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Abstract

Codec Avatars are a recent class of learned, photore-
alistic face models that accurately represent the geome-
try and texture of a person in 3D (i.e., for virtual real-
ity), and are almost indistinguishable from video [27]. In
this paper we describe the first approach to animate these
parametric models in real-time which could be deployed
on commodity virtual reality hardware using audio and/or
eye tracking. Our goal is to display expressive conver-
sations between individuals that exhibit important social
signals such as laughter and excitement solely from la-
tent cues in our lossy input signals. To this end we col-
lected over 5 hours of high frame rate 3D face scans across
three participants including traditional neutral speech as
well as expressive and conversational speech. We investi-
gate a multimodal fusion approach that dynamically identi-
fies which sensor encoding should animate which parts of
the face at any time. See the supplemental video which
demonstrates our ability to generate full face motion far be-
yond the typically neutral lip articulations seen in compet-
ing work: https://research.fb.com/videos/audio-and-gaze-
driven-facial-animation-of-codec-avatars/

1. Introduction
Advances in representing photorealistic avatars have

greatly improved in recent years [30, 15, 5, 27, 28], how-
ever, the ability to animate these avatars in real-time for
augmented or virtual reality (AR/VR) applications remains
limited [44, 17]. The state of the art in driving these avatars
requires a lengthy user-specific setup process [27], cus-
tom hardware configurations not amenable to commercial
AR/VR, and/or a team of technical artists mapping facial
motions from a single user to their own avatar [30, 15]. With
ideal, sensor-heavy inputs (i.e. cameras pointed clearly at
the face) these approaches can accurately display a user’s
facial expressions, but even at best expressive speech tends
to be poorly represented [44]. In this work we investigate
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Figure 1. Our Multimodal VAE-based model predicts facial coef-
ficients that animate a photorealistic “Codec” avatar model using
only audio and gaze as input. Face images are renders from coef-
ficients generated by our model.

an approach for driving a photorealistic model only using
sensors that can be obtained with commodity hardware. Mi-
crophones are available on all VR headsets and eye tracking
is available on several developer-focused AR/VR devices.1

Recent audio-driven facial animation efforts have suf-
fered from a severe lack of data that often consist of only
minutes worth of high quality facial capture (i.e., [12, 22]).
One goal of this work was to investigate what kind of data
is necessary to build an expressive audio-focused animation
model. To this end we collected over 5 hours of data con-
sisting of expressive, dyadic conversations across three peo-
ple which were processed using the capture pipeline in [27]
with paired audio, gaze, and facial coefficients per-timestep.
This allows us to investigate the impact of training on dif-
ferent data subsets, understand how diverse data actually
needs to be, and understand if our input modalities, and the
corresponding models, are sufficient for achieving plausibly
accurate expressive facial animation.

Multimodal fusion is a challenging problem, especially
when using lossy input modalities such as audio and gaze,
because there is not enough signal in either modality to ac-
curately predict a facial expression. While there are clear
correlations between speech and lip shapes there may not
be any indication of when someone smiles, raises their eye-
brows, or when they open their mouth to preempt another

1e.g., Vive Pro, Magic Leap One, & Qualcomm VR Dev Kit
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speaker. Likewise, gaze direction has a clear effect on the
eyes but it is unclear how gaze affects the lower face motion.
Standard fusion approaches tend to produce more muted fa-
cial motions where each input modality plays a more fixed
role, e.g. gaze only affects the eyes and audio affects the
lower face. We describe a simple-yet-effective approach for
dynamically updating how the model attends to each sensor
to jointly encode correlations such as how motion from eye
tracking features affect expressions like smiling.
Contributions. Our main contributions are summarized as:
(a) This is the first paper to provide an extensive study on

the variety of expressivity data (e.g., excited conver-
sations, descriptive tasks) required to animate natural
facial motion for photorealistic avatars only from au-
dio or from audio and eye tracking. Other approaches
rely on tiny amounts of high quality “expressive” data
(e.g., 3-5 minutes [22] versus our 5 hours) or moderate
amounts of neutral sentence reading [13, 36, 34].

(b) We are the first to demonstrate a real-time solution for
this problem using non-linear, photorealistic full-face
models of geometry and texture. Note this is harder
than geometry-alone [12, 22] due to non-linearities in
texture-based tongue motions and lip articulations.

