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Abstract—Accurate location of people is a key aspect of many
applications such as resource management or security. In this
paper, we explore the use of radio communication technologies
to track people based on their dynamics. The network consists
of two types of radio nodes: static nodes (anchors) and mobile
nodes (individuals). From a set of sparse dissimilarity matri-
ces with information about proximity or estimated distances
between nodes and individuals’ dynamics at each time instant,
we infer individuals’ trajectories. Depending on the information
available, two algorithms are proposed: Dynamic Weighted
Multidimensional Scaling with Binary Filter (DWMDS-BF) and
Dynamic Weighted Multidimensional Scaling based on Distance
Estimations (DWMDS-DE). DWMDS-BF is an algorithm that
implements a Binary Filter function that obtains very good
tracking results when only connectivity information is available
and DWMDS-DE is designed for those networks where a good
estimation of distances between nearby nodes is available. Both
algorithms implement a dynamic component that regularizes
the obtained trajectories according to individuals’ dynamics.
Extensive simulations show the effectiveness and robustness of
the proposed algorithms.

I. INTRODUCTION

Short and medium range radio communication technologies,
due to their cheap cost, are being included in almost all
personal electronic devices, such as mobile phones, laptops or
PDAs. The widespread use of these devices makes them ideal
platforms for location-aware applications. Unlike specific tra-
cking technologies such as GPS or those based on ultrasound
or image processing, the main purpose of these technologies
is not tracking but communication between devices. The most
promising current trend is using techniques that can be applied
to almost any radio device and that are based on features of the
radio communication technologies, like the Received Signal
Strength (RSS). Most tracking algorithms consider tracked
objects as generic identities, usually called nodes, where no
node is different from any other node in the network. They
are either considered static nodes or nodes in motion fo-
llowing synthetically generated trajectories (usually random),
what leads to non-realistic situations, such as networks with
thousands or even millions of nodes with similar behavior. One
of the main contributions of our work is a characterization of
the mobile nodes according to their dynamics. Although this
characterization could be done for almost any kind of network,
we are especially interested in social networks, i.e. networks
where the nodes to be tracked are people, with different

dynamics and patterns. We present a new approach for the
tracking procedure as a two-step problem: one dependent
on the technology used and the other one dependent on the
particular nature of each mobile. We show the effectiveness of
using both aspects working together. The main contributions
of this work are:

• Dynamic Weighted Multidimensional Scaling with Bi-
nary Filter (DWMDS-BF), a tracking algorithm to be
used on networks where only connectivity information
between nodes is available.

• DWMDS based on Distance Estimations (DWMDS-DE),
a tracking algorithm to be used on networks where
distance estimations between nodes are available.

• A mathematical expression (called Dynamic term along
the article) that uses the learned mobile nodes’ motion
patterns to smooth the tracking solution according to
their particular dynamics. Individual’s dynamics means
individual’s speed in this article.

• A Binary Filter function to handle those scenarios where
only connectivity information between nearby nodes is
available.

The rest of the paper is organized as follows: section II
reviews previous work and section III formulates DWMDS
algorithms. The corresponding experiments and comparison
with other location algorithms are reported in Section IV.
Section V summarizes the conclusions and discusses future
research trends.

II. PREVIOUS WORK

Most popular methods to locate people are based on mea-
surements of radio signals, such as Time of Arrival (ToA)
[1], Angle of Arrival (AoA) [2], Time Difference of Arrival
(TDoA) [3] and Received Signal Strength (RSS) [4]. The first
three techniques need costly customized hardware whereas
RSS is the most attractive one because of the variety of
personal radio communication devices that cheaply and by
default implement it. The first ones are better techniques to
obtain accurate estimation of the distances, whereas RSS is
prone to errors due to the complexity of the radio channel [5].

In spite of the difficulties to model the radio channel,
some works based on RSS use trilateration [4], multilateration
[6] or similar methods [7], [8] to make an estimation of
the distances between the tracked object and some known
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anchors. However most RSS-based methods do not try to
estimate distances directly from RSS, but consist of a previous
measurement phase where a RSS map of the scene is built [4],
[8], [9], [10], [11]. This methodology is extremely dependent
on the environment and any significant change to the topology
implies a costly new re-calibration.

