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Abstract—Emerging new behavioral monitoring and track-
ing technologies that use camera networks offer unprecedented
capabilities for health-care monitoring. A challenging problem
is to track people through very sparse sensor measurements to
reduce the cost of expensive sensors and be robust to sensor
failure. In this paper we propose a Coupled State Space Model
(CSSM) to track people across camera networks using a very
sparse set of measurements. CSSM simultaneously models the
geometry of the camera network as well as the dynamics of the
resident being monitored. We apply CSSM to the problem of
tracking elderly people in a nursing home setting. Experiments
on synthetic and real data show that CSSM can predict the
states of cameras and reconstruct the trajectory of the walking
person, using very sparse labeling information.

I. INTRODUCTION

Intelligent video monitoring has become a growing need

for elderly health-care, due to the shortage of geriatric care

professionals, the growth of the elderly population, as well

as the societal benefits of improving quality-of-life (QoL)

and quality-of-care (QoC) in skilled nursing facilities [1].

Through camera networks, a continuous, voluminous video

record can be captured and used to analyze behaviors of

the elder. Since many aspects of behavioral disturbances are

visually measurable [2], automatic video analysis becomes

a crucial application in nursing home where the medical

record documentation is often poor and the medical staff is

sometimes undertrained or overburdened [3]. With the help

of intelligent monitoring technologies, the geriatrician can

assess clinical situations more accurately, comprehensively

and objectively [4].

The CareMedia project [5] developed a test bed in a

dementia unit of a community nursing home in suburban

Pittsburgh, PA, USA. It built a 23-camera network which

covers the single main hallway, the dinning and living rooms,

as shown in Figure 1, in which the cameras seeing the person

are illustrated by red circles.

Given this gigantic collection of video, an important

problem to solve is the detection, identification and tracking

of people through the 23-camera network. Computer vision

techniques have been developed for this purpose; however,

it still remains unclear how to track and identify people

across days due to the low quality video, low resolution and

strong view point changes. On the other hand, the video data

Figure 1. The camera network for dementia unit monitoring (red circles
illustrate those cameras capturing the person of interest)

has been partially manually labeled with information about

the identity of the subjects and the camera location. The

labels provide a sparse set of measures that in many cases is

sufficient to reconstruct the smooth trajectory of the people

across the camera network and constraint the video tracking.

Figure 1 illustrates the problem. One subject labeled at time t
has been seen by several cameras (A, B), and at time t+20
seen by cameras (C, D, E), and the problem that we will

address in this paper is to predict the camera state at each

time frame. In other words, we are interested in figuring out

in which cameras (marked by green rectangles in Figure 1)

the person has appeared and when he/she appeared.

A simple way to solve the above problem is by interpolat-

ing the labeled camera states to get the unlabeled ones. How-

ever, the interpolation method captures neither the dynamics

of the movement of people nor the geometric structure of the

camera network. Instead, we propose a Coupled State-Space

Model (CSSM) that couples the inference on the state of the

camera and the state of the person, and jointly optimizes all

unlabeled states based on labeled ones. CSSM meets two

requirements: First, the change of camera states should be



smooth with respect to the time and geometry of the camera

network. Second, the camera states should be consistent with

the trajectory of the walking person. The second requirement

motivates us to introduce the state of the person into our

model.

The rest of the paper is structured as follows: Section

II reviews the related work. Section III presents the prob-

lem statement. Section IV describes the proposed method.

Section V reports the experimental results and Section VI

finalizes the paper with the conclusions.

II. PREVIOUS WORK

Tracking people through multiple cameras has received

considerable attention due to its importance in many appli-

cations. Cai and Aggarwal [6] developed a tracking system

using a combination of motion analysis on 3D geometry in

different camera coordinates. The system starts with tracking

from a single camera view and switches to another camera

when it predicts that the active camera will no longer have a

good view of the subject of interest. Harville [7] described a

new combination of plan-view statistics that better presents

the shape of tracked objects and proposed a stereo per-

son tracking technique using adaptive plan-view statistical

templates and Kalman prediction. Mittal and Davis [8]

described a system that is capable of segmenting, detecting

and tracking people in a cluttered scene. The system detects

and tracks objects by using evidence collected from many

pairs of cameras. Rahimi [9] studied a tracking scenario

where the views of multiple cameras are non-overlapping.