(c) We discuss a fundamental issue with deep multimodal
models where the network effectively learns to ignore
one modality. To overcome, we describe a set of learn-
ing techniques, e.g. reconstruction of input modalities.
We show quantitatively that this improves performance
when paired with our dynamic, per-parameter multi-
modal fusion model, cf . Section 5.1.

At run-time our input is synced audio and gaze and output
is a vector of facial coefficients for an avatar. We suggest
viewing the supplemental video before reading this paper.

2. Related Work

Recent audio-driven animation efforts approaches have
focused on driving lip articulations [35, 33, 46], full-face
geometry [22, 16, 19, 8], and holistic video approaches [10,
45, 32]. Our work focuses on geometry and texture-based
full-face animation. We find encoding dynamic changes in
texture is critical for realistic lip and tongue motion.
Lower-face Synthesis. Taylor et al. [35] and Suwajanakorn
et al. [33] generate lower-face animation (offline) by tak-
ing low level audio features (Phoneme-based in [35] and
MFCCs in [33]) and predicting a set of coefficients corre-
sponding to 2D Active Appearance Models. Results from
Taylor et al. [35] are reasonable for neutral speech but lack
nuanced facial motion or non-neutral expression. Suwa-
janakorn et al. [33] provide compelling videos of former
President Barack Obama speaking, however, upper face ex-
pression comes from reference video and is not predicted.
Zhou et al. (VisemeNet) [46] show how data-driven ap-

proaches – using one hour of lower-face landmark data –
can be used to drive a set of artist-friendly visemes and jaw
and lip (JALI) controls. While they improve lip articula-
tion over their previous JALI model [14], they do not show
expression such as smiles, smirks, or non-speech.
3D Geometry. Karras et al. [22] use 3-5 minutes of tracked
3D geometry, per actor, to generate expressive speech ani-
mation using linear predictive coding (LPC) audio features.
While generating full-face animation is much harder than
lower-only, there is relatively poor lip closure and substan-
tial eyebrow swim. Similarly, Cudeiro et al. [12] collected
around 3 minutes of speech for each of the 12 participants
which they mapped to a learned FLAME [25] geometry
model. They achieved good lip closure but because their
captures all consisted of neutral speech the results are very
monotone. Greenwood et al. [19] and Eskimez et al. [16]
also look at full face animation but only predict sparse
landmark-based marker positions which hide a lot of nu-
ance included in high fidelity photorealistic avatars. A key
limitation in many of these approaches is that they rely on
phoneme- or phoneme-like approaches, which inherently
remove stylistic cues important for expressive speech.
Image-based Animation. There has been recent interest in
animating frontal face images using data in-the-wild (i.e.,
[10, 41, 32, 42]). Typically these GAN-based papers take a
single image and generate a video as if the person is speak-
ing. While impressive, they could not be used for our class
of VR use cases which assume parametric models of the
face. Brand [7] did some of the earliest work in this area, far
pre-dating GANs, by computing trajectories on a manifold
of possible facial motions. Chung et al. [10] generate full-
face animation using cropped frontal images using videos
in-the-wild. While their approach is inherently photoreal-
istic, their model seemingly only animates the lower face.
Recent work by Vougioukas et al. [41], Song et al. [32],
and Zhou et al. [45] have used GANs to add or improve
quality of full-face expression for frontal face images.
Traditional Audio-driven Animation. Existing audio-
driven approaches generate reasonable quality lip anima-
tions on low-fidelity stylized avatars [21, 1]. Solutions
rely on artist-defined lip shape models (visemes) and as-
sume a mapping between phonemes and lip articulations.
Extensions to the viseme model look uncanny when ap-
plied to photorealistic avatars, in part because of their in-
ability to distinguish between expressions (i.e., talking in
an excited versus sad manner) [36, 34, 14, 46]. Photo-
realistic avatars are frequently built on learned non-linear
representations that cannot be combined with artist-created
sculpts [27, 35, 22].

