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Discriminative approaches for human pose estimation model the functional mapping, or conditional
distribution, between image features and 3D poses. Learning such multi-modal models in high dimen-
sional spaces, however, is challenging with limited training data; often resulting in over-fitting and
poor generalization. To address these issues Latent Variable Models (LVMs) have been introduced. Shared
LVMs learn a low dimensional representation of common causes that give rise to both the image features and
the 3D pose. Discovering the shared manifold structure can, in itself, however, be challenging. In addition,
shared LVM models are often non-parametric, requiring the model representation to be a function of the
training set size. We present a parametric framework that addresses these shortcomings. In particular, we
jointly learn latent spaces for both image features and 3D poses by maximizing the non-linear dependencies
in the projected latent space, while preserving local structure in the original space; we then learn a
multi-modal conditional density between these two low-dimensional spaces in the form of Gaussian Mixture
Regression. With this model we can address the issue of over-fitting and generalization, since the data is
denser in the learned latent space, as well as avoid the need for learning a shared manifold for the data.
We quantitatively compare the performance of the proposed method to several state-of-the-art alternatives,
and show that our method gives a competitive performance.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Monocular pose estimation has been a focus of much research in
computer vision due to abundance of applications for marker-less
motion capture (MoCap) technologies. Marker-less MoCap spans a
large number of application domains including entertainment, sport
rehabilitation and training, activity recognition, human computer in-
teraction and clinical analysis. Despite much research, however, mon-
ocular pose estimation remains a difficult task; challenges include
high-dimensionality of the state space, image clutter, occlusion, light-
ing and appearance variation, to name a few.

Most prior methods can be classified into two classes of ap-
proaches: generative and discriminative. Generative approaches [1,2]
define an image formation model by predicting appearance of the
body x given a hypothesized state of the body (pose) y; an inference
framework is then used to infer the posterior, p(y|x)∝p(x|y)p(y)
over time. Since the inference often takes the form of non-convex

search in a high-dimensional space of body articulations, thesemethods
are computationally expensive and can suffer from local convergence
(typically requiring a good initial guess for pose to seed the inference).

Discriminative approaches [3–16] avoid building an explicit imag-
ing model, and instead opt to learn regression function, y= f(x), that
maps from image features, x, to 3D poses, y; or probabilistically, a
conditional distribution p(y|x) directly. The main goal is to learn a
model from labeled training data, {x(i),y(i)}i=1

N , that provides efficient
and effective generalization for new examples at test time. The diffi-
culty with this class of methods is two-fold: (1) the conditional prob-
ability of poses given image features, p(y|x), is typically multi-modal:
different image features can be explained by several 3D poses; and
(2) learning high dimensional regression functions, or conditional
distributions, using limited training data is challenging and often re-
sults in over-fitting. Here we focus on discriminative pose estimation.

To deal with multi-modality, on the parametric side, mixture
models were introduced, e.g., Mixture of Regressors [4] or Mixture
of Experts [14]. On the non-parametric side, local models that
cluster data into convex sets and use uni-modal predictions within
each cluster became popular (e.g., Local Gaussian Process Latent
Variable Models (Local GPLVM) [16]). In both cases over-fitting and
generalization remained an issue, due to the need for large training
datasets, as noted in [12] (Fig. 1).
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To alleviate the need for large labeled datasets Latent Variable
Models (LVMs) were introduced as an intermediate representation.
Kanaujia et al., [11], proposed Spectral LVMs to learn a non-linear la-
tent embedding of the 3D pose data and a separately trained mixture
model to map from the image features to the plausible latent posi-
tions in the sub-space. The relationship between the image features
and latent space, however, was assumed to be linear within eachmix-
ture component.

Most traditional LVMs attempt to preserve distances between
points in the original high-dimensional space. For example, if two
human poses are close in the original space (according to some
predefined distance metric), their latent representatives in the
low-dimensional space should also be close and vice versa. Several la-
tent variable techniques have been proposed to preserve the
non-linear (or linear) structure of the high-dimensional data in the
low dimensional space. He et al. proposed Locality Preserving Projec-
tions (LPP) to find the optimal linear approximation to the
eigenfunctions of the Laplace Beltrami operator on the manifold
[20]. Weinberger et al. presented maximum variance unfolding
(MVU) which preserved distance by learning a kernel matrix [21].
Song et al. extended this method by Colored Maximum Variance
Unfolding, and maximized the variance aligning with the side infor-
mation (e.g. , labeled information), while preserving the local distance
structures from the data [22]. However, all these methods are intro-
duced in the context of learning a single low-dimensional representa-
tion for the data (e.g. , either image features or 3D poses, but not both);
they contain no notion of input–output relationship between the fea-
tures and poses that would facilitate discriminative inference.