In the context of sensor networks, classical MDS [12] has
been used to locate static sensor nodes in dense wireless sensor
networks [13], [14], [15], [16]. When the networks are more
sparse, the accuracy quickly decreases. These previous works
rely on hop counts and shortest path measurements to estimate
the distances between nodes needed for classical MDS, which
leads to poor results in non-uniform networks [15]. In order to
solve this drawback, both [14] and [16] have a previous phase
where the network is split in subnetworks that locally apply
shortest path measurements and classical MDS (the error due
to non-uniform networks is reduced but not removed), and that
are finally merged to get the resultant network. These methods
assume continuous communication between the nodes in the
network to transmit information of the state of the network,
which imply a high communication cost in terms of bandwidth
and energy consumption. Our approach only needs to identify
the nearby nodes, which is provided by default by most radio
communication technologies, so the communication cost is
negligible. The work reported by [17] stresses the importance
of reducing the communication cost, trying to reduce it with a
technique which chooses adaptively a neighborhood of nodes,
applying MDS locally and transmitting the updates to the
neighbors. The best results in terms of accuracy are reported
by the MDS-MAP(P,R) algorithm [16] using classical MDS
and shortest path measurements as a starting point followed
by a subsequent optimization phase based on least squares
minimization.

III. TRACKING AS A LOW DIMENSIONAL EMBEDDING

PROBLEM

A. Problem Formulation

We approach the tracking problem from two different
perspectives depending on which information is available:
connectivity information or estimated distances between con-
nected nodes. Two nodes i and j are considered connected or
neighbors if and only if node i is inside the coverage radius of
node j and vice versa. In both scenarios, the network consists
of mobile and static nodes called anchors used as reference to
obtain the trajectories of the mobile nodes. The network can be
represented as a graph with vertices V and edges E (G=(V,E)),
where the vertices are individuals’ positions at each time
instant, and the edges join connected nodes at that time instant.
The value of the edge is 1 in the connectivity scenario and
the corresponding estimated distance in the distance scenario.
From now on the term dissimilarity will be also used to address
the value of the edges, no matter the scenario described.
Once the dissimilarities are gathered through time, they are
used together with individuals’ dynamics as input of DWMDS
algorithm to obtain their trajectories.

Dissimilarity at one time instant between two nodes in the
network is recorded according to the following procedure: if
a node i is connected to a node j, the ij and ji terms of
a dissimilarity matrix are set to 1 (connectivity scenario) or
to the estimated distance between them (distance scenario).
If both nodes are not connected, they are set to 0 no matter
the scenario (see figure 1). Nodes i and j can be anchors or
individuals. As section IV will show, not only the anchors
work actively in the tracking process but the nodes in motion
help too. Considering figure 1: if node A were an anchor and
node B and C nodes in motion such that at time t are at those
positions, then even although there is not a direct connection
between nodes A and C, the node B acts as a bridge between
them, and our tracking system will take advantage of it.

Fig. 1. Connectivity scenario: node B detects A and C. C and A are out
of range, so they do not detect each other. Colored circles represent the
corresponding coverage areas.

DWMDS-BF is the algorithm for the scenarios with con-
nectivity data, the minimum information available in almost
all communication networks. DWMDS-DE can be applied
whenever distance estimations are available, no matter the
technique used to get them. Its accuracy depends on the
accuracy of the technique used to estimate the distances. Both
approaches are analyzed in the following sections, although we
especially focus on the scenario with connectivity data, which
is more widely used and realistic in terms of assumptions.

B. Dynamic Weighted MultiDimensional
Scaling (DWMDS)

Multidimensional scaling (MDS) [12] is a powerful sta-
tistical dimensionality reduction technique for data analysis
which is extensively used in social sciences, engineering and
marketing. The starting point of MDS is a matrix consisting of
pairwise dissimilarities between data samples in the original
space. MDS attempts to find an embedding in a metric space,
so that the distances in a low-dimensional space correspond
to the given dissimilarities between samples in the original
space.