Other early work in this area [40, 11] demonstrated
audio-driven animation on photorealistic avatars such as
with active appearance models. Cao et al. [40] shows com-
pelling expressive animation but is based on a motion graph
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that requires offline post-processing to time-warp and blend
motion snippets. Cosker et al. [11] also works offline by
synthesizing a coherent texture map and stitching together
different regions of the face.
Multimodal and Time-series Modeling. We build upon
foundational work on variational autoencoders (VAEs) [23,
38, 20] and temporal convolutional networks (TCNs) [37,
24, 3]. Our approach uses the idea of learning a shared
latent space among different modalities, which has been
explored previously [29, 26]. Unlike [29] our approach
does not need explicit regularization of the latent space
by an adversarial loss and unlike [26] ours learns a direct
mapping from input to target modalities instead of learn-
ing a style/domain transfer. See [4] for an overview on
multimodal modeling. Our approach attempts to overcome
the following phenomenon: with high-capacity multimodal
models it is easy to overfit to one modality and thereby ig-
nore another, which has also been investigated in two recent
preprints [43, 31]. Wang et al. [43] describe an approach
that identifies when each modality starts to overfit – using
a held-out set – and introduces gradient blending to prevent
one modality from dominating the prediction. A preprint
by Shi et al. [31] describes a Mixture of Experts VAE
similar to ours except they assume that each input modal-
ity should provide overlapping information: i.e., averaging
modality-specific predictions provides a good estimate. In
our case audio and gaze are complementary and thus we dy-
namically, per latent parameter, identify how each modality
should be combined based on available signals at the time.

3. Multimodal VAE
Our goal is to generate realistic facial motion corre-

sponding to a photorealistic 3D avatar using only audio and
gaze as input. We use the deep appearance model of Lom-
bardi et al. [27] and denote a sequence of facial coefficients
as f = (f1, . . . , fT ) for all T time steps. Each vector of co-
efficients ft ∈ RDf is decoded into a mesh and texture map
using the facial decoder proposed in [27]. We assume cor-
responding audio and gaze input features a = (a1, . . . , aT )
and g = (g1, . . . , gT ) where at ∈ RDa , gt ∈ RDg . Audio
features, gaze, and facial coefficients are sampled at 100 Hz.

A straightforward approach, and one that we use as a
baseline, is to train a TCN-based regressor that takes in a
sequence of audio and gaze features and simply predicts
the facial coefficients for each time-step. This is similar
to what is done in [12] but applied to both of our modali-
ties. We show that this approach does not handle nuanced
and complementary interactions between each input modal-
ity, such as correlations between eye gaze and smiles or
speech and blinking. We propose an alternative approach
using a specially structured VAE that learns a shared map-
ping across sensor types and facial configurations, as shown
in Figure 2. This model has modality-specific encoders,
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mk m1, . . . ,mk
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encoder
. . . mk
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Figure 2. Our Multimodal VAE architecture. Given k input modal-
ities m1, . . . ,mk (k = 2 for audio and gaze in our case), k en-
coders compute an embedding Zmi for each modality. A mixture
encoder outputs a weight for each modality which is then used
to compute the shared latent embedding ZM. A set of decoders
reconstruct all input modalities and facial coefficients f from ZM.

modality-specific decoders, a facial coefficient decoder, and
a mixture encoder that determines how to combine infor-
mation from each modality. At training time, we force
the model to not only predict facial coefficients from audio
and gaze input but also to reconstruct both input modali-
ties. This strategy forces the model to focus on eyes and
mouth movement and improves the fidelity of the avatar.
At test-time we only need the encoders and facial coeffi-
cient decoder, however, we find that reconstructing the in-
put modalities at training time improves our model’s ability
to generalize to unseen data.

3.1. The Model

We start by setting notation and describing the standard
VAE [23] and then extend it to our multimodal VAE.
Preliminaries. Consider a VAE that maps input x to a la-
tent space Zx, i.e. the VAE learns an encoder q(Zx|x) and
decoder p(x|Zx) that maximize the evidence lower bound,

ELBOx = EZx [log p(x|Zx)]−KL[q(Zx|x)||p(Zx)] (1)

with KL[·] denoting the Kullback-Leibler divergence. As
in [23], we assume the latent prior p(Zx) is an isotropic
Gaussian with unit variance and the encoder q(Zx|x) mod-
els a Gaussian distribution with mean µx and diagonal co-
variances σ2

x. Optimizing the decoder p with the `2-loss,
the maximization of the ELBO is equivalent to minimizing
the loss

