). We ex-
tensively evaluate the proposed BOAT-MI mechanism for
DFCIL on the task of dynamic hand gesture recognition
from 3D skeleton data. It is evident from the experimental
results that BOAT-MI indeed helps to preserve the decision
boundary significantly better than state-of-the-art (SOTA)
methods. To summarize, our contributions are as follows:

• We propose a boundary-aware prototypical model inver-
sion (BOAT-MI) strategy for data-free class-incremental
learning, which focuses on preserving user privacy in 3D
skeleton-based hand gesture recognition systems. In par-
ticular, we systematically investigate the choice of sample
selection for model inversion, and take inspiration from
the theory of max-margin classification in choosing sam-
ples near the boundary in the model inversion process. To
the best of our knowledge, this is the first such effort on
3D skeleton data.

• To this end, we also contribute a large-scale 3D skeleton
gesture recognition dataset, whereby EgoGesture3D is
re-annotated for 3D skeleton keypoints from the original
RGB-D EgoGesture dataset [57].

• We comprehensively evaluate the proposed BOAT-MI
method for our target task of class-incremental dynamic
hand gesture recognition on 3D skeleton data. The ex-
perimental results demonstrate significant improvements
over SOTA methods for the proposed continual learning
setup, particularly tailored to real-world settings after de-



ployment on users’ devices. We hope this will serve as
a new benchmark for continual learning research in hand
gesture recognition.

2. Related Works

2.1. 3D Skeleton-Based Hand Gesture Recognition
3D skeleton-sequences are being increasingly used as inputs
for action and gesture recognition tasks due to their robust-
ness to background interference, illumination and viewpoint
changes as well as reduced training complexity as compared
to RGB-D inputs. Several deep learning based methods
have been used to model skeleton-based hand gesture se-
quences. Authors in [35] propose a two-stage CNN and
LSTM framework to learn spatial and temporal joint features
respectively. More recent approaches for action recognition
employ Graph Convolutional Networks [54, 10] to model a
spatio-temporal graph of the skeleton sequence. STST [58]
and DSTA-Net [42] design specialized transformer blocks
to learn spatial and temporal features in a decoupled man-
ner. DG-STA [9] is a fully connected graph transformer. It
applies multi-head spatial attention over the spatial skele-
ton graph, followed by multi-head temporal attention on the
graph’s temporal edges. We use DG-STA as our architectural
backbone due to its simplicity of construction, feasibility of
model inversion and code availability.

2.2. Continual Gesture and Activity Recognition
Recently, there has been an active interest in making real-
world gesture and activity-based human-robot interaction
systems continually learn new user classes. However, most
existing works focus on sensory data from accelerometers,
ambient sensors, or surface electromyographic (sEMG) sig-
nals [5, 19, 6]. Authors in [4] propose a lifelong adap-
tive learning framework that processes motion sensor-based
HAR datasets in a task-free continual fashion using experi-
ence replay and continual prototype adaptation.
More recently, [23] proposes an exemplar memory enhance-
ment strategy for class-incremental learning (CIL) of static,
single-image gestures such as in NUS II and Sign Language
MNIST [39]. CIL has also been explored for action recog-
nition in videos [38, 48]. Both these works address video
continual learning using regularization and episodic memory
replay based methods. Authors in CatNet [50] are the first
to attempt class-incremental hand gesture recognition. They
use the EgoGesture dataset [57] and propose a two-stream
RGB and depth framework which replays previous class
exemplars based on the iCARL [40] algorithm. Our work
differs from these works in two key aspects. Firstly, incre-
mental learning has not yet been explored for skeleton-based
dynamic hand gesture recognition. Secondly, unlike these
methods which majorly rely on replay of stored exemplars
from previous classes to mitigate forgetting, we circum-
vent user privacy, data security, and scalability concerns by
proposing a novel data-free class-incremental framework.

2.3. Data-Free Class-Incremental Learning
Rehearsal based methods store a small set of exemplars [40,
18] or features [20, 52] of previously seen classes and re-
play them along with new class data to mitigate forgetting.
[36, 43] generate synthetic images for replay, but the genera-
tor needs to be stored through the lifetime of the model’s de-
ployment and the synthesized images may contain sensitive
user information [34]. Another category of approaches such
as Learning Without Forgetting (LwF) [24], MCIL [26], and
LwF.MC [40] use knowledge distillation as a data regulariza-
tion technique, so as to ensure that the new model makes pre-
dictions similar to a frozen copy of the old (teacher) model
for old classes. Typically, several methods [18, 51, 8, 22, 53]
including iCARL [40] combine knowledge distillation with
exemplar replay of previous classes.
In order to transfer knowledge without exemplars, recent
works introduce data-free class-incremental learning where
the previous step inference model can be inverted to obtain
old class images which in turn are used for replay along with
new class data. DeepDream [33] was the first such method
which optimized noise into images using image prior regu-
larization. DeepInversion [55] improved DeepDream’s in-
verted image quality by proposing feature distillation based
on Batch Normalization statistics. The ABD [45] work fur-
ther improved model inversion image synthesis by analysing
the cause of poor performance of inverted images in Deep-
Inversion. They propose a modified cross-entropy loss and
importance-weighted feature distillation regularization to
improve DFCIL. Most recently, [13] introduces relational
knowledge distillation to guide the new model to learn new-
class representations that are better compatible with old class
representations. Also, authors in [27] attempt DFCIL for
Person Re-identification. While all above stated methods use
a student-teacher knowledge distillation approach to invert
images, we do not use knowledge distillation and instead
propose a SVM-based prototypical boundary sampling algo-
rithm for model inversion.