Let1 y1, ...,yn be the samples in the original space, and
δij the corresponding dissimilarities between sample i and j

in that space. Let x1, ..., xn be the coordinates of the samples

1Bold non-capital letters are used to denote vectors. Bold capital letters
are used to denote matrices. All non-bold letters will represent variables of
scalar nature. dij denotes the scalar in the row i and column j of the matrix
D. The number of mobile devices is p, the number of static devices is q,
T is the number of time instants. The superindexes s and d correspond to
the static and mobile nodes respectively. sd, dd and ss represent the terms
static vs mobile nodes, and mobile vs mobile nodes and static vs static nodes
respectively.
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in the embedded space and dij the corresponding distance
between sample i and j in that space. The main goal of MDS
is to find an embedding (i.e. x1, ..., xn) such that dij in the
low-dimensional space is as close as possible to the original
dissimilarity in the original space δij in the least square
sense. It is not usually possible that dij = δij ∀i, j, and it is
common to find a unique solution by averaging the least square
error using different normalization errors such as the ones in
equation 1. A local minimum of the these error functions w.r.t
X = [x1, ..., xn] is usually found by using standard gradient
techniques [18]. The general expression of the error function
of the DWMDS algorithms consists of two terms, the Static
one that uses dissimilarities between nodes and the Dynamic
one that comprises the dynamics of the mobile nodes in the
network (first and second terms respectively in equation 2).
The input to DWMDS algorithms will be a set of matrices
with dissimilarity information δt

ij between nodes at each time
instant and the previously learned individuals’ dynamics. The
final goal is to obtain the coordinates of the nodes through
time that minimize the error function.

Ω1(X) =
∑
i<j

(dij − δij)
2

δij

; Ω2(X) =

∑
i<j(dij − δij)

2∑
i<j δ2

ij

;

Ω3(X) =
∑
i<j

(
dij − δij

δij

)2

. (1)

Let us denote the coordinates of the nodes (individuals and
anchors) in the network as:

Xd,t =

⎛
⎜⎜⎜⎝

xd,t
1

xd,t
2

...
xd,t

r

⎞
⎟⎟⎟⎠ , Xs =

⎛
⎜⎜⎜⎝

xs
1

xs
2

...
xs

q

⎞
⎟⎟⎟⎠ ,

xd,t
i = {xd,t

i1 , x
d,t
i2 }

xs
i = {xs

i1, x
s
i2}

⎧⎪⎪⎨
⎪⎪⎩

xd,t
i ∈ �1×2

xs
i ∈ �1×2

Xd,t ∈ �r×2

Xs ∈ �q×2

,

where Xd,t corresponds to the coordinates of the mobile
nodes at time instant t. Xs are the time invariant coordinates of
the static nodes. xi1 and xi2 are the x and y coordinates for the
device i in the bidimensional plane. Assuming the algorithm
gathers data over T time instants:

Xd =
(

Xd,1 Xd,2 . . . Xd,T
)

∈ �r×2T ,

ΩDWMDS(XALL) =

T∑
t=1

n∑
i<j

j=2

mt
ij(f

t
ij − δt

ij)
2 (2)

+

T∑
t=2

p∑
i=1

α2
i

∣∣∣∣∣∣(xd,t
i − xd,t−1

i

)∣∣∣∣∣∣2
F

,

where at any time instant:∑
i<j

mij(fij − δij)
2 =

∑
i<j

mss
ij (fss

ij − δss
ij )2

+
∑
i<j

mdd
ij (ddd

ij − δdd
ij )2 +

∑
i<j

msd
ij (fsd

ij − δsd
ij )2 .

XALL comprises the coordinates of the trajectories Xd and
the position of the anchors Xs. Inside the Dynamic term, αi is
a tradeoff parameter dependent on the mobile nodes’ velocity
to equilibrate the contribution of the dynamics of each mobile

node.
∣∣∣∣∣∣(xd,t

i − xd,t−1

i

)∣∣∣∣∣∣2
F

is the squared Frobenius norm of
the difference between the position of a mobile node i in two
consecutive time instants, i.e. the squared distance covered
between consecutive times instants (l2i ). The Dynamic term
is the same for all DWMDS algorithms, however according
to the nature of the dissimilarities, the Static term changes,
generating two different expressions of DWMDS that are
explained below (See table I).

1) Estimated distances as dissimilarities. DWMDS-DE al-
gorithm: in those scenarios where estimated distances are
available, δt

ij and f t
ij are the estimated distance and the

unknown Euclidean distance (dependent on the coordinates
of the i and j nodes) respectively between nodes i and j at

time t. mt
ij =

wt
ij

δt
ij

where wt
ij is a weight that stresses the

difference between f t
ij and δt

ij .
The more accurate the estimated distances are the more

accurate DWMDS-DE is. So far, the scenarios where only RSS
information is available are not reliable enough to accurately
estimate distances between nodes, so a connectivity-based
approach is more adequate for these networks.