Lx = ‖x− x̂‖2 +KL[q(Zx|x)||p(Zx)], (2)
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where x̂ is the input reconstructed from the latent embed-
ding Zx, i.e. the output of the decoder p. The KL term
can be seen as a regularizer on the latent space, pushing it
towards an isotropic Gaussian. Note that optimizing the re-
construction error using the `2 loss ‖x − x̂‖2 corresponds
to maximizing p(x|Zx), assuming the distribution to be an
isotropic Gaussian with mean x̂.
Multimodal VAE. We formulate an alternative VAE archi-
tecture, depicted in Figure 2, that encodes multiple input
modalities mi ∈ M (i = 1, . . . , k) into a shared latent
space ZM using a mixture of per-modality embeddings.
The decoder should be able to reconstruct all input modal-
ities from this shared latent space, such that the model is
forced to maintain sufficiently detailed information about
the input modalities in the shared latent space. The multi-
modal loss is then L = Lrec + LKL, where

Lrec =
∑

m∈M
‖m− m̂‖2, (3)

LKL = KL
[
q(ZM|m1, . . . ,mM ∈M)||p(ZM)

]
. (4)

The latent embedding ZM depends on all input modali-
ties and is regularized towards an isotropic Gaussian prior
p(ZM).

Our input modalities are audio features a and gaze fea-
tures g, i.e.M = {a,g}. At run-time our goal is to predict
a set of facial coefficients, so we add an additional decoder
that is optimized to predict the facial coefficients from the
joint audio and gaze embedding ZM, see Figure 2 for an
illustration. Formally, the reconstruction loss from Equa-
tion (3) then becomes

Lrec = ‖f − f̂‖2 +
∑

m∈M
‖m− m̂‖2, (5)

i.e. all input modalities and the facial coefficients are recon-
structed from the shared latent embedding ZM.
Joint Embedding of Audio and Gaze. Our fusion ap-
proach, illustrated in Figure 2, takes an arbitrary set of M
modalities mi ∈M using predicted mean and standard de-
viation µm and σm for each input modality m such that

Zm ∼ N (µm, σ
2
m), (6)

where µm, σ
2
m ∈ RL withL being the dimensionality of the

latent space. A separate “mixture” encoder predicts mixing
coefficients πm for each modality. πm is a vector containing
a mixture weight for each component of the latent space
and is generated using a softmax layer so each element is
positive and sums to one across modalities:

∑
m πm,d = 1

for each coefficient d. The shared embeddingZM is defined
as a weighted sum of the latent random variables Zm of
each individual modality,

ZM =
∑

m∈M
πm � Zm, (7)

where � is the Hadamard product. Then,

ZM ∼ N
( ∑

m∈M
πm � µm,

∑
m∈M

π2
m � σ2

m

)
. (8)

During training, we regularize the joint embedding ZM to
follow an isotropic Gaussian prior using the KL divergence.

This approach was designed with two properties in mind.
First, each modality should be disentangled within the latent
space such that, if necessary, each modality can simultane-
ously drive a different part of the face. For example, if a
user speaks while darting their eyes around, the audio com-
ponent should help determine the mouth shapes and the eye
gaze should determine the eye shapes and upper face ex-
pressions. This suggests that the mixing weights should be
defined on a per-coefficient basis such that audio can drive
speech-related mouth shapes while eye gaze simultaneously
drives eye and upper face shapes. Second, at each point
in time the model should be able to dynamically identify
which modality is more useful for animating certain facial
expressions. When a user is talking then the audio should
drive the lip shapes, however, if there is silence then corre-
lations with eye gaze may help indicate other facial expres-
sions, such as smiling. Similarly, if there is a substantial
amount of background noise in the audio the model should
learn to ignore this signal without explicitly affecting the
gaze signal. We achieve this by introducing the a weighting
function that outputs the weights πm, updated at each time-
step, to determine the importance of each modality for each
latent coefficient.
Implications of the model formulation. In contrast to a
conventional regression model, this multimodal VAE has
several advantages. First, reconstructing the original in-
put modalities along with the facial coefficients forces the
model to maintain detailed information about both audio
and gaze in the shared latent embedding. We find this re-
sults in more accurate lip closure and eye movement of the
avatar. Second, the shared and weighted latent space pro-
vides some interpretability. More precisely, the model can
explicitly decide on the importance of each modality de-
pending on the temporal context. Third, the VAE formu-
lation with the Kullback-Leibler loss on the latent space is
more robust against noise and improves the overall qual-
ity of the model. An empirical evaluation in Section 5.1
shows the improvements of our proposed multimodal VAE
over a conventional regression baseline and ours without the
Kullback-Leibler loss.