They showed that if information about the dynamics of the

target is available, tracking people using non-overlapping

cameras is feasible. Song and Chowdhury [10] presented a

stochastic and adaptive method for tracking multiple people

in a large camera network. The developed method can adapt

the similarities between features at different cameras and

find the stochastically optimal path for each person.

Note that most of the previous work requires that the

location of the target person can be determined within

the view of a camera. In this paper, however, we only

know whether the person appears in the view of a camera,

since we do not access any image-based information. Our

problem setting is also related to tracking in wireless sensor

networks where often the connectivity information is used

to locate the target person [11] [12] [13]. Yet most work in

sensor networks assumes that the connectivity information is

available at each time frame, which is a significant difference

to our problem. Besides, though state-space model was also

used in the above literatures, it only involved the dynamics

of the person states.

III. PROBLEM STATEMENT

Let k be the number of cameras. Each camera is asso-

ciated with a tuple (xc
i , y

c
i , r

c
i ), indicating that the view of

the ith camera is modeled as a circle with its center (xc
i , y

c
i )

and radius rc
i . Let n be the number of time frames. At each

time t (i.e. the tth frame), a vector ct = [ct1, ct2, ..., ctk]T ,

namely camera state, denotes the state of all cameras. If the

ith camera captures the person of interest at time t, then cti

is labeled as 1, otherwise cti = 0. In this setting, we consider

tracking only one person. When there exist multiple people,

the tracking can be conducted for each person separately.

Given a few labeled camera states {cl1, cl2, ..., clnl
}, the

goal is to predict the labels of the remaining camera states

{cu1, cu2, ..., cunu}. Here nl + nu = n.

IV. COUPLED STATE-SPACE MODEL

The proposed method (CSSM) is based on two assump-

tions:

1. Camera states {ct} should be smooth with respect to the

time and geometry of the camera network.

2. {ct} should be consistent with the trajectory of the person.

The first assumption is easy to formulate, and the sec-

ond assumption employs problem-specific knowledge. The

main difficulty is that the specific location of the person

is unknown. Therefore, we introduce the positions and

velocities of the person {x1,x2, ...,xn} to our model. Here

xt = [at, ȧt, bt, ḃt]T denotes the person state, where at and

bt denote the x and y coordinates of the person, whereas

ȧt and ḃt represent the instantaneous velocity of the person,

respectively.

The CSSM loss function is defined as follows:

L(X,C) =
n∑

t=2

‖xt − Axt−1‖2
2

+ α
n∑

t=m+1

‖ct − Sct−m‖2
2 + β

n∑
t=1

‖Bxt − Mct

1T ct
‖2
2

(1)

The first term,
∑n

t=2 ‖xt − Axt−1‖2
2, assumes that the

person state xt evolves according to linear Gaussian Markov

dynamics:

xt+1 = Axt + νt (2)

where A is a 4× 4 matrix representing the dynamics of the

person, and νt represents isotropic Gaussian noise. In this

paper, we set A as:

A =

⎡
⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

The second term in (1),
∑n

t=m+1 ‖ct−Sct−m‖2
2, enforces

the smoothness of the camera states, where S is a k × k
state-transition matrix which captures the geometry of the

camera network (k is the number of cameras). The basic

assumption is that the state of each camera is propagating

to its neighboring cameras along the time. In particular, we

assume the state can be propagated from one camera to its



neighbors within m frames. The value of m can be fixed

or estimated from the person states. The state propagation

presented below is similar to the label propagation in semi-

supervised learning [14]. The major difference is that in

semi-supervised learning, the propagation repeats in infinite

time while in our model, the propagation is conducted

in a fixed period. We start by defining a neighborhood

graph where the nodes represent cameras. An edge is added

between two nodes i and j, if the corresponding cameras

are regarded as neighbors. The neighborhood relationship

is determined according to the geometry of the camera

network. The weight of an edge (i, j) is larger if the

Euclidean distance between node i and j is smaller. In this

paper, we set the weight according to:

wij =

{
1√

(xc
i−yc

j )2+(yc
i −yc

j )2
if edge (i, j) exists

0 otherwise
(3)

We let the state of a node propagate to all neighboring nodes

through edges and larger edges allow easier propagation. The

matrix S = [sij ] defines the probability of state transition:

sij = P (j → i) =
wij∑k

q=1 wqj

(4)

where sij is the probability for a state to propagate from

node j to i.
The third term in (1),

∑n
t=1 ‖Bxt − Mct

1T ct
‖2
2, relates the

person states with the camera states. This term says that at

each time, the position of the person should be close to the

center of those cameras capturing that person. Here B is a

matrix for extracting the coordinates of the person, and M is

a matrix containing the coordinates of all cameras. α and β
are two parameters balancing the weight of different terms.