As an alternative, Shared Gaussian Processes Latent VariableModel
(Shared GPLVM) was introduced in [12] and [17], where the latent
embedding was learned to preserve the joint structure of image fea-
tures and 3D poses simultaneously; the forward non-linear mappings
from the latent space to the input and output spaces were also learned
at the same time. Due to the lack of backwardmapping from the image
features (and 3D poses) to the latent space, inference remained ex-
pensive, requiring multiple optimizations at the cost of O(N2), where
N is the number of training examples. Shared Kernel Information
Embeddings (sKIE) [18] provided closed form mappings to and from
the latent space reducing the training and inference complexity by
an order of magnitude. Shared GPLVM and sKIE are compelling, but
are inherently non-parametric, with the model complexity being a
function of the training set size; while this made them effective with
small dataset it prevented their use with larger datasets. Alternatively,
Supervised Local Subspace Learning (SL2) [23] can learn directly a
non-linear mapping from the feature space to the pose space without
previously learning a joint latent space. SL2 re-sample the pose space,
and learn amixture of local subspaces, one for each resampled point in
the pose space. This featuremakes SL2 robust to non-uniform distribu-
tion of the feature space. Unfortunately, in our case, the pose space is
high-dimensional and it will be computationally expensive to uni-
formly sample the input space (i.e. , pose space).

Dimensionality reduction for regression (DRR) techniques, instead
of learning a joint embedding, opt for learning of a low-dimensional

manifold embedding of the input data such that it preserves most, if
not all, the necessary information for regression to the desired output.
One way to formulate the DRR task is using the notion of sufficiency
in dimension reduction (SDR) which find the subspace bases (or
basis functions) such that the projected input yields the outputs inde-
pendent of the original covariates. Manifold Kernel Dimensional Re-
duction (mKDR) presented in [24] is one such example, however, it
involves a nonconvex optimization, potentially suffering from the
existence of local minima. Alternatively, Covariance Operator Inverse
Regression [25] generalizes Inverse Regression (IR) to nonlinear
input/output spaces without explicit target slicing, but it assumes
that the inverse regression is a smooth function.

We extend our work in [19], and propose Canonical Local Preserv-
ing Latent Variable Model (CLPLVM). Our formulation also extends
[26], where traditional Canonical Correlation Analysis (CCA) was gen-
eralized to discover the low-dimensional manifold structure by
maintaining the local information in the multiple data set. Similar to
[26], we construct a cost function to find two sets of latent variables
that keep local structure of the input image features and of the output
3D poses respectively, in their original high-dimensional spaces, while
maximizing the correlation between related input and output latent
variables at the same time.

Unlike [26], we also learn a multi-modal joint density model be-
tween the latent image features and the latent 3D poses, in the form
of a Gaussian Mixture Model (GMM). GMM allows us to deal with
multi-modality in the data and derive explicit conditional distribu-
tions for inference, in the form of GaussianMixture Regression (GMR).

2. Review of CCA and KCCA

2.1. Canonical Correlation Analysis (CCA)

CCA is a technique to extract common features from a pair of
multivariate data. CCA, first proposed by Hotelling in 1936 [27], iden-
tifies relationships between two sets of variables by finding the linear
combination of the variables in the first set (e.g. , image features) X=
{x1,x2,…xN}∈ℝD×N (see notation1), that are most highly correlated
with a linear combination of the variables in the second set Y={y1,
y2,…yN}∈ℝM×N (e.g. , 3D poses). N is the number of input–output
points/pairs in our training dataset, D is the dimensionality of the
image observations, and M is the dimensionality of the target 3D
poses. Canonical Correlation Analysis solves for two projection matri-
ces Bx∈ℝD×d

x and By∈ℝM×d
y which project the data into low-

dimensional latent spaces that makes X and Y maximally correlated
(dxbbD and dybbM). There exist several formulations for CCA, see

1 Bold capital letters denote matrices (e.g., D), bold lower-case letters represent col-
umn vectors (e.g., d). All non-bold letters denote scalar variables. dj is the jth column of
the matrix D .dij denotes the scalar in the ith row and jth column of D. ||d||22 denotes the
squared norm of the vector d. Tr(A)=Σiaii is the trace of the matrix A. D=diag(a) is an
operator that transforms a vector a into a diagonal matrix D such that dii=ai. Ik de-
notes a k×k identity matrix.