3.2. Network Architecture

Our encoders and decoders are simple temporal convo-
lutional networks (TCNs) [24] with skip connections. Each
branch consists of one 1 × 1 convolution to resize the di-
mensionality of the input (per-frame) to a fixed number of

4



Figure 3. Left: facial landmarks used for evaluation. Right: gaze
features are pupil coordinates in a normalized coordinate system
defined by the eye corners and iris diameter.

channels (e.g., c = 128), a stack of temporal convolutions,2

and a set of output 1× 1 convolutions for generating µ and
σ (for encoders) or a single output for each decoder. Leaky
ReLU activations with leakage coefficient 0.2 are used af-
ter each convolution and skip connections are used between
every set of stacked convolutions. We investigated other ar-
chitectures, including using mechanisms such as key-value
attention [39], but ultimately found that results were only
incrementally better than this simpler TCN architecture.

4. Experimental Setup

Data. We captured 5 hours of high-density 3D scans of
three subjects from different ethnic backgrounds and gen-
der using a multi-camera capture system. Figure 1 shows
images of all three subjects. Tracked 3D meshes, a tracked
deep active appearance model, and head pose were ex-
tracted in a similar manner as described in Lombardi et
al. [27]. The subjects performed different types of tasks
during the capture that comprised a wide variety of facial
expressions and social interactions, e.g. reading sentences,
describing images, summarizing videos, trivia games, and
conversations with another person. For perspective, [22]
and [12] used 3 - 5 minutes of 3D data per person. A frame-
level deep face model was trained following [27] on a 45
minute subset of the data for each subject. Using the re-
sulting appearance encoder, each frame is then mapped to
a 256-dimensional vector of facial coefficients. Later, the
avatar is rendered using this appearance model which gen-
erates texture and geometry from our predicted facial coef-
ficients, cf . Figure 1. Two tasks are held out per subject for
evaluation which corresponds to roughly 25 minutes of test
data each. The remaining data is used for training. The eval-
uation sequences are (a) a conversational task containing a
variety of natural expressions such as laughter and smiles
and (b) an image description task with mostly neutral facial
expression and a stronger focus on lip synchronization.
Audio Features. We extract 80-dimensional mel spectro-
grams from the raw 16kHz wave signal using the torchaudio
pyTorch package. This feature extractor computes a spec-

2We use 5 layers per stack with kernel length=5 frames and
dilation=2l for layer l.

trogram using a short-time Fourier transform (STFT) every
10ms over a 50ms Hanning window and warps the result-
ing 2, 048 frequency bins at each timeframe onto an 80-
dimensional feature vector using the Mel-scale. Mel spec-
trograms are widely used in tasks such as speech recogni-
tion [9] and audio-visual speech processing [2].

Gaze Features. We compute 2D gaze coordinates for each
pupil using a normalized coordinate system as shown in
Figure 3 (right). The left and right corners of the eye are de-
fined as coordinates (−1, 0) and (1, 0), and the perpendicu-
lar axis is scaled using the radius of the iris. This represen-
tation is invariant to scaling, translation, and rotation within
the image plane. The pupil coordinates were extracted from
a frontal view of each user but conceptually this informa-
tion could also be extracted from a gaze tracker in a VR
headset. Accurate upper face expression (i.e., eyebrow mo-
tion) likely requires training models directly on raw images
from eye-directed cameras in a VR headset. This was inves-
tigated by Wei et al. [44] using custom multi-camera hard-
ware. The data collection and processing pipelines neces-
sary are highly non-trivial and are beyond our scope.

Evaluation Metrics. Subtle facial cues are difficult to
quantify but have a huge influence on human perception.
While we find the metrics described below to be informa-
tive, ultimately we recommend viewing the video in the
supplemental material for subjective evaluation.