3. BOAT-MI: Our Methodology
3.1. Problem Formulation
In class-incremental learning, a model sequentially learns
a series of N incoming tasks {T1, T2, .., Ti, .., TN} as and
when they become available. Each task consists of data from
a new set of classes, such that classes across all tasks is
non-overlapping. In a new task Ti, CU new classes will be
added to the existing model containing CK existing classes
from all previous steps. In the training phase for task (or
step) i, the model only has access to the training data for CU
new classes. In data-free class-incremental learning, we put
an additional constraint that the model does not have access
to the original samples corresponding to already old classes,
CK. After learning task i, during inference for a given test
sample, the model classifier predicts for all classes that the



continual learner has seen till now, i.e. y ∈ CK ∪ CU . Unlike
task-incremental learning where task identity is provided at
inference time, this is the harder class-incremental setting
where task-identity is not provided at inference.

Figure 2: (Synthetic dataset) Visualization of the old class
CO samples in the (penultimate) feature space R2 of the
model. Individual classes are indicated by different colors.
For the preliminary proof of concept, the tiny red triangles on
the elliptical boundaries refer to the boundary samples used
for model inversion. Note that the exact estimation of the
decision boundaries is noisy even for this highly simplified
classification task. Such noise is bypassed with a margin
[17, 47] for the ellipses here. Best viewed in color.

3.2. Preliminary Proof of Concept
First, we validate our hypothesis on the effectiveness of
the samples close to the decision boundaries compared to
other samples. In this regard, we generate a simple, low-
dimensional synthetic dataset (supplementary material, Fig-
ure 1 – 6D gaussian blobs, 10 classes, 200 samples per class).
We take half of the data for training and the other half for
evaluation. To emulate the DFCIL setup, 5 classes are con-
sidered the old set CO, and the other 5 new CN . We employ
a simple 3 layer MLP as the classifier. Training this MLP
on all 10 classes (CO ∪ CN ) provides the oracle accuracy
of 99.6%. The baseline accuracy, that is, training on the 5
old classes in CO is 100%. Next, as shown in Figure 2, we
invert the elliptical boundary samples from the feature space
(penultimate layer of MLP) – intentionally set to R2 for the
ease of visualization and sampling, the dimensionality of
which is sufficient for the synthetic dataset we have. This
way, we generate 50 inverted samples per old class in CO,
merge them with the real sample set for the new classes (100
per class) in CN , and finetune the baseline model. After
finetuning, we obtain 90.8% accuracy over the complete test
set (including both old and new classes), with 83.0% for the
old samples, and 98.6% for the new samples. In comparison,
the random sampling strategy provides only about 58.6%
total accuracy with 21.2% and 96.0% for the old and new
test samples, respectively. This preliminary results lead us
to investigate the expressive power of the boundary samples
further for model inversion on our target task of 3D gesture
recognition.
On top of that, Figure 2 demonstrates the noisy nature of
the exact estimation of the decision boundaries regardless

Algorithm 1: Boundary-Aware Prototypical Model Inversion

Function Main(F ,H, c, µ, Σ, m, αf , α, it, ε, n, δ):
# F ;H: feature extractor; SVM classifier
# c: index of class to invert
# µ;Σ: prototypical mean, covariance for class c
# m;αf , α: momentum; forward/reverse LR
# it; ε: max iterations; tolerance threshold
# n, δ: max # of samples per class; margin
# Use inverted mean for initialization later
xµ ← Invert(F , µ, m, α, iter, ε, NULL)
ys← [ ] # initialize feature list for inversion
# Extend the list with support vectors for class c
ys += H.support vectors[c]
# Get principal directions of prototypical
# covariance and their unique linear combinations
# as prototypical features for inversion
ps← GetProtoDirections(Σ, n)
ys += GetProtoFeatures(ps,µ, c, αf , δ)
n← len(ys) # Final # of samples to invert
xs← [xµ] ∗ n # initialize input list for inversion
for i← 1 : n do

xs[i]← Invert(F , ys[i], m, α, iter, ε, xµ)

return xs
End Function

of the simplicity of the problem domain and dataset. This
observation is aligned with the notion of margin in max-
margin classification literature [17, 47]. In fact, bypassing
this noise with a reasonable margin is a key to the success of
our proposed algorithm as described later.

Following the preliminary proof of concept above, we now
present our boundary-aware prototypical model inversion
(BOAT-MI) mechanism in detail. The high-level approach is
depicted in Algorithm 1. The complete algorithm is provided
in the supplementary material.

3.3. Methodology Description

First, we define the components necessary for the depiction
of our approach (Algorithm 1). Our BOAT-MI algorithm
requires a learnable feature extractor (like a deep network)
F and the SVM classifier H operating on the feature ex-
tractor (i.e. the penultimate layer). Also, for a particular
class c, if X ∈ Rn×k denotes all the training samples (n)
belonging to class c, we get the class-prototypical mean and
covariance from the penultimate feature representation as
µ = E[F(X)] and Σ = E[(F(X) − µ)(F(X) − µ)T ],
respectively.
Now, the core technical question that we attempt to address
here is to decide on which samples we should invert for
maximal gain. According to the theory of support vector
machine (SVM) [47], support vectors (SVs) are essentially
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Figure 3: Our proposed BOAT-MI pipeline. 1. Model Inver-
sion: (a) Initialize the input with inverted class-prototypical
means; (b) Match the feature representation of the input
with a corresponding boundary-aware target feature using
the LMI(= L2) norm; finally, (c) the gradient of the norm
is used to update the input. Note that model is frozen during
this step. 2. Continual model adaptation: The previous
step model is updated with the new class samples and replay
of inverted previous class samples using LCL.

the samples on the margin of the decision boundaries. The
SVM classifier makes the decision as a linear combination of
a handful of SVs. Therefore, SVs are on the list of potential
candidate samples. Even though SVs are sufficient for a
vanilla classification problem, standalone SVs are deemed to
be insufficient for the class-incremental setup. In Figure 4,
classes 1 and 2 are old to SVM, and so, their SVs are able
to protect the corresponding decision boundaries. However,
as the new class (with index 3) appears incrementally, old
SVs (class 1 in this figure) are unable to preserve them while
learning the new class features.