2) Connectivities as dissimilarities. DWMDS-BF algorithm:
in scenarios when only connectivity information is available,
δt
ij and f t

ij corresponds to the binary connectivity information
(1 if both nodes are connected and 0 otherwise) and a Binary
Filter function respectively, between the node i and j at time
t. Here mt

ij = wt
ij .

DWMDS-BF relies only on connectivity data, information
perfectly available from most radio technologies, which makes
this DWMDS variant very attractive. While the expression of
f t

ij in DWMDS-DE is the Euclidean distance between two no-
des at time t, the expression used in DWMDS-BF corresponds
to a Binary Filter function dependent on three parameters: the
Euclidean distance between nodes, the coverage radius, and
a control parameter β that is used to change the slope of
the Binary Filter function. Figure 2 shows the Binary Filter
function versus the distance between nodes (dij ) for a coverage
radius R = 20 for different values of β.

The Static term penalizes the difference between the con-
nectivity value (1 if connected, 0 otherwise) and the Binary
Filter function which ideally works in the following way: if
the coverage area of any node were a circle of radius the
nominal coverage radius (R) specified by the manufacturer,
the output of this filter would be 1 when the distance between
nodes i and j is less than R (connected nodes), 0.5 if it is
equal to R and 0 otherwise (disconnected nodes). However, the
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dt
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Fig. 2. Binary Filter function for different values of β parameter.

electromagnetic environment is far from being ideal [19], so
the question is when to consider two nodes connected. In a real
scenario, the complex nature of the electromagnetic field can
generate situations where two nodes separated by a distance
dij < R were not connected or even if they were located
farther than R, they could detect each other. The trickiest
zone is the one around the nominal coverage radius (20 in
figure 2) where the value of the function changes abruptly.
Far from the nominal radius and for a fixed value of β, the
value of the function grows when the distance between nodes
tends to 0 (1 is the limit) and tends to 0 when the distance
between nodes tends to infinity. The slope of the Binary Filter
function and consequently its output is controlled with the β

parameter. High values of β mean steep slopes, i.e. almost
ideal scenarios, whereas low values of β have the contrary
effect, with flatter slopes, for characterizing very unsteady
scenarios. Section IV-A shows the impact of the β parameter
in medium scenarios, neither especially noisy nor steady.

C. Optimization phase

Once DWMDS expressions are defined, the algorithm enters
an optimization phase based on a gradient descent technique
to find the optimal solution of equation 2 w.r.t. XALL

n , which is
XALL at iteration n. In this paper, we assume that Xs is known
and we do not update it. The gradient updates are given by:

XALL

n+1 = XALL

n − η
̂∂ΩDW MDS

∂XALL

n

, (3)

where ̂∂ΩDW MDS

∂XALL

n

is a unit vector in the direction of the

gradient. One major problem with the update of equation 3
is to determine the optimal η. In our case η is determined
using a line search strategy [18].

D. Weights, Dynamic Term, local minima, initialization,
computational cost and connectivity degree

1) Adjustment of weights and the importance of the Dyna-
mic term: weights wt

ij and αi have to fulfill two requirements:

one regarding the term they are working on and the other as
a tradeoff parameter between the Dynamic and Static terms.
Focusing on the Static term, wt

ij will have a higher value
when the corresponding ij term is a term of high confidence,
otherwise its value will be low. In DWMDS-DE, if all the
estimated distances δt

ij have the same level of confidence (all
of them have been estimated in the same way, which is usual),
they will have the same weight, except for those time instants
when nodes are not connected, when there are not estimated
distances, and consequently the corresponding weights are 0.
Unlike DWMDS-DE, DWMDS-BF takes into account those
positions out of the coverage radius (0 output in the filter), so
weights will have the same value in and out of the coverage
radius. The terms in the diagonal i = j are always 0 in both
algorithms.