For quantitative evaluation we render both the ground
truth 3D avatar reconstructions and the generated avatars as
videos with a resolution of 960×640 and measure errors af-
ter running a commercial facial landmark tracker (see Fig-
ure 3). We report the mean squared error on the landmarks
between the original data and the generated avatars for dif-
ferent facial regions, i.e. (1) for the 32 landmarks on the
mouth, (2) for the 13 landmarks on the nose, (3) for the 20
landmarks around the eyes, (4) for the 18 landmarks on the
eyebrows, and (5) averaged over all facial landmarks.

Lip closure is especially important for perceptual qual-
ity and is assessed by a second metric. We detect all lip
closures in the recorded data by determining when the land-
marks on the inner upper and lower lip match (i.e. when they
do not deviate by more than two pixels each) and compare
them to the lip closures detected in the generated avatars.
We report the F1-score to emphasize the importance of both
high precision and high recall.

5. Experiments & Analysis

We describe results for three ablation studies: a com-
parison of various models, investigations on training data
configurations, and the impact of different input modalities.
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Table 1. a-d: effect of the KL loss on different latent embeddings. d vs. e: effect of reconstructing audio and gaze features during training
vs. only predicting facial coefficients alone. f: a conventional regression baseline.

Landmark Error (↓) F1-score (↑)
eyebrows eyes nose mouth all lip closure

(a) no KL loss 4.27 6.84 2.27 20.46 15.15 0.557
(b) KL on Zm (m ∈ {a,g}) 4.18 6.08 2.12 19.03 14.12 0.569
(c) KL on ZM 4.00 5.62 1.99 17.95 13.36 0.546
(d) KL on Zm (m ∈ {a,g}) and ZM 4.06 5.49 2.06 18.42 13.42 0.521

(e) no audio/gaze reconstruction 4.18 6.05 2.15 19.42 14.22 0.534
(f) conventional regression 4.38 7.43 2.34 20.64 15.52 0.462
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els which each encode complementary signals.

Figure 4. Qualitative results of the rendered avatar.

5.1. Model Ablations

In this section, we analyze the components of our model
and compare the multimodal VAE to a conventional TCN-
based regression network. We show (a) that a structured
shared latent space leads to better models, (b) that recon-
structing the input modalities is beneficial for subtle facial
motion such as accurate lip closure, and (c) that our pro-
posed multimodal VAE yields more authentic and expres-
sive facial motion than a conventional regression baseline.
Structuring the Shared Latent Space. Conventional
VAEs learn a structured latent space by imposing a Gaus-
sian prior on the latent embeddings. For our multimodal
VAE, there are several strategies where to apply this prior.
The KL loss can either be applied to the per-modality em-
beddings Zm, to the joint embedding ZM as proposed in
Section 3.1, or to all Zm and ZM. A comparison of the
landmark errors and lip closure scores of the corresponding
experiments in Table 1b-d shows that structuring only the
per-modality embeddings is beneficial for lip closure but
degrades the overall facial geometry and appearance. Im-
posing the KL loss on the shared embedding ZM, on the
contrary, leads to consistent improvements in the landmark
error in all facial regions at the cost of only a minor degra-
dation in lip closure.

Applying the KL loss on the per-modality embeddings
and the shared embedding (Table 1d) is inferior to regular-
izing ZM only. Investigation of Equation (6) and Equa-
tion (8) shows that – in case the per-modality and shared
embeddings are both regularized towards an isotropic Gaus-
sian – the KL loss is minimized if the mixure weights are
either zero or one. Therefore, regularizing both, individual
and shared embeddings, strips the model of the ability to
interpolate between the embeddings of different modalities.

Training the multimodal VAE without a KL loss leads to
an unstructured latent space that is not particularly suitable
for interpolation between the observed training embeddings
and therefore does not generalize well enough on unseen
data. We empirically observe this issue in Table 1a, where
the landmark error is consistently worse than for any of the
KL regularized variants in lines b-d.

Reconstructing the Input Modalities. A comparison of
line c and e in Table 1 reveals that reconstructing the input
modalities improves performance. If the shared latent space
does not contain sufficient information about gaze and au-
dio, the model tends to overfit the training data and fails to
generate accurate lip closure, mouth shape, or eye move-
ment. We find the reconstruction of the input modalities
particularly important to generate subtle and fine-grained
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Table 2. Comparison of audio and gaze models on tasks that are neutral (image description) and expressive (conversation). Note the impact
of gaze on estimating the mouth shape and the impact of audio on accurate lip closure.