Based upon this observation, in the feature space, for old
classes CO, SV-like samples must be present in all significant
directions to safeguard against potential invasions from the
incremental classes CN in the future. Generating pseudo
SVs by shooting rays in different directions from the class-
prototypical mean µ is not difficult. However, given the high
dimensionality of the feature space (R128 in our case), cover-
ing all these directions and their linear combinations would
be combinatorially explosive. This curse of dimensionality
can be avoided by considering only the principal directions
of the class-prototypical covariance Σ in the feature space.
Moreover, for the old classes, the choice of principal compo-
nents makes sense since these indicate the axes of expansion
over the learned class-specific features in the feature space.
We call these pseudo SVs evolving from the linear combina-
tion of class-prototypical mean and variance proto SVs. Later
in Section 4, we show that proto SVs are able to preserve the

Figure 4: A hypothetical example describing the inadequacy
of the standard SVs for the incremental classification prob-
lem. Classes 1 (red) and 2 (green) are old to SVM a priori.
So, their SVs (on the red and green lines) are able to preserve
the corresponding decision boundaries when the decision is
to be made between these two old classes only. However, as
the new class (3) appears incrementally, old SVs for class 1
fails to safeguard its insiders.

class integrity more than standard SVs in most cases with
the best results coming from having both on board for model
inversion. Therefore, the high-level steps for BOAT-MI for a
single old class are as follows:

1. Get old class prototype (mean µ and covariance Σ).

2. Get the support vectors (SVs) from the SVM classifierH
learned on top of the (deep) features extracted from F .

3. Get the significant principal directions (PDs) of the pro-
totypical covariance Σ.

4. Generate more dummy PDs with linear combination of
existing PDs.

5. Cast rays following the PDs from the prototypical mean
µ to reach the boundary for proto-SV generation.

6. (Figure 3, Step 1) Run model inversion on SVs + Proto-
SVs from the above step to generate support inputs (SIs).

7. (Figure 3, Step 2) Finetune the model with SIs repre-
senting old classes CO and new samples from the new or
incremental classes CN .

Also, ray casting from the class-prototypical mean µ is done
iteratively with a learning rate αf until the ray hits the bound-
ary. Also, a margin δ, normalized with respect to the distance
between the mean µ and the boundary vector (Figure 5), is
used to avoid noise inherent in the boundary estimation pro-
cess. In other words, the proto-SV feature is taken to be
the on the margin, which is δ inside the boundary. The fea-
ture inversion procedure (feature → input) deviates from
the vanilla implementation [12] in three aspects. First, we
initialize the input tensor with the inverted class-prototypical
mean. Second, we employ the normalized L2 function as the
distance metric. Third, we replace the vanilla gradient de-
scent with its momentum-based counterpart [46]. All these
modifications are empirically found to expedite convergence.



3.4. Architecture and Loss Functions
As mentioned in Section 2.1, we employ the DG-STA [9]
architecture as our 3D skeleton-based gesture recognition
backbone. Regarding the error criterion, the usage of a
single prototypical mean µ and covariance matrix Σ per
class requires the reinforcement of compact clustering in the
learnable feature space of the deep architecture. To ensure
compactness, we use the supervised contrastive learning loss
SupCon [21] (Equation 1), which we empirically find to be
a better alternative to the standard cross-entropy loss.

LCL =

2N∑
i=1

−1
2Nỹi

− 1
Lsupi

Lsupi =

2N∑
j=1
i 6=j

1ỹi=ỹj · log
exp

(zi · zj
τ

)
2N∑
k=1

1i 6=k · exp
(zi · zk

τ

) (1)

where Nỹi is the number of minibatch samples belonging to
the same class, ỹi, as the sample of index i, z is the feature
vector and τ is a temperature parameter that controls the
degree of concentration or dispersion of distributions.

4. Experiments
4.1. Datasets
We employ two datasets for gesture recognition 1 – one with
ego-centric and another with second-person views.

SHREC-2017: SHREC-2017 [44] comprises of 14 coarse
and fine-grained gestures performed with both, one finger
(index finger and thumb) and all the fingers captured with the
short-range Intel Real Sense Depth camera. The hand skele-
ton contains 22 keypoints – 1 × wrist, 1 × palm, and 4 ×
each finger × 5 fingers. The original training and validation
sets contains 1980 and 840 samples from a disjoint set of
20 and 8 subjects, respectively. Since the test set labels are
hidden, we recast the validation set as our test set and divide
the training set into train/val splits with roughly 20 samples
per class for validation. This updated split configuration is
public with the codebase.
EgoGesture3D: Table 1 shows a comparison of existing
3D skeleton-based hand gesture recognition datasets. All
these datasets have been collected from Intel Real Sense
Depth or RGB-D cameras. The FPHA [14] dataset consists
of first-person daily hand actions interacting with 26 object
categories. Ideally, in addition to SHREC-2017, we want to
set up a continual learning benchmark on a dataset with a
large number of classes for easy incremental splits. It can be
seen from the table that existing 3D skeleton hand gesture
datasets are small scale datasets with less number of classes.
Hence, we consider extracting 3D skeleton annotations from
an existing large-scale RGB-D hand gesture recognition
dataset. Even though RGB-D datasets like Jester [31] and

1All the data were accessed and processed at and by CMU.

Table 1: A comparison of different 3D skeleton-based dy-
namic hand gesture recognition datasets. Label Cat. refers to
gesture classification, Seg. refers to temporal segmentation.

Dataset Classes Sequences Label FPV Data Type
Cat. Seg.