The αi weights work on the Dynamic term in such a way
that the gradient descent technique respects each mobile node’s
dynamics. Every mobile node will have a specific speed vi,
that lets cover a specific distance li between two consecutive
time instants (the difference between two consecutive time
instants is the time step Δt). Assuming that every mobile node
has a constant velocity in motion (which is pretty accurate
when the mobile nodes are people walking), the relation
between the distance covered by two different mobile nodes i

and j in Δt is lj =
vj

vi
li. If we consider αi equal for all i and

apply gradient descent method (see section III-C) to minimize
the error expression (equation 2), then the fastest nodes (nodes
with larger values of li), would have more importance in this
minimization process. In order to compensate for that effect
and treat all the nodes in a democratic way we consider αi

such that

αi = α
vk

vi

where vk = max{vi} ∀i ε p. (4)

We show an example with two nodes during T time instants,
where node 1 is 3 times faster than node 2 (α2 = 3α1):

l2i =
∣∣∣∣∣∣(xd,t

i − xd,t−1

i

)∣∣∣∣∣∣2
F

∀t, i ,

T∑
t=2

2∑
i=1

α2
i

∣∣∣∣∣∣(xd,t
i − xd,t−1

i

)∣∣∣∣∣∣2
F

= α2
1(T − 1)l21

+ α2
2(T − 1)l22 = α2(T − 1)(l21 + 9l22) ,

where l21 = 9l22, so no matter the speed of the mobile nodes,
the gradient descent technique will treat them similarly, and
respect their different dynamics. Figure 3 shows the distortion
in the obtained trajectories when there are two anchors and
two linear trajectories with different speeds that last T time
instants, but whose dynamics are considered the same (α1 =
α2).

α parameter in equation 4 is a tradeoff parameter between
the Dynamic and Static term, that equalizes the value of both
terms so that both of them have a similar weight in the general
stress expression in equation 2. In this article we deal with
synthetic trajectories, so we assume that the dynamics of
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Fig. 3. Left: ground truth. Right: obtained trajectories when α1 = α2.

each mobile node is known. In real testbeds, there will be
a short learning stage where the dynamics of every person
in the network is modeled. The procedure is straightforward
and consists of measuring the average time it takes for every
individual to cover a known distance between two anchors.
This can be measured automatically as the time between the
connection with one anchor (starting time) and the connection
with the other (stop time). The Dynamic term is especially
necessary in those networks that are very sparse, where there
are gaps with isolated nodes (nodes not connected to any other
nodes). This term acts interpolating the position of the nodes in
those out-of-coverage parts of the network. When the network
becomes more connected, the importance of the Dynamic term
varies depending on the scenario:

• When only connectivity data is available (DWMDS-BF),
the Dynamic term is always useful no matter the topology
of the network. The reason is that in addition to the
connectivity gap filler function, this term is necessary
to counteract and smooth the otherwise abrupt resultant
trajectories from the Static term.

• When estimated distances are available (DWMDS-DE)
and the network becomes more connected (fewer connec-
tivity gaps), the obtained trajectories converge gradually
with and without the Dynamic term. A different approach
is to consider the dissimilarity matrices as the degrees
of freedom of the network, so the more connected the
network is (the matrices are less sparse because more es-
timated distances are available), the smaller the ambiguity
is, and consequently the less necessary the Dynamic term
is. The extreme situation is when the coverage radius
of the nodes covers the entire network (dissimilarity
matrices totally full), then the DWMDS-DE algorithm has
similar results with and without the Dynamic term and the
accuracy of the obtained trajectories is 100% dependent
on the error in the estimated distances.

2) Local minima: while DWMDS-BF algorithm is pretty
robust, DWMDS-DE can converge to local minima due to
errors in the estimated distances. Such errors make the gra-
dients of the Static and Dynamic terms of equation 2 try to
reduce the error in opposite ways, which makes the algorithm
unpredictable. Figure 4 is an example of such a situation,
where a mobile node, going from anchor A1 to A2 and
consequently at t+1 is farther from anchor A1 than at time t,
seems to be nearer due to the error in the estimated distance.
The Dynamic term gradient would try to follow the trajectory
according to the learned dynamics from node A1 to node
A2, while the Static term would try to take the mobile node
backwards.

Fig. 4. Up: dotted circles represent estimated distances. Blue circles represent
coverage areas. Down: cross direction of the gradient of the Static term over
the real positions because of the error in the estimated distances.

The DWMDS-DE performs well when the errors in the
estimated distances with respect to the real ones are smaller
than the distance covered by the corresponding mobile nodes
during a time step Δt, what makes the Dynamic and Static
term gradient agree. In very well or full connected networks
(nodes connected to all the rest of mobile nodes), the Static
term predominates over the Dynamic one, and the contradic-
tory effect disappears.