Landmark Error (↓) F1-score (↑)
eyebrows eyes nose mouth all lip closure

conversation
only audio 5.03 13.70 4.19 32.67 25.70 0.437
only gaze 4.20 5.92 3.11 32.94 20.03 0.062
audio + gaze 3.66 6.05 2.49 22.95 15.71 0.450

descriptive
only audio 5.05 9.88 1.73 13.08 14.05 0.650
only gaze 4.78 5.27 1.89 22.95 14.88 0.075
audio + gaze 4.49 5.01 1.30 10.79 9.99 0.677

facial motion and expressions.
Multimodal VAE vs. Regression Baseline. We trained a
baseline regression-based TCN that receives the concate-
nated audio and gaze features as input and predicts the fa-
cial coefficients directly. The size of the TCN is compara-
ble to our multimodal VAEs. Conceptually this is similar to
what Cudeiro et al. [12] used for audio-alone except in our
case we use audio and gaze. We find the baseline performs
significantly worse than the proposed multimodal VAE in
landmark errors and lip closure (Table 1c and f). The re-
gression model tends towards more neutral expressions and
fails to capture more articulated expressions such as excite-
ment with widely opened eyes and raised eyebrows or subtle
lip motion and accurate lip closure for plosives such as “p”
(Figure 4a).

One strength of the multimodal VAE is its capability to
dynamically decide on the weight each modality gets. Fig-
ure 5 shows the mixture weights of the audio modality for
each component of the latent space over a one second long
snippet. Interestingly, the model learns to use some latent
components exclusively for a single modality. Specifically,
the blue horizontal stripes represent components for which
the audio weight is always zero, i.e. components that ex-
clusively encode gaze information. The yellow horizontal
stripes are purely dedicated to the audio modality. Many la-
tent components use a mixture of the input modalities that
varies over time depending on the temporal context.

5.2. Modality Ablations

Subject Comparisons.
We compare our full system with single modality ver-

sions to analyze the impact each signal has on encoding dif-
ferent types of facial expressions. Experiments were evalu-
ated on “image description” and “conversational” tasks with
a single-input version of the architecture outlined in Fig-
ure 2, i.e. without the weights encoder and decoders for the
held-out modalities. See results in Table 2. As expected,
the landmark error around the eyes is large when only using
audio and low when using the gaze input. It was also of no
surprise that the gaze modality fails to predict lip closure.
Performance for the mouth shape estimation was more sur-
prising. For the image description task, the audio modality

Figure 5. Mixture weights (per parameter) from a 1 second test
clip. Some latent components (yellow rows) always use the audio
embedding, others (blue rows) always use the gaze embedding.
The rest (varying colors) change dynamically based on the input.

avg errorlower than avg higher than avg

Subject 1
(Male/White)

Subject 2
(Male/Asian)

Subject 3
(Female/African American)

eyebrows eyes nose mouth lip closure

Figure 6. Relative errors per subject compared to the errors aver-
aged over all subjects. Red indicates errors that are proportionally
larger than the averaged errors, blue is lower than average.

accurately models the mouth shape estimation and the gaze
modality fails to achieve comparably good results. For the
conversational task, surprisingly both modalities have huge
errors for the mouth shape. In this task the user frequently
smiles, laughs, and gives the other person quizzical expres-
sions. While the audio may pick up on speech related lip
motion and loud laughter, we find that non-verbal, voiceless
expressions like smiling are more reliably predicted from
gaze, see Figure 4b for an example. Within the given data
captures, smiles and laughter have strong co-occurring gaze
patterns where the user squints their eyes and looking down-
wards, and can therefore be picked up without audio input.
While each modality is indeed complementary, combining
both results substantially improved performance as shown
in Table 2.