SHREC 2017 [44] 14/28 2800 X × Depth, 3D skeleton
DHG [11] 14/28 2800 X × Depth, 3D skeleton
FPHA [14] 45 1175 X X RGB-D, 3D skeleton
EgoGesture3D 83 24161 X X X RGB-D, Depth, 3D skeleton

the more recent LD-ConGR [25] have more gesture se-
quences as compared to EgoGesture [57], the number of
classes in EgoGesture are significantly higher. Moreover,
SHREC and DHG are second person view datasets and it
is useful to also study continual learning performance for
egocentric views. Hence, we construct a 3D skeleton version
of the EgoGesture dataset and call it EgoGesture3D.
EgoGesture [57, 7] contains 14416 training, 4768 validation,
and 4977 test samples encompassing 83 gesture categories.
The original RGB-D and depth dataset was collected from
50 subjects (18 females and 32 males), in 4 indoor and 2
outdoor scenes. Unlike other datasets, EgoGesture covers
variation in background, illumination, clutter and also cap-
tures people performing gestures when they are walking.
It also has temporal segmentation annotations of individual
gesture sequences from continuous videos. We employ Medi-
aPipe [56] for 3D skeleton extraction. Unlike SHREC-2017,
EgoGesture contains both single and dual-handed gestures.
Visualizations are provided in the supplementary.

4.2. Experimental Setup
We demonstrate results for 7 class-incremental tasks across
two dataset benchmarks. Task 0 represents the accuracy
of the model learned on the base classes (8 for SHREC-
2017 and 59 for EgoGesture3D). Each of the next tasks
(Task 1→ 6) adds 1 (SHREC-2017) and 4 (EgoGesture3D)
classes at a time. In a VR/AR context, the user may want to
add a single-class at a time when they realise the need for
a customized gesture. Also, SHREC-2017 has a relatively
small number of classes (only 14) for a continual learning
benchmark. Hence, studying performance degradation at
every stage (after adding a single class) is more relevant to
our setting for SHREC-2017. From Table 2, it is evident that
the forgetting turns out to be severe after the first few tasks
(i.e. from Task 4 and onward). In EgoGesture, we study
adding 4 classes at a time to contrast with SHREC and see
the affect of adding multiple gestures at every stage. We
report individual task performance rather than an averaging
over 5 continual tasks as done in [45]. As discussed later,
comparing with such granularity helps to get a better sense
of the methods while benchmarking.

4.3. Evaluation Metrics
One of the most fundamental concerns while developing
incremental/continual learning systems is the imbalance be-
tween the information preserved for the old tasks/classes and
the new ones. For example, for DFCIL, the naive approaches



Table 2: Results (average of 3 runs with different class order) for class-incremental learning over six tasks in SHREC-2017.
Method Task 0 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Mean (Task 1 → 6)

Oracle 89.4

G↑ IFM ↓ G↑ IFM↓ G↑ IFM ↓ G↑ IFM ↓ G↑ IFM ↓ G↑ IFM↓ G↑ IFM↓
Base [24]

90.5

78.3 7.8 53.3 29.6 30.0 53.7 27.9 56.0 12.2 78.3 11.9 78.6 35.6 50.7
Fine tuning [24] 78.6 6.0 57.4 26.2 34.2 48.8 34.0 48.6 16.4 71.8 16.1 71.9 39.5 45.5
Feature extraction [24] 79.9 9.3 69.3 12.6 62.3 19.1 56.5 24.1 50.6 24.3 45.1 32.4 60.6 20.3
LwF [24] 79.8 9.3 64.1 20.2 31.9 50.2 29.1 53.1 13.1 76.8 11.5 79.3 38.2 48.2
LwF.MC [45] 56.0 10.9 32.6 39.5 21.8 58.5 19.3 61.6 16.7 53.3 16.1 45.4 27.1 44.9
DeepInversion [55] 79.9 4.3 65.9 14.9 53.1 29.5 49.5 32.8 34.2 47.7 32.1 49.7 52.5 29.8
ABD [45] 78.8 4.0 64.6 12.6 54.3 20.3 53.2 24.6 46.1 20.0 40.4 23.3 56.2 17.5
R-DFCIL [13] 78.7 3.3 65.5 4.5 54.4 20.5 49.8 26.9 41.5 25.0 38.6 33.3 54.8 18.9
BOAT-MI (Ours) 83.7 4.5 76.0 7.3 71.4 7.0 69.4 13.3 64.1 9.5 58.1 11.2 70.5 8.8

Table 3: Results (average of 3 runs with different class order) for class-incremental learning over six task in EgoGesture3D.
Method Task 0 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Mean (Task 1 → 6)

Oracle 75.8

G↑ IFM ↓ G↑ IFM↓ G↑ IFM ↓ G↑ IFM ↓ G↑ IFM ↓ G↑ IFM↓ G↑ IFM↓
Base [24]

78.1

60.4 13.5 18.9 63.3 9.3 82.4 8.0 84.3 5.9 88.5 5.9 88.3 18.1 70.0
Fine tuning [24] 59.2 10.4 15.9 66.5 9.3 82.2 7.7 84.4 5.2 89.7 5.0 90.1 17.1 70.6
Feature extraction [24] 69.8 14.5 60.8 17.2 51.5 30.4 46.4 33.7 41.2 39.4 36.8 42.9 51.1 29.7
LwF [24] 69.1 0.1 43.0 27.3 18.8 67.3 11.3 78.7 6.5 87.5 6.3 87.7 25.8 58.1
LwF.MC [45] 36.8 9.8 24.2 41.3 17.0 64.6 12.8 73.3 10.2 78.3 9.7 80.2 18.4 57.9
DeepInversion [55] 68.1 14.1 44.3 32.2 24.7 59.2 16.2 71.2 11.6 78.8 10.0 81.0 29.1 56.1
ABD [45] 68.8 14.8 61.1 17.1 54.3 26.2 49.0 31.1 43.2 37.5 39.0 40.6 52.6 27.9
R-DFCIL [13] 70.3 3.0 61.4 4.1 53.2 14.9 46.1 17.8 39.2 35.0 35.2 36.3 50.9 18.5
BOAT-MI (Ours) 75.3 4.6 70.9 7.3 64.0 15.1 58.6 16.3 52.3 26.8 45.8 32.2 61.2 17.1