3) Connectivity degree, initialization and computational
cost: connectivity degree is the metric used to measure the
average number of connections per node offering a quick view
of the density of the network. As we introduce a dynamic term
that links different time instants to do the tracking procedure,
the connectivity degree in this paper does not measure only
the average connectivity at a time instant, but throughout the
whole set of time instants in the survey. Equation 5 shows how
to calculate the connectivity degree (CD Total) of a network,
where γt

ij is 1 if nodes i and j are connected at time instant
t, 0 otherwise.

CD Total =

T∑
t=1

n∑
i=1

n∑
j=1

j �=i

γt
ij

nT
(5)

The initialization of the algorithm is random, although
any information a priori regarding mobile nodes’ positions
could be used to make the algorithm converge faster. The
computational cost of the algorithm is O(n3T ) for the Static
term and O(p2T ) for the Dynamic term, where n is the total
number of nodes, p is the number of mobile nodes and T is
the tracking time (number of time instants).

IV. PERFORMANCE EVALUATION AND

COMPARISON

In this section, we report extensive simulation results of
the performance of DWMDS-BF and DWMDS-DE in the
following scenario: a square of 10r x 10r (r is the reference
unit used during the experiments) where there are a variable
number of anchors and mobile nodes with random trajectories
and speeds. Every mobile node moves according to a constant
speed during the tracking time. The velocity range is:
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vi ε
[0.1r, r]

Δt
∀i ε p

Random trajectories have a duration of T = 40 time
instants. The positions of the anchors are known and the
goal is to obtain the trajectories of the mobile nodes. The
reconstruction error in the following sections is the mean
error of the difference between the obtained trajectories from
the algorithm and the ground truth, unless otherwise stated.
The coverage radius (R) is the same for all the nodes, unless
otherwise stated. All the simulations are done with MATLAB
7.1 (R14SP3).

A. Scenario with connectivity data: DWMDS-BF algorithm

Section III-B2 remarks the importance of the β parameter
in the performance of the Binary Filter function. The goal of
this parameter is to adapt the filter to the situation expected
in a real scenario where the coverage radius is not the same
for every node, even different through time according to
changes in the surroundings. To analyze the impact of the β

parameter in the performance of the filter and consequently in
the whole tracking algorithm, this section analyzes the error
of the obtained trajectories in a medium scenario (nor very
noisy neither very steady) when the β parameter changes.
The noise in the scenario is introduced by modeling the
coverage radius of every node as a normal distribution whose
mean is the nominal coverage radius (usually provided by
the manufacturer of the radio device and considered 2.5r in
this experiment) and whose standard deviation is 10% of this
nominal coverage radius. The coverage radius changes also
through time according to this normal distribution.

Figure 5 shows the best results (and very similar) for β

values that make the filter neither very flat nor very steep
(β = 0.3,1). Values of the β parameter that make the slope
very steep (β = 10) or flat (β = 0.1) become in larger
reconstruction errors. Although this is the general behavior,
there are differences depending on the network configuration:

• For a constant number of anchors:
– High number of anchors (upper left corner graph): no

matter the number of mobile nodes, the difference in
the error due to β changes remains pretty constant.

– Low number of anchors (lower right corner graph):
the reconstruction errors obtained with different β

values are very similar in sparse networks (they
almost converge for very sparse networks) and the
differences between them remain pretty constant
when the network becomes more connected.

From now on the simulations are carried out with β = 1.
Figure 6 shows the reconstruction error in DWMDS-BF

when the connectivity degree changes due to changes in
the coverage radius and the number of nodes. For instance,
the lower left corner shows and scenario with 10 anchors
and a variable number of mobile nodes when the coverage
radius changes from 1.25r to 2.5r in 0.25r steps. Given a
constant number of mobile nodes, the colored area shows
the reconstruction error when the connectivity degree changes
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Fig. 5. Reconstruction error when β = 0.1, 0.3, 1, 10

due to changes in the coverage radius. The results show that
whenever the coverage radius increases, the accuracy is higher.
When the number of nodes increases (static or mobile ones),
the accuracy also increases, with a higher improvement when
the nodes are anchors, which was expected because they are
known static references.