5.3. Data Ablations

It should be no surprise that the kind of data used for
training is critical for the results. In this section, we in-
vestigate the impact of different subjects, monotone versus
expressive tasks, and different audio features.
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Table 3. Impact of training data on different test tasks for landmark
error and lip closure (Subject 1).

train data test data
descriptive #2 conversation #2

↓ landmarks / lips ↑ ↓ landmarks / lips ↑
descriptive #1 8.38 / 0.715 35.66 / 0.234
conversation #1 13.22 / 0.429 14.56 / 0.216
all 8.97 / 0.712 16.06 / 0.275

Figure 6 shows a per-subject breakdown of the errors rel-
ative to the averaged errors over all subjects. Red means the
error is proportionally larger than for the average over sub-
jects, blue means it is lower. The largest outlier is the eye
error for Subject 2 who has has smaller eyes than the other
subjects and a dark iris which makes pupil tracking less re-
liable. It is also interesting to observe results from Subject
3, a trained actress, in the supplementary video. She heav-
ily moves her eyebrows during expressive speech, which is
hard to synthesize correctly from only audio and gaze and
leads to increased errors in that facial region. We attribute
Subject 1’s slightly increased mouth landmark errors and
lip closure errors to his frequent open-mouthed smiles and
his tendency during conversations to open his mouth while
silent to show an intent to speak. These voiceless mouth
movements particularly impact lip closure and mouth shape
prediction.
Training Data Characteristics. While deep neural net-
works excel at interpolating within the training distribution,
they typically struggle to extrapolate beyond it. This is
what has limited most prior work to generating monotone-
looking speech; typical datasets simply include neutral read
sentences as their training data. We show that a diverse
dataset with both expressive and descriptive speech is key
to not only accurate but also authentic facial animation.

Table 3 shows the performance of our approach when
training the same model on three different subsets of the
data. The descriptive tasks tend to be largely monotone,
the conversational tasks tend to be more lively, and all in-
cludes a mixture of many types of expressive and descrip-
tive speech. We evaluate on held out descriptive speech
and expressive conversation to illustrate how the nature of
training data affects different test scenarios. As expected,
when training on the descriptive tasks and testing on con-
versational tasks the landmark error is poor, because the
model does not generate as many expressions like smil-
ing and laughter. Likewise when trained on conversational
tasks the descriptive results deteriorate since all generated
facial motion is more extreme than it should be. Overall,
we find that descriptive data is responsible for accurate lip
closure whereas conversational data is crucial to capture a
wide range of expressions. As one would hope, when train-
ing on both, descriptive and expressive speech, the model
generates both muted and expressive results when needed.

Table 4. Impact of different audio features (Subject 1).
Mouth Error (↓) lip closure (↑)

audio features (landmark error) (F1 score)

phonemes 20.74 0.251
mel spectrograms 20.53 0.465
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Figure 7. Our model encodes subtle audio cues such as wetting
your lips with your tongue, which are only represented by a short
high-frequency segment in the spectrogram.

Phonemes vs. Mel Spectrograms. Phonemes are a pop-
ular mid-level representation in speech processing [6, 18]
and also find application in face animation [35, 14, 46].
We therefore compare results when using phonemes ver-
sus mel spectrograms. Phoneme models are trained to ro-
bustly recognize which out of 43 phonemes a user is say-
ing and inherently abstract away the subtleties of speech.
Figure 7 shows that we are capable of picking up very nu-
anced sounds such as licking your lips which is encoded by
a tiny blip in the high frequency information. This is not
encoded in the phoneme-based model. While this example
may not generalize to low quality microphones or noisy en-
vironments, it highlights one of many signals that are lost
from phoneme-based encodings. We find that the kind of
training data, as described above, has a larger impact than
the choice of audio features, however, Table 4 indicates a
substantial improvement in lip closure using mel spectro-
grams and a modest improvement in expressivity. This is
shown in more detail in the supplemental video.

6. Conclusion
In this work we showed that with a sufficient amount

of expressive animation data we are able to map from raw
audio to expressive facial animation. We find that in gen-
eral our approach to multi-modal fusion is able to over-
come limitations with models overfitting to individual sen-
sors and improves animation performance. In the supple-
mental video we show that the quality of lip articulations
from our audio-only solution can even surpass the quality
from video-based solutions such as [44] which uses mouth
and eye cameras. Future work may look at combining our
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audio-driven model with this video-based solution.
Ethics Remarks. This work, and work on photorealistic
avatars more broadly, have strong implications on privacy
and should be approached with caution if considering real-
world use cases. Restricting avatar access, for example with
biometrics, is critical for preventing misrepresentation. Fur-
thermore users should be made aware of how their avatar is
being portrayed, potentially in real-time, to prevent issues
where the predicted facial expression does not match the
user’s intent.
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