Fig. 1. Graphical model representations of models used for discriminative human pose estimation, including Regression Models [3,13], Mixture Models (e.g., Mixture of Experts
(MoE) [4,14]), Spectral Latent Variable Models (SLVM) [11], Gaussian Process Latent Variable Models [17,12], Shared Kernel Information Embeddings (sKIE) [18], Latent Gaussian
Mixture Regression (Latent GMR) [19] and our Canonical Local Preserving Latent Variable Model. In all illustrations x denotes observed input variable corresponding to image fea-
tures, y denotes the inferred 3D poses, and z corresponds to auxiliary latent variables (in case of Mixture of Experts (MoE) corresponding to the latent mixture component identity).

224 Y. Tian et al. / Image and Vision Computing 31 (2013) 223–230



[28] for a review. The projection matrices can be obtained by solving
the following optimization problem [27,29,28]:

minBx ;By
−Tr BT

xXY
TBy

! "

s:t: BT
xXX

TBx ¼ I
BT
yYY

TBy ¼ I:
ð1Þ

The constraints in Eq. (1) avoid the trivial solution of the projection
matrices being unbounded and normalize the scale variance. Taking
derivatives with respect to Bx and By, it is easy to show that the critical
points of the CCA correspond to the solutions of the following general-
ized eigenproblem (GEP):

0 XYT

YXT 0

# $
bx
by

# $
¼ λ XXT 0

0 YYT

# $
bx
by

# $
: ð2Þ

In regularized CCA [27,29], a regularization term γI, with γ>0, is
added to prevent over-fitting and avoid singularity. Specifically, regu-
larized CCA solves the following generalized eigenvalue problem:

0 XYT

YXT 0

# $
bx
by

# $
¼ λ XXT þ γI 0

0 YYT þ γI

 !
bx
by

# $
: ð3Þ

2.2. Kernel Canonical Correlation Analysis (KCCA)

One of the drawbacks of CCA is its limited ability tomodel non-linear
dependencies between both sets that is essential in our application.
Non-parametric KCCA [30,31] uses kernel methods to learn non-linear
relations between two data setswithout local minima (the resulting so-
lution is a GEP).

Let X and Y be mapped into a Hilbert space through a non-linear
mappings Ф and Ψ respectively. KCCA finds the (possible infinite di-
mensional) projectionmatrices BФ(x) andBΨ(y) thatmaximize the cor-
relation in the Hilbert space, that is:

minBΦ xð Þ ;BΨ yð Þ
−Tr BT

Φ xð ÞΦ Xð ÞΨ Yð ÞTBΨ yð Þ

! "

s:t: BT
Φ xð ÞΦ Xð ÞΦ Xð ÞTBΦ xð Þ ¼ I

BT
Ψ yð ÞΨ Yð ÞΨ Yð ÞTBΨ yð Þ ¼ I:

ð4Þ

Making use of the representer theorem [32], the projection matri-
ces can be expressed as a linear combination of the training samples,
that is:

BΦ xð Þ ¼ Φ Xð ÞαΦ xð Þ
BΨ yð Þ ¼ Ψ Yð ÞβΨ yð Þ:

ð5Þ

Using the previous expression, solving the KCCA problem is then
equivalent to finding αΦ(x) and βΨ(y), such that

minαΦ xð Þ ;βΨ yð Þ
−Tr αT

Φ xð ÞKxK
T
yβΨ yð Þ

! "

s:t: αT
Φ xð ÞKxKxαΦ xð Þ ¼ I

βT
Ψ yð ÞKyK

T
yβΨ yð Þ ¼ I;