B. Scenario with estimation of distances: DWMDS-DE algo-
rithm

In This section we focus on the performance of DWMDS-
DE when the available estimated distance between nodes are
not accurate enough and the tracking algorithm suffers from
the pernicious effect detailed in section III-D2.The upper
graph of figure 7 compares the performance of DWMDS-BF
and DWMDS-DE in networks where the estimation of the
distances follows a normal distribution whose mean is the
real distance between nearby nodes with standard deviation
5% of this real distance, and the coverage radius used to
calculate the connectivities in DWMDS-BF changes according
to a normal distribution of mean 2.5r and standard deviation
5% of this radius. When the coverage radius is 2.5r, the
errors in the estimated distances are larger than some nodes’
speed, happening the effect explained in section III-D2, and
consequently the results obtained with DWMDS-BF are even
better than the ones obtained with DWMDS-DE. When the
radio coverage is enough to cover almost the whole network
(very well connected network), the Static term becomes more
important than the Dynamic one and takes over the optimiza-
tion phase. Then the contradictory effect disappears and the
results with and without Dynamic term converge (picture at
the bottom of figure 7).

C. Comparison with other tracking algorithms

Most proposed tracking algorithms [13], [14], [15], [16],
formulate the tracking problem as a sequence of independent
time instants, taking advantage of the high density of nodes
in the network to infer the position of the nodes at each time
instant. When the network is not very dense, or it does not have
uniformity, these methods lose accuracy exponentially. Unlike
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Fig. 6. Mean reconstruction error for different network configurations and coverage radius. Each figure represents networks with a variable number of mobile
nodes and the same number of anchors.

previous works, the localization system proposed on this paper,
takes advantage of individuals’ dynamics and approaches
the tracking problem as a whole picture, correlated on time
according to each individual’s dynamics. Unlike location met-
hods such as MDS-MAP, MDS-MAP(P) and MDS-MAP(P,R),
DWMDS algorithms are not based on shortest path measu-
rements, so there is not communication cost between nodes
(with the corresponding savings on battery and bandwidth),
and their performance is the same no matter the distribution of
the nodes in the network (uniform or non-uniform networks).
The computational cost dominant term is O(n3T ) in DWMDS
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Fig. 7. Up: scenarios with noisy estimated distances. Down: performance of
noisy DWMDS-DE with and without Dynamic term.

and MDS-MAP(P,R), the method that obtains the best results
of the MDS-MAP family. DWMDS algorithms obtain better
results when the number of anchors increases, while the other
methods do not improve the performance above 10 anchors.
DWMDS algorithms improve their performance when the
radio coverage increases, while the MDS-MAP algorithms do
not get better performance from a critical point.

Figure 8 shows the median reconstruction error of four
different tracking methods, MDS-MAP, MDS-MAP(P), MDS-
MAP(P,R) and DWMDS-BF, in two scenarios where only con-
nectivity data is available: a random-uniform network of 200
nodes and a random-non-uniform network that consists of 160
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nodes (in both scenarios, some of the nodes are anchors and all
the rest are either mobile (DWMDS-BF) or static (MDS-MAP
family) nodes). The coverage radius increases from 1.25r to
2.5r in 0.25r steps. DWMDS-BF gets better accuracy than
MDS-MAP algorithms when the coverage radius increases
(MDS-MAP family algorithms reach an almost steady level)
and more in random-non-uniform networks than in random-
uniform ones. The accuracy of DWMDS-BF increases when
the number of anchors increases. MDS-MAP algorithms do
not improve the performance over 10 anchors [16].

V. CONCLUSIONS AND FUTURE

RESEARCH

In this paper we have proposed two efficient and numerica-
lly stable tracking algorithms to infer individuals’ trajectories
from a set of dissimilarity matrices through time. DWMDS-
BF is an algorithm that obtains very good tracking results for
any network when only connectivity information is available
and DWMDS-DE is the algorithm designed for those networks
when an estimation of the distances between neighbors is avai-
lable. The main contributions of the algorithms of DWMDS
family are a Dynamic term that effectively links the dissi-
milarity data through time regularizing the tracking solution
according to the dynamics of the individuals tracked and a
novel Binary Filter function in the Static term of the DWMDS-
BF algorithm. Compared to other location algorithms such as
the well known MDS-MAP family, DWMDS algorithms do
not need communication between nodes, what saves energy
and network bandwidth, and work equally well in uniform or
non-uniform networks.

Currently, we are extending this work in several ways:

• Setting up a testbed based on Bluetooth technology
in an office scenario (headquarters of ROBOTIKER-
TECNALIA Technology Centre, Spain) with more than
50 people carrying special designed Bluetooh devices
(Bluetooth Medallions). This testbed will be used as a
real environment where DWMDS-BF will be tested and
refined with real data. Bluetooth technology is already
implemented in most of PCs, which