iterate over the new class samples without accessing any
known class samples. This causes learning the new classes
with significantly high accuracy while the known class infor-
mation being washed away. Consequently, there is a huge im-
balance between the accuracy of the newly learned classes in
that incremental stage and that of the already known classes
until the previous stage. We find this issue prevalent in all the
DFCIL methods to date. To our knowledge, there is no such
metric to capture this imbalance explicitly. Therefore, in
this paper, we address this concern with a new metric called
Instantaneous Forgetting Measure (IFM) = |L−G|L+G × 100.
Here, L is the (local) accuracy only over the incremental
classes that first appeared at a continual learning step, and
G is the (global) accuracy over all the classes encountered
by the model up until that stage including the incremental
classes. IFM is a percentage metric with 0% and 100%
indicating perfect balance (G = L) and pure imbalance (ei-
ther G = 0 or L = 0), respectively. Compared to the vanilla
difference (L−G), which is linear in both G and L, IFM
penalizes with higher weight when one of G or L is signifi-
cantly lower than the other. We present the global accuracy
G and IFM in all the tables here (G ↑ and IFM ↓). The
up and down arrows indicate the notions of accuracy (higher
is better) and error (lower is better), respectively.

4.4. SOTA Comparison
Table 2 and 3 provide the comparison of our approach with
the SOTA DFCIL methods. As discussed in the experimental
setup in Section 4.2, Task 0 represents the base classification
accuracy, and Task 1 → 6 indicate the steps of continual
data-free class registration results. For each of the continual

learning steps, we present the global accuracy and our pro-
posed forgetting measure (G ↑ and /IFM ↓). Our proposed
approach achieves significantly higher global accuracy in
each stage there with 13% and 6.8% improvements on the
most difficult stage (Task 6) for SHREC-2017 (Table 2) and
EgoGesture3D (Table 3), respectively, over the next best
methods. Moreover, this improvement on global accuracy
comes with a significantly lower instantaneous forgetting –
12.1% and 4.1% lower IFM than the second best method
for SHREC-2017 (Table 2) and EgoGesture3D (Table 3), re-
spectively. Overall, BOAT-MI outperforms the SOTA meth-
ods in all aspects across the board.
Surprisingly good results with feature extraction [24]:
Unlike the SOTA DFCIL methods [13, 45, 55], following
LwF [24], we decided to include the simple baselines (base,
finetuning, and feature extraction) for comparison as well.
Surprisingly, Feature Extraction excels some of the SOTA
methods (Table 2 and 3) for our continual gesture recogni-
tion benchmarks. To cast light on this issue, note that all
the SOTA methods used for benchmarking were originally
developed for an image classification problem. Hence, to
adopt these methods for gesture recognition, we individually
tuned their hyperparameters to be the optimal one for our
setup. Therefore, to our understanding, this dominance of
feature extraction over the recent methods is not due to the
sub-optimal hyperparameter setup. Instead, we hypothesize
this behavior can be credited towards the shift in problem do-
main from images to 3D gestures. This leads to a possibility
that our BOAT-MI mechanism may fall short in the image
domain, the investigation of which is beyond the scope of
this work and our focus as the title of this paper indicates.



Table 4: Comparison (average of 3 runs with different class order) of normalized margins with Prototypical MI on SHREC-2017.

Normalized
Margin (δ)

Task 0 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Mean (Task 1 → 6)
G↑ IFM ↓ G↑ IFM↓ G↑ IFM ↓ G↑ IFM ↓ G↑ IFM ↓ G↑ IFM↓ G↑ IFM↓

0.0

91.7

82.3 6.6 75.2 8.8 69.6 12.5 68.0 16.5 58.9 21.2 53.4 25.2 67.9 15.1
0.1 82.5 5.2 74.1 8.2 69.6 9.3 68.4 14.0 63.6 9.8 56.2 16.7 69.1 10.5
0.2 82.7 5.1 74.7 8.1 70.3 8.1 69.2 14.0 63.3 13.5 56.5 15.8 69.5 10.5
0.5 83.7 4.8 77.5 7.6 72.0 8.0 70.3 15.1 61.2 16.0 56.3 21.0 70.2 12.1
0.8 84.8 5.1 78.3 9.8 72.5 10.5 69.5 16.4 60.7 17.3 50.1 29.8 69.3 14.8

Random 84.1 6.2 77.5 10.1 69.0 15.4 65.2 18.7 56.0 23.8 44.4 37.2 66.0 18.6

Table 5: Comparison (average of 3 runs with different class order) of different boundary samples for MI on SHREC-2017.

Sampler
Task 0 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Mean (Task 1 → 6)

G↑ IFM ↓ G↑ IFM↓ G↑ IFM ↓ G↑ IFM ↓ G↑ IFM ↓ G↑ IFM↓ G↑ IFM↓
SV

92.0
81.7 7.4 74.9 11.5 63.2 18.6 59.7 24.0 50.0 28.9 39.0 43.2 61.4 22.3

Proto 82.7 5.1 74.7 8.1 70.3 8.1 69.2 14.0 63.3 13.5 56.5 15.8 69.5 10.8
SV+Proto 83.7 4.5 76.0 7.3 71.4 7.0 69.4 13.3 64.1 9.5 58.1 11.2 70.5 8.8

Figure 5: An illustration of the comparison provided in
Table 4. The blue ellipse indicates the hypothetical deci-
sion boundary. To show that samples close to the deci-
sion boundary with a margin are better than insiders or
random candidates, we test the performance of inverted
features taken at predefined normalized margins (Table 4,
δ = {0.0, 0.1, 0.2, 0.5, 0.8}) along the same ray. Here
δ = 0.0 (blue) is the exact boundary sample and δ = 0.8
(purple) has the highest margin – just 0.2 (normalized) away
from the class prototypical mean.