ð6Þ

where the Gram matrix Kx=Ф(X)TФ(X),Ky=Ψ(X)TΨ(X) can be
expressed as a dot product in the Hilbert space. Similar to CCA, it is
necessary to regularize the solution to avoid overfitting and rank-
deficiency. The regularized KCCA problem has also a closed-form solu-
tion in terms of a GEP:

0 KxKy
KyKx 0

# $
αΦ xð Þ
βΨ yð Þ

# $
¼ λ

KxKx þ γI 0
0 KyKy þ γI

# $
αΦ xð Þ
βΨ yð Þ

# $
: ð7Þ

3. Canonical Local Preserving Latent Variable Model

CCA models relation between the observation variables and the
target variables in the linear latent spaces, while KCCA extends this
relationship to non-linear latent spaces. As the intrinsic dimensional-
ity of the data is typically much lower, regression between latent
spaces found by CCA and KCCA tend to perform better than regression
in the original space of image features and 3D poses. This is especially
the case when the training data is limited, as will be illustrated in
Section 5. However, both CCA and KCCA can be sensitive to lack of
training data and regularized approaches introduce a prior in the la-
tent space, that typically biases the solution. In this paper, we explore
the use of a more natural generative regularizer. We propose Canon-
ical Local Preserving Latent Variable Model (CLPLVM) that adds addi-
tional regularized terms that preserve local structure in the data
while preserving appealing properties of CCA and KCCA.

Similarly to CCA, CLPLVM finds two projectionmatrices Bx∈ℝD×d
x

and By∈ℝM×d
y such that the data in the two dimensionality-reduced

spaces are maximally correlated. In doing so, however, it preserves
local distances in both of those spaces. Moreover, we take
multi-modality into consideration, by considering similarity between
points (for distance preservation) only when their observation and
target variables are both within local neighborhoods.

Formally, we formulate the CLPLVM model as the following opti-
mization problem over projection matrices Bx and By:

minBx ;By
θx=2Tr BT

xXLxX
TBx

! "
þ θy=2Tr BT

yYLyY
TBy

! "
−Tr BT

xXY
TBy

! "

s:t: BT
xXX

TBx ¼ I
BT
yYY

TBy ¼ I;

ð8Þ

where the first two terms corresponds to Locality Preserving Projec-
tions [20] and are responsible for preserving the local distances in
the two latent spaces. Lx and Ly are the Laplacianmatrices from the ad-
jacencymatricesWx andWy given a neighborhood adjacency graph G.
The last term ensures that the two latent spaces are maximally corre-
lated. Consequently, θx and θy are weighting coefficients that control
the contributions of these terms to the overall objective; A necessary
condition for the minimum of the previous equation can be obtained
taking derivatives with respect to Bx and By. After some linear algebra,
it can be shown that the solution corresponds to the following GEP:

θxXLxX
T −XYT

−YXT θyYLyY
T

 !
Bx
By

# $
¼ λ XXT 0

0 YYT

# $
Bx
By

# $
: ð9Þ

The only thing remaining to learn CLPLVM is the specification of
the adjacency graph and the corresponding weights.

3.1. Construction of the adjacency graph

LetG denotes a graphwithN nodes,whereN is the number of input–
output training pairs corresponding to image features and 3D poses:
X={x1,x2,…xN} and Y={y1,y2,…yN}. The adjacency graph should tell
us for every input–output pair {xi,yi} a set of training pairs that arewith-
in I's neighborhood. Note that our method is different from [20], as an
edge between nodes i and j is added if both xi−xj and yi−yj are
close. We considered two variations:

• ε-neighborhoods. Nodes i and j are connected by an edge if ∥xi−
xj∥22+∥yi−yj∥22bε, where ε is the user specified constant related
to the desired neighborhood size.

• k nearest neighbors. Nodes i and j are connected by an edge if xi is
among k nearest neighbors of xj and yi is among k nearest neighbors
of yj according to Euclidean distance in the two spaces.
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In practice, we found k nearest neighbor method to be efficient
and work well. Hence, this is the method we used in the remainder
of the paper, including all the experiments. For all experiments we
used k=12 as the neighborhood size.

3.2. Computing the weights

Here, we also have two potential variants for the weighting of the
edges.Wx andWy are sparse symmetric N×Nmatrices with elements
Wx,ij/W∅ut,ij having the weight of the edge joining vertices i and j in
the corresponding two spaces, and 0 if there is no such edge.