Specifically, we set the above matrixes to:

BT =

⎡
⎢⎢⎣

1 0
0 0
0 1
0 0

⎤
⎥⎥⎦ , M =

⎡
⎢⎢⎢⎣

xc
1 yc

1

xc
2 yc

2
...

...

xc
k yc

k

⎤
⎥⎥⎥⎦

Directly optimizing (1) is difficult because ct is a binary

vector. To make the loss function differentiable and easy to

optimize, we instead consider an approximate loss function

(5). Note in (5), we introduce a set of new variables ft
to approximate the normalization of ct. For any labeled

camera state, the corresponding ft is set to ct

1T ct
. Once (5) is

optimized, the corresponding ct can be easily obtained (we

will discuss this shortly).

L(X,F) =
n∑

t=2

‖xt − Axt−1‖2
2

+ α
n∑

t=m+1

‖ft − Sf t−m‖2
2

+β
n∑

t=1

‖Bxt − Mf t‖2
2 + γ

n∑
t=1

‖1T ft − 1‖2
2

(5)

The fourth term in (5),
∑n

t=1 ‖1T ft − 1‖2
2, enforces that ft

is a normalization of ct.

The optimization of (5) is described below. Let E =
11T ,G = MT M,H = MT B, and Q = ST S, then

1
2

∂L
∂xt

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

βBT Bxt − βBT Mft t = 1

((1 + βBT B)I + AT A)xt

−Axt−1 − AT xt+1 − βBT Mft 1 < t < n

(I + βBT B)xt − Axt−1

−βBT Mft t = n

1
2

∂L
∂ft

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(βG + γE)ft − βHxt − γ1 t = 1

(α(I + Q) + βG + γE)ft
−αSft−m − αST ft+m

−βHxt − γ1 m < t ≤ n − m

(α(I + βG + γE)ft
−αSft−m − βHxt − γ1 n − m < t ≤ n

By setting ∂L
∂xt

= ∂L
∂ft

= 0, we obtain a linear system that

can be presented in the following form (Fl denotes known

variables, Vu denotes unknown variables and L is the

values of Fl ):[
I 0

Pul Puu

] [
Fl

Vu

]
=

[
L
0

]
(6)

where

Fl =

⎡
⎢⎢⎢⎣

fl1
fl2
...

flnl

⎤
⎥⎥⎥⎦ ,Vu =

[
Fu

X

]

Fu =

⎡
⎢⎢⎢⎣

fu1

fu2

...

funu

⎤
⎥⎥⎥⎦ ,X =

⎡
⎢⎢⎢⎣

x1

x2

...

xn

⎤
⎥⎥⎥⎦

It’s easy to show

Vu = −P−1
uuPulL (7)

Once we obtain {xt}, it is straightforward to calculate {ct}
by:

cti =
{

1 if (at − xc
i )

2 + (bt − yc
i )

2 < (rc
i )

2

0 otherwise
(8)

where i ∈ {1, 2, ..., k}, t ∈ {1, 2, ..., n}.

It is interesting to point out that equation (7) has a same

structure as the label propagation formulation in graph-based

semi-supervised learning [14]. (7) shows that the unlabeled

states can be easily inferred from labeled ones. In fact, our

model can be regarded as a special case of semi-supervised

learning - transductive inference method [15] [16].



V. EXPERIMENTS

In this section, we test CSSM in both synthetic and real-

world data. CSSM is compared with three interpolation

methods which treat each camera independently and inter-

polate the values of labeled camera states using different

types of curves. The interpolation methods used are linear

interpolation (denoted by Linear), cubic spline interpolation

(denoted by Spline) and piecewise cubic Hermite interpola-

tion (denoted by Cubic). CSSM is implemented using the

following parameters: α = 0.5, β = 2, γ = 0.5,m = 5.

A. Synthetic Data

We first compare four methods on a synthetic camera net-

work (Figure 2). The camera network consists of 12 cameras

and the corresponding neighborhood graph is given in Figure

3. The neighborhood structure is manually determined in

our experiments though it can be automatically calculated.

We also manually create two synthetic cases (green circles

represent the synthetic trajectories) in Figure 3.