4.5. Ablation Studies

Effect of margin on boundary-aware sampling: First, we
attempt to empirically validate the claim that features sam-
pled close to the boundary with a margin prevents catas-
trophic forgetting better in the DFCIL setup. An illustration
of our validation scheme is shown in Figure 5. The class pro-
totypical mean in the feature space is indicated by the black
dot at the center of the ellipse and the blue ellipse represents
the approximated decision boundary for a particular class.
For each sample on the boundary (blue dot), we cast a ray
from the mean to the boundary sample, and select features
at different distances normalized by the mean↔ boundary
point distance. This way we ensure fairness of the sample
selection process for the comparison of different normalized
margins (δ = {0.0, 0.1, 0.2, 0.5, 0.8}).
The results are reported in Table 4. During the early stages
of continual learning (Task 1→ 3), samples with different
margins are all in the same ballpark. However, it is evident

that samples near the boundary (δ = {0.1, 0.2}) provide
better global accuracies than the insiders δ = 0.8 as the task
gets harder (Task 5 and 6). Sampling on the exact bound-
ary (δ = 0) is worse than the strategies with a reasonable
margin (δ = {0.1, 0.2}) due to the noisy approximation of
the decision boundary. The same goes for forgetting IFM .
In addition, we also include the results with the features
randomly sampled at different distances which performs
evidently poorer than the strict margin based samplers.

Comparison of different sampling strategies: As de-
scribed in Algorithm 1 and Section 3.1, our BOAT-MI ap-
proach contains two kinds of boundary-aware samples – stan-
dard support vectors retrieved from the support vector ma-
chine and the prototypical boundary features. We provide a
comparison of these two types of samplers and their combi-
nations in Table 5. The comparatively poorer performance
of the standard SVs can be explained with their inadequacy
in a class-incremental learning setup (Figure 4). However,
combining both the standard SVs and their prototypical coun-
terparts for inversion brings the best on the table.

5. Conclusion and Future Work
In this paper, we explore the problem of DFCIL for gesture
recognition from 3D skeleton sequences. Compared to the
main line of development for the SOTA DFCIL methods
mostly geared towards various knowledge distillation for
better performance, we made a detour to instead figure out
the best set of features for model inversion for DFCIL in
the domain of gesture recognition. Our intuitive and theo-
retically aligned feature selection mechanism, proposed in
this paper, excels the SOTA methods by a significant mar-
gin in all stages of continual learning including 13% and
6.8% improvements on the last and most difficult step for
the two 3D skeleton datasets. Although evaluated on our
focus area of 3D gesture recognition, we believe the domain
agnostic nature of the proposed boundary-aware selection
mechanism will be impactful in the future development of
DFCIL frameworks, in general.
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(Supplementary) Data-Free Class-Incremental Hand Gesture Recognition

Figure 1: The pair plot of the synthetic dataset (6D Gaussian blobs) used for the preliminary proof of concept in Section 3
(BOAT-MI: Our Methodology) of the main paper. Different colors indicate different class indices (labels on the right). For the
DFCIL setup, the first 5 classes (label 0→ 4) are considered the old set CO, and the other 5 (label 5→ 9) new CN .
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Algorithm: Boundary-Aware Prototypical Model Inversion (Part 1)

1 Function Main(F ,H, c, µ, Σ, m, αf , α, it, ε, n, δ):
2 # F ;H: feature extractor; SVM classifier
3 # c: index of class to invert
4 # µ;Σ: prototypical mean, covariance for class c
5 # m;αf , α: momentum; forward/reverse LR
6 # it; ε: max iterations; tolerance threshold
7 # n, δ: max # of samples per class; margin
8 # Use inverted mean for initialization later
9 xµ ← Invert(F , µ, m, α, iter, ε, NULL)

10 ys← [ ] # initialize feature list for inversion
11 # Extend the list with support vectors for class c
12 ys += H.support vectors[c]
13 # Get principal directions of prototypical
14 # covariance and their unique linear combinations
15 # as prototypical features for inversion
16 ps← GetProtoDirections(Σ, n)
17 ys += GetProtoFeatures(ps,µ, c, αf , δ)
18 n← len(ys) # Final # of samples to invert
19 xs← [xµ] ∗ n # initialize input list for inversion
20 for i← 1 : n do
21 xs[i]← Invert(F , ys[i], m, α, iter, ε, xµ)
22 end
23 return xs

24 End Function
25 Function GetProtoDirections(Σ, n):
26 # Σ: class prototypical covariance
27 # n: maximum # of samples allowed
28 # Get principal directions retaining 95% variance
29 ps← PCA(Σ, 0.95)
30 ps += (−ps) # extend with negative directions
31 if ClampNumSamples(ps, n) then
32 return ps
33 end
34 n← n− len(ps) # update max # of samples
35 ord = 2 # start from adding 2nd order interactions
36 while TRUE do
37 # add unique linear interactions of order ord
38 # pnew = ps[i] + ps[j] for ord = 2
39 # pnew = ps[i] + ps[j] + ps[k] for ord = 3
40 ps l← LinearInteractions(ps, ord)
41 # normalize to get the unit vectors
42 ps l← Normalize(ps l)
43 if ClampNumSamples(ps l, n) then
44 ps += ps l # list extension
45 return ps

46 end
47 ps.append(ps l)
48 n← n−len(ps l) # update max # of samples
49 ord← ord+ 1 # increment order
50 end
51 End Function

Algorithm: Boundary-Aware Prototypical Model Inversion (Part 2)

1 Function Invert(F , y, m, α, iter, ε, x0):
2 # F ;y: feature extractor; target feature
3 # m;α: momentum; learning rate
4 # iter; ε: max # of iterations; tolerance threshold
5 # x0: input initialization, can be NULL
6 if x0 == NULL then
7 x← input prediction tensor (zero-initialized)
8 else
9 x← x0

10 end
11 v← gradient update tensor (zero-initialized)
12 for i← 1 : iter do
13 ŷ← F(x) # predict feature
14 L ← ||y − ŷ||2/||y||2 # distance norm
15 if L < ε then
16 break
17 end
18 v← mv +∇xL # gradient tensor update
19 x← x− αv # gradient descent
20 end
21 return x