• Heat kernel. If nodes i and j are connected, then Wx;ij ¼ e
−∥xi−xj ∥22

tx ,

Wy;ij ¼ e
−∥yi−yj∥22

ty , otherwise Wx,ij=0, Wy,ij=0.
• 0/1 kernel. Wx,ij=1 and Wy,ij=1 if and only if vertices i and j are
connected by an edge.

Notice that with 0/1 kernel Wx=Wy. We found 0/1 kernel to be
less effective than the heat kernel because it binarizes the distances.
Hence, we use the heat kernel method for the weight assignment in
the remainder of the paper, including all the experiments (the kernel
parameters, chosen by cross validation, are tx=10 and ty=1).

The CLPLVMmodel computes closed-form linear mappings for the
input features x and output 3D poses y to their corresponding latent
spaces, e.g., zx=BTxX and zy=BTyY, where zx ℝd

x, zy ℝd
y. However,

3D pose inference, in addition, requires a mapping or a distribution
between zx and zy. If one assumes a unimodal relationship between
the two latent spaces, linear regression or a joint Gaussian density
are reasonable choices as the two spaces are, by formulation, maxi-
mally correlated. In human pose inference, however, this is not the
case and the mapping can and is, in general, multi-modal. Various
forms of non-parametric regression can be used as an alternative.
However, the complexity of non-parametric methods is typically
high, being a function of the training set size and making the model
hard to scale to large datasets. As a consequence, we propose to use
a parametric Gaussian Mixture Regression instead.

4. Gaussian Mixture Regression

Given a latent observation vector, zx ℝ d
x, and the corresponding

latent 3D pose, zy ℝ d
y, we assume the joint latent sample, (zx,zy), fol-

lows the Gaussian mixture distribution with K mixture components,

p zx; zy
! "

¼
XK

k¼1

πkp zx; zy; μk;Λk

! "
ð10Þ

where p(zx,zy; μk,Λk) is the multivariate Gaussian density function.
The parameters of model include prior weights, πk, means, μk ¼

μk;zx μk;nt

h iT
, and variances, Λk ¼ Λk;zx Λk;zxzy ;Λk;zyzx Λk;zy

h i
, of each

Gaussian component.
The joint density can be expressed as the sum of the products of

the marginal density of zx, and the probability density function of zy
conditioned on zx:

p zx; zy
! "

¼
XK

k¼1

πkp zy zx;mk;σ
2
k

%%%
"
p zx; μk;zx ;Λk;zx

! "
:

!
ð11Þ

Similarly, the marginal distribution,

p zxð Þ ¼ ∑
zy

p zx; zy
! "

¼
XK

k¼1

πkp zx; μk;zx ;Λk;zx

! "
; ð12Þ

is also a mixture.

The global regression function can be obtained by combining Eqs.
(11) and (12):

p zy
%%%zx

! "
¼

p zx; zy
! "

p zxð Þ ¼
∑K

k¼1 πkp zx; μk;zx ;Λk;zx

! "
p zy

%%%zx;mk;σ
2
k

! "

∑K
k¼1 πkp zx; thbf μk;zx ;Λk;zx

! " ð13Þ

This can be expressed as a mixture of conditional distributions,
p zy zxj Þ ¼ ∑K

k¼1ωkp zy zx;mk;σ2
k

%% &''
, where the mixing weights ωk are

defined as:

ωk ¼
πkp zx; μk;zx ;Λk;zx

! "

∑K
j¼1 πjp zx; μ j;zx ;Λ j;zx

! " : ð14Þ

The mean and the variance of the conditional distribution p(zy|zx)
can be acquired in closed form by:

mk ¼ μk;zx þ Λk;zyzxΛ
−1
k;zx zx−μk;zx

! "
ð15Þ

σ2
k ¼ Λk;zy−Λk;zyzxΛ

−1
k;zxΛk;zxzy : ð16Þ

The learning can be achievedwith a simpleGaussianMixtureModel,
using Expectation Maximization (EM) procedure with K-means initial-
ization. The prediction given a new input can be obtained by computing
expectation over p(zy|zx):

z%y ¼ Ep zy jzxð Þ zy
h i

¼
XK

k¼1

ωkmk: ð17Þ

Alternatively, if the conditional relationship is truly multi-modal,
it is better to look at the modes given by mj directly. In general, we
can have up to K distinct modes in the conditional distribution for a
given input, zx.