Figure 2. Left: synthetic camera network (blue squares represent cameras)
Right: the neighborhood graph of the camera network

Figure 3. Two synthetic trajectories presented by green circles

Figure 4 shows the performance comparisons between

different methods when the ratio of labeled camera states

varies. For each labeling ratio, the experiments are conducted

randomly for 10 times and the average performance is

recorded. It is easy to see that, CSSM outperforms the other

three interpolation methods in each case. When the ratio

Figure 4. Performance comparisons of four methods

Figure 5. Trajectories estimated by CSSM with 1/2 (left) and 1/6 (right)
of labeling ratio (green curve represents the true trajectory, green dots
correspond to the labeled frames, and red curve shows the estimated
trajectory)

of labeling is relatively small (1/7), CSSM performs signif-

icantly better than interpolation, demonstrating that CSSM

better captures the underlying dynamics of the camera states,

thus is a promising method to tackle with label sparseness.

Also note that when the ratio of labeling becomes larger,

all methods perform better, yet CSSM still maintains its

advantage. Figure 5 presents the estimated trajectory in the



second synthetic case, when the labeling ratio is 1/2 and 1/6.

We can see that when the ratio is larger, CSSM is able to

estimate the trajectory more accurately.

B. Real Data

The real data is collected from the test bed shown in Fig-

ure 1. The corresponding neighborhood graph is presented

in Figure 6. In our study, we choose three video sequences in

which the person keeps walking. For each video sequence,

its frames are further sampled at a time interval of two

seconds 1. The description of the data is given in Table

1. We then generate 12 test cases by varying the labeling

ratio. For every test case, we run each algorithm 10 times

(since the data is randomly labeled according to the labeling

ratio) and measure the average performance. Table 2 lists the

experimental results. We can see that CSSM performs best in

almost all test cases, compared with the three interpolation

methods. Note that when the labeling is sparse (i.e. the

ratio is 1/10 or 1/8), CSSM significantly outperforms other

methods. When the labeling ratio is relatively high (i.e.

1/4), CSSM still gives comparative accuracy. The estimated

trajectories by CSSM in two test cases are visualized in

Figure 7.

Figure 6. The neighborhood graph of real camera network

Table I
DESCRIPTION OF REAL DATA

Video ID Duration
#Sampled

Frame
#State

Variables
1 148 Sec. 74 1702
2 162 Sec. 81 1863
3 136 Sec. 78 1564

1The reason for sampling is to reduce the number of variables in the
model. If a different sampling ratio is used, one needs to choose a different
value for the parameter m.

Table II
EXPERIMENTAL RESULTS ON REAL DATA

Test Case #Prediction Error
Video

Id
Labeling

Ratio
CSSM Linear Spline Cubic

1 1/10 66.4 99.2 109.6 100.3
1 1/8 63.1 71.1 85.1 74.3
1 1/6 58.7 68.9 73.6 69.5
1 1/4 43.0 44.8 50.5 45.1
2 1/10 86.7 97.0 111.6 98.9
2 1/8 73.6 81.9 91.9 84.8
2 1/6 48.1 51.3 57.0 52.7
2 1/4 39.4 39.2 46.8 40.1
3 1/10 56.2 63.2 72.8 64.8
3 1/8 42.0 49.4 52.8 49.6
3 1/6 33.6 33.9 35.0 34.0
3 1/4 27.3 25.9 30.8 26.1
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Figure 7. Trajectories estimated by CSSM (Top: on Video 1 with 1/4
labeling ratio, Bottom: on Video 2 with 1/4 labeling ratio)



The outstanding performance of CSSM can be explained

in the following way. CSSM connects both camera and

person states in a coupled model, thus jointly optimizes the

unlabeled states given the labeling information. The joint

optimization not only ensures the camera states to be smooth

along the time and the geometry of the camera network,

but also constrains them using the dynamics of the walking

person.

VI. CONCLUSION

In this paper, we have addressed a problem of predicting

camera states when tracking people in camera networks. We

have proposed a coupled state space model (CSSM) that

simultaneously models the geometry of the camera networks

as well as the dynamics of the humans being tracked. CSSM

can well predict the camera states and at the same time

reconstruct the trajectory using very few labels. Synthetic

and real data has shown the validity of our approach.

One interesting aspect of CSSM is that it connects the

camera states, the structure of the camera network, and the

trajectory of the walking person together. Hence it’s promis-

ing to extend CSSM to solve more challenging problems

such as determining proper frames to label and optimizing

the camera placement. We will address these problems in

our future work.
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