22 End Function
23 Function GetProtoFeatures(ps,µ, c, αf , δ):
24 # ps: list of principal directions and combinations
25 # c,µ: class index and class prototypical mean
26 # αf , δ: forward learning rate and margin
27 ys← [ ] # initialize feature list for inversion
28 for i← 1 : len(ps) do
29 f ← µ
30 for k ← 1 : iter do
31 f ← f + αf ps[i]
32 if Classify(f) 6= c then
33 f ← (1− δ) f + δ µ
34 ASSERT Classify (f) == c

35 end
36 end
37 ys.append(f)
38 end
39 return ys

40 End Function
41 Function ClampNumSamples(ps, n):
42 # ps: list of samples to clamp
43 # n: maximum # of samples allowed
44 if n > len(ps) then
45 return FALSE # not clamped
46 end
47 # randomly select n samples in-place
48 ps← RandomSelect(ps)
49 return TRUE # clamped
50 End Function



Table 1: Results with BatchNorm (average of 3 runs with different class order) for DFCIL over six tasks in SHREC-2017.

Method Task 0 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Mean (Task 1 → 6)

Oracle (DGSTA-BN) 90.3

G↑ IFM ↓ G↑ IFM↓ G↑ IFM ↓ G↑ IFM ↓ G↑ IFM ↓ G↑ IFM↓ G↑ IFM↓
DeepInversion-BN [6]

92.8

81.4 7.0 62.6 18.2 52.9 29.1 46.3 35.6 34.8 48.1 31.5 51.3 51.6 31.6
ABD-BN [4] 81.7 1.9 72.2 2.0 65.9 10.7 57.3 14.8 51.7 16.3 42.7 25.2 61.9 11.8
R-DFCIL-BN [3] 72.0 5.1 61.5 7.3 53.2 9.6 50.7 5.1 46.6 8.9 39.9 0.6 54.0 6.1
BOAT-MI-BN (Ours) 86.5 7.5 82.2 9.3 74.7 1.2 72.6 2.6 65.5 8.7 62.3 1.7 74.0 5.2

Table 2: Results with BatchNorm (average of 3 runs with different class order) for DFCIL over six task in EgoGesture3D.

Method Task 0 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Mean (Task 1 → 6)

Oracle (DGSTA-BN) 75.0

G↑ IFM ↓ G↑ IFM↓ G↑ IFM ↓ G↑ IFM ↓ G↑ IFM ↓ G↑ IFM↓ G↑ IFM↓
DeepInversion-BN [6]

77.4

66.4 16.1 52.3 24.6 35.0 46.5 24.5 59.7 20.5 65.0 15.1 72.8 35.6 47.5
ABD-BN [4] 65.7 17.4 58.1 19.4 49.5 31.1 45.1 35.2 42.7 37.2 39.5 40.4 50.1 30.1
R-DFCIL-BN [3] 68.3 5.9 56.0 11.9 49.0 17.9 44.4 20.1 39.9 29.4 36.8 30.6 49.1 19.3
BOAT-MI-BN (Ours) 73.0 4.6 66.9 7.1 60.8 15.9 57.9 16.3 52.1 22.2 49.0 27.6 60.0 15.6

1. Experimental Details

We follow the original implementations of all DFCIL meth-
ods that we used for benchmarking in this work. However,
these methods were originally designed for the image classi-
fication problem, as we discussed in Section 4.4 of the main
paper. Therefore, we had to adjust them to our keypoint-
based gesture recognition domain and tune their hyperpa-
rameters individually for our setup. All hyperparameter
values and configuration files will be made available along
with the codebase.

Base model training: We use the original DG-STA [1] ar-
chitecture as our backbone to process the 3D keypoint se-
quences. We train the Oracle (upper bound, all classes in
one task) and Task 0 models (base classes for each setup)
with Adam optimizer (learning rate of 1e-3, β1 = 0.9 and
β2 = 0.999) for 150 epochs.

Learning rate for incremental tasks: All the methods start
from the same Task 0 weights for Task 1. We modify the
initial learning rate for the incremental tasks depending on
the method since a stronger regularization requires a higher
learning rate to learn the new classes. In this regard, we
select the optimal learning rate for each method with a grid
search in the range {1e-5 : 1e-3}.
Synthetic data generation: Following ABD [4], for a fair
comparison among the model inversion-based approaches
(DeepInversion [6], ABD [4] and R-DFCIL [3]), we use the
same model inversion strategy for the synthetic data genera-
tion. However, we optimize the randomly initialized inputs
directly instead of training a model to generate the sam-
ples. After a grid search we find {αlr, αcon, αstat, αtemp}
as {1e-1, 1, 2e2, 1e1}.
R-DFCIL hyperparameters: R-DFCIL [3] includes three
hyperparameters to weight each of the loss terms, the local

classification loss (λlce), the hard knowledge distillation
loss (λhkd) and the relational knowledge distillation loss
(λrkd). For our experiments, we found {λlce, λhkd, λrkd} as
{1, 1.5e-1, 7.5e-1} as the optimal values for SHREC-2017
and {1, 1e-1, 1e-1} for EgoGesture3D.

BOAT-MI implementation: The complete Python-style
pseudocode is provided in Algorithm 1 and 2. In Algorithm
1 Line 1, Function Main is the driver for our proposed
model inversion mechanism for a single class c. Similar to
the other baselines, we employ DG-STA [1] backbone as our
feature extractor F here. We use the radial basis function
as the kernel for our SVM classifier (H) here. To generate
proto-SVs for model inversion, it uses the principal direc-
tions of the prototypical variance Σ (Line 29, Algorithm
1). Ray casting from the class-prototypical mean µ is done
iteratively with a learning rate αf (Line 29-36, Algorithm
2) until the ray hits the boundary. Also, a margin δ, normal-
ized with respect to the distance between the mean µ and
the boundary vector, is used to avoid noise inherent in the
boundary estimation process (Figure 2 main paper, Line 33,
Algorithm 2). In other words, the proto-SV feature is taken
to be the on the margin, which is δ inside the boundary.
Note that the number of principal directions (PDs) is pretty
low compared to the dimensionality of the feature vector.
Along with these raw PDs, we consider upto third-order
interactions, i.e. simple unweighted linear combination of
PDs (p[i]+p[j] and p[i]+p[j]+p[k], Line 37-40, Algorithm
1, p[·] is the list of PDs) ignoring duplicates, which we found
to be empirically sufficient for all our studies. Thus, our
augmentations are deterministic (not random), conditioned
on the set of PDs.
The feature inversion procedure (feature→ input, Line 1-22,
Algorithm 2) deviates from the vanilla implementation [2]
in three aspects. First, we initialize the input tensor with