4.1. Relationship to other methods

Notice that the regression function (17) derived from the joint mix-
ture Gaussian density is of the form of a kernel estimator. However,
there is a key difference with non-parametric regression: the mixture
weights, ωk, are not determined by the local structure of the data, but
rather by the components of a global Gaussian mixture model.

The Nadaraya–Watson kernel smoother [33] is a Gaussian Mixture
Regression model with K=N components, where N is the total num-
ber of training points. At the other end of the spectrum, K=1 is ap-
proximately the classical linear regression model. Hence, the Gaussian
Mixture Regression model can, in principal, represent a spectrum of re-
gression models, ranging from the non-parametric kernel regression,
where K=N, to the classical linear regression, K=1.

5. Experiment

We tested the performance of our method on three datasets:
(1) Poser dataset – consisting of synthetic sequences produced by
Poser software [34], (2) CMU dataset – comprising real motion cap-
ture dataset and video publicly available from [35], and (3) standard
dataset with provided error metrics made available by Agarwal and
Triggs [3].

5.1. Poser dataset

We synthesized image data from motion capture sequences using
Poser 7 software. The motion sequences came from 8 categories:
walk, run, dance, fall, prone, sit, transitions and misc (see Fig. 2). A
total of 5 sequences within each category were broken into: 3 training

226 Y. Tian et al. / Image and Vision Computing 31 (2013) 223–230



and 2 testing sequences, with each sequence containing approximate-
ly 500 frames. The size of each synthetic image was 500×490 pixels.
We represented body pose in terms of exponential map [36] of 23
joints, resulting in M=72. All poses were represented relative to the
skeleton root (pelvis).

5.1.1. Image features
We relied on silhouette features and encode them using vector

quantized histograms of shape context features [37]. (The dimension-
ality of the resulting feature vector is D=100).

5.1.2. Error measure
We used a standard average joint position error in line with prior

works. We reported RMSE of average joint error in centimeters (cm).
We compared our CLPLVM model with a number of dimensionality

reduction and regression alternatives, including: Principal Component
Analysis (PCA), Locality Preserving Projections (LPP), Canonical Corre-
lation Analysis (CCA), Kernel Canonical Correlation Analysis (KCCA),
and Locality Preserving Canonical Correlation Analysis (LPCCA) [26],
and the Linear Regression (LR) in the original high-dimensional space,
as well as our earlier Latent GMR model (LGMR) in [19]. For CLPLVM,
PCA, LPP, CCA, KCCA, LPCCA we used linear regression to learn a func-
tion between respective zx and zy for inference.We also gave the perfor-
mance of our approach extended with Mixture Gaussian Regression
(CLPLVM+GMR) as was proposed in Section 4. The results are shown
in Table 1. All the parameters were leaned by cross-validation: e.g., the
width of the RBF kernel in KCCA was 0.5, mixture models had K=
8 components, and the PCA and LPP were trained to keep 95% of
the original energy. The results for [26] in Table 1 are based on
re-implementations of the original work.2 In all cases we compared
the expectations computed under themodels (mean error) with ground
truth; for CLPLVM+GMR this amounts to Eq. (17).

It is worth noting that [19] used different representation for the
image features (60D global shape context representation as opposed
to vector quantized histograms of shape context here) and a different
representation of the pose (in terms of 3D joint positions as opposed to
exponential map of joint angles), so results are not directly comparable.

5.2. CMU dataset

From CMU Graphics Lab Motion Capture Database, we chose se-
quences 17–01 to 17–05 as training data, and used sequences 17–07
to 17–09 as test data. The size of each image was 240×352 pixels.
We represented body pose in terms of exponential map [36], resulting
in M=96 (CMU skeleton contains more joints than skeleton used by
Poser above). The image features are implemented as before and
have dimensionality of D=100.

The images from CMU dataset are visualized in the 2D latent space
in Fig. (3). We plotted 800 images in a random order, and the 100th
frame and its successor were draw with the same color, so as the
200th, 300th, 400th, 500th, and 600th frames. Frames nearby had
high similarities because they were captured at 30 frame/s. However,
we could see that these contiguous samples were projected to distant
points in the latent space using CCA. However, by combining the local
distance preservation requirement into the learning, our model did a
better job preserving the distance between samples, that were closer
in the high dimensional space, in the low-dimensional latent embed-
ding. Using our proposed method, samples that were alike in the
high-dimensional space were more likely to cluster together in the la-
tent space. Moreover, because of the extra constraints our method
was more robust to lack of training samples.

We also compared our method with a number of alternatives
using different sizes of training set, which could be seen in Table 2.
Similar to Table 1, by default all methods utilize linear regression to
map between the image feature and 3D pose latent spaces, except
our earlier LGMR model [19] which use Gaussian Mixture Regression
to find this mapping. Limited training data often results in over-fitting

Table 1
Evaluation of different algorithms on the Poser data set (for details see text).

Error (cm) LR PCA LPP LGMR [19] CCA KCCA LPCCA [26] CLPLVM CLPLVM+GMR

Dance S1 10.82 10.43 9.72 9.33 9.60 9.42 9.40 9.32 9.11
S2 10.27 9.81 9.54 9.12 9.41 9.23 9.22 9.14 8.78

Falls S1 12.32 11.80 11.15 10.74 10.95 10.90 10.88 10.72 10.27
S2 12.31 11.70 11.06 10.57 10.82 10.80 10.77 10.65 10.28

Miscs S1 8.32 8.59 8.42 8.00 8.12 8.03 8.00 7.97 7.84
S2 12.27 12.19 12.10 11.71 11.80 11.74 11.71 11.63 11.14

Prone S1 11.26 10.85 10.10 9.72 10.08 10.03 10.00 9.87 9.43
S2 11.46 10.96 10.28 9.89 10.19 10.15 10.11 9.92 9.61

Run S1 8.93 8.70 8.64 8.33 8.31 8.26 8.24 8.15 7.97
S2 11.64 10.96 10.79 10.32 10.62 10.53 10.51 10.46 10.04

Sit S1 19.32 19.15 19.09 18.85 19.03 18.99 18.97 18.97 18.89
S2 12.33 12.25 12.23 12.04 12.16 12.11 12.11 12.12 12.04

Transition S1 8.71 8.53 8.48 8.31 8.43 8.39 8.38 8.32 8.27
S2 9.64 9.51 9.38 9.25 9.35 9.33 9.32 9.28 9.22

Walk S1 11.64 11.16 10.66 10.16 10.33 10.28 10.27 10.22 9.90
S2 9.16 8.75 8.44 8.06 8.15 8.12 8.11 8.13 8.02

Average 11.28 10.96 10.63 10.27 10.45 10.39 10.38 10.30 10.05

Bold data give the best performance.

2 For the purpose of comparison, we did not explore the temporal prior which is
employed in [10].

Image

Pose

Fig. 2. Synthesized data generated by Poser 7 software.
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and poor generalization, but we can see that our CLPLVM model
achieved better performance with limited training data.

Performance evaluation under different dimensionality reduction
techniques and two latent regression methods could be seen in
Table 3. Based on the Table, we made the following 5 observations:
(1) inference in the latent space was nearly always better than in the
original space (irrespective of the form of dimensionality reduction);
(2) LPP outperformed PCA in terms of ability to preserve the manifold
structure; (3) canonical methods, like CCA, KCCA, LPCCA and CLPLVM,
attained better performance, owing to consistency of dimensionality
reduction for both image features and 3D poses; (4) CLPLVM obtained
an improvement over LPCCA; and (5) GMR outperformed linear re-
gression with multiple predictions. We believed that (5) was due to
the ability of GMR to generatively model the full density over the la-
tent features and poses (as opposed to other more direct regression
methods).

However, we could see that the performance of all algorithms in
the CMUMotion Capture Database was worse than on Poser Database.
In real video sequences, it is more difficult to predict a 3D human
poses due to the clutter present in the background, shadows, and var-
iations in lighting. As we used the latent variable method, our result
was less sensitive to noise in the real video, which made it more accu-
rate than other methods. Hence, we also showed subjective results of
different approaches in Fig. 4, including: non-parametric regression
model (kernel regression (KR)) and parametric regression models
(linear regression (LR), mixture of linear regressors (MLR), mixture of
experts (MoE), and Latent Mixture Gaussian Regression (LMGR) [19]).
Kernel regression tended to work poorly in these cases as the data
were sparse in high dimension space. The performance of mixture
models degraded as the data points started to fall close to the boundary
between the two experts (sincewe are using expectation for inference).
For this reason, sometimes the performance of mixture models was

Fig. 3. Image visualization in the 2D latent space. Left: Latent spacemodeled byCanonical CorrelationAnalysis. Right: Latent spacemodeled by our Canonical Local Preserving Latent VariableModel.

Table 2
Performance evaluation under different number of training data. For CLPLVM+GMR both expectation/mean (Exp) and the best-out-of-K modes, with K=8, performance (B8) is
reported.

Error (cm) LR PCA LPP LGMR [19] CCA KCCA LPCCA [26] CLPLVM CLPLVM+GMR

Train Frame Exp B8

01 400 15.70 13.62 13.33 13.25 13.33 13.33 13.33 13.31 12.98 12.94
800 15.72 15.65 15.48 15.31 15.47 15.48 15.48 15.47 15.09 15.01

01,02 1600 15.18 15.35 14.99 14.86 14.87 14.87 14.88 14.86 14.86 14.70
Average 15.53 14.87 14.6 14.47 14.55 14.56 14.56 14.54 14.36 14.28
Train time 0.02 0.48 1.81 2.06 0.31 27.30 2.55 2.23 2.47
Test time 0.01 0.02 0.02 0.38 0.04 1.78 0.03 0.03 0.4

Bold data give the best performance.

Table 3
Performance evaluation under different latent and regression methods.

Error (cm) PCA LPP CCA KCCA LPCCA [26] CLPLVM

4D 6D 4D 6D 4D 6D 4D 6D 4D 6D 4D 6D

LR 01 16.07 15.65 15.47 15.48 15.47 15.47 15.47 15.48 15.48 15.48 15.46 15.47
02 15.67 15.92 14.27 14.24 14.18 14.18 14.19 14.19 14.19 14.19 14.18 14.16
03 20.73 20.70 20.67 20.67 20.67 20.67 20.67 20.67 20.67 20.67 20.67 20.65

GMR 01 15.64 15.51 15.47 15.47 15.49 15.64 15.48 15.48 15.48 15.48 14.93 15.09
02 15.62 15.24 14.01 14.30 14.18 14.12 14.19 14.19 14.15 14.17 13.64 13.77
03 20.73 20.68 20.64 20.61 20.69 20.82 20.66 20.66 20.66 20.66 20.61 20.61

Bold data give the best performance.
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lower than that of uni-modal linear regression. Our fCLPLVM+GRM
model tended to produce better performance than competingmethods.

5.3. Agarwal and Triggs dataset

To compare to other published techniques, we also utilized a pub-
licly available benchmark dataset [3], that contained 1927 training
and 418 test images, synthetically generated from mocap data. The
pose was encoded using M=54 joint angles. The image features and
error metric were provided with the dataset [3]. Silhouette features
were represented using 100-dimensional (D=100) feature vectors
encoding the image silhouette using vector-quantized shape contexts.
The mean RMSE error was computed over joint angles and was mea-
sured in degrees (for details see [3]).

On this dataset we achieved an error of 6.63°, whichwas better than
Nearest Neighbor regression, Linear Regression and Latent Gaussian
Mixture Regression as reported in [17], [18] and [19] respectively.
However, we could not match the performance of non-parametric
shared LVMs, like Shared GPLVM and Shared KIE, that achieve errors
of 6.50 and 5.95° respectively. This was not surprising given that
non-parametric models could represent more complex manifold struc-
ture; however, they do come at a cost of inference and learning which,
unlike in our method, is a function of the training set size.

6. Conclusions and future work

In this paper, we presented a parametric discriminative framework
for 3D pose inference. Our model has a number of appealing proper-
ties, mainly it can: (1) model complex structure of the image feature
and pose manifolds, (2) keep local structure in the latent space,

(3) deal with multi-modalities in the data, and (4) alleviate the need
for learning costly shared non-linear non-parametric manifold models.
We show that our performance is comparative or superior to paramet-
ric and non-parametric models in the original high-dimensional space
and in learned latent spaces. In the future, we intend to look at learning
the model by combining temporal information to increase the predic-
tion accuracy.
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