the inverted class-prototypical mean (Line 9, Algorithm 2).
Second, we employ the normalized L2 function as the dis-
tance metric (Line 14, Algorithm 2). Third, we replace the
vanilla gradient descent with its momentum-based counter-
part [5] (Line 18-19, Algorithm 2). All these modifications
are empirically found to expedite the convergence.
The forward learning rate (αf ), momentum (m), and reverse
learning rate (α) are set to 0.05, 0.9, and 1.0 respectively.
We use the value of 0.2 as our normalized margin (δ) based
upon the ablation study presented in Table 4 of the main
paper. The rest of the parameters are set similarly to the
baselines. All these configurations will be open-sourced
with the codebase.

2. Additional Experiments

The effect of stat alignment loss during model inversion:
Model inversion-based methods like DeepInversion, ABD
and R-DFCIL use the BatchNorm (BN) statistics to compute
a regularization loss that aligns the synthetic and real data
distributions during model inversion. This loss is based on
the KL divergence between the synthetic data distribution
and the BatchNorm distribution of the previous task model,
which reflects the real data statistics from the previous train-
ing. However, our backbone architecture, DG-STA [1], does
not have BatchNorm layers and thus this loss term is not
included. To investigate how the stat alignment loss affects
model inversion for these baselines, we replace the Layer-
Norm layers with BatchNorm layers in DG-STA and run
additional experiments.
Table 1 and 2 show the results for SHREC-2017 and EgoGes-
ture3D setups, respectively. As can be seen, the incorpora-
tion of the BN layer does not change the overall ranking
of the methods. With BN, our proposed approach achieves
significantly higher global accuracy in each stage there with
12.1% and 9.9% improvements on average for SHREC-2017
(Table 1) and EgoGesture3D (Table 2), respectively, over the
next best methods. Such improvements are also accompa-
nied by the lower mean instantaneous forgetting in general
– 0.9% and 3.7% lower IFM than the second best method
for SHREC-2017 (Table 1) and EgoGesture3D (Table 2),
respectively. Therefore, regardless of the choice of normal-
ization layers, BOAT-MI excels the SOTA methods by a
large margin.
Performance degradation/comparison to when all data
is available, with large number of incremental stages:
We first clarify that the upper bound of performance when all
data is available – 75.8% – is reported on the “Oracle” row
of Table 3 in our paper. To study this further with large num-
ber of incremental stages, we experimented with an extreme
incremental learning setting on EgoGesture3D, where we
added one class at a time to a model trained on the 59 base
classes. Concretely, instead of adding 4 classes at a time over

6 incremental stages (as in paper), we added 1 new class at
a time over 24 incremental stages. These results are shown
in Figure 2 for both global accuracy and IFM. Our (BOAT-
MI’s) performance drops by about half after 24 incremental
stages – much lower compared to SOTA methods.

Figure 2: Global accuracy (%) and IFM (%) for 59 + 1× 24 setup on EgoGes-
ture3D dataset. Like other setups, our BOAT-MI excels the SOTA approaches here as
well. Best viewed in digital format.

3. EgoGesture3D Processing
The new 3D skeleton dataset used in this paper is the deriva-
tive of the EgoGesture [8] comprising RGB-D images. Fol-
lowing the nomenclature of the parent dataset, we call it
EgoGesture3D. Thanks to the MediaPipe [7] API that we
use for 3D skeleton extraction from the images. The tem-
poral association is turned on during the detection process
with minimum detection and tracking confidences of 0.8 and
0.5, respectively. These numbers are chosen empirically for
better extraction results.

However, merely using the extracted output from the tempo-
rally segmented gesture sequences is problematic for several
reasons. First, the MediaPipe API fails to detect all the key-
points in all frames successfully. Next, it detects additional
spurious hands (more than 2) in some of the frames. Also, in
a few cases, for two hands detection, we find the handedness
prediction to be the same (both left or both right hands).
These issues are resolved with proper heuristics for each
frame independently following the temporal detection with
MediaPipe. Moreover, the baseline DG-STA model provides
the optimal performance with 8 frames generally equally
distant along the time dimension. Therefore, we save the
samples with at least 8 frames of successful detections. In
this regard, we experimented with interpolating with the less
number of original frames. We find the oracle accuracy com-
paratively much lower that prevents us from saving samples
with less than 8 frames. For the single-handed gestures, the
values for the keypoints representing the absent hand are set
to zeros. Very occasionally hand swapping occurs for just a
few frames (i.e. 1-2 frames detect right hands with all others
left). We keep these detections unchanged as some gestures
may contain one hand mostly with the other in a cameo.
Figure 3 and 4 show sample gestures in each column with
the 2D projection of the skeleton on top of the corresponding
RGB images.



Figure 3: 2D projection of the EgoGesture3D skeletons on EgoGesture RGB images. (Top to bottom) Each column shows the
temporal sequence for a single gesture (8 successfully detected frames selected in temporal order at random). (Left to right)
[1] wave palm towards right; [12] zoom in with two fingers; [16] click with index finger; [39] wave hand; [48] grab.



Figure 4: 2D projection of the EgoGesture3D skeletons on EgoGesture RGB images. (Top to bottom) Each column shows the
temporal sequence for a single gesture (8 successfully detected frames selected in temporal order at random). (Left to right)
[8] zoom in with two fingers; [21] static fist; [28] number 4; [49] walk; [66] thumb towards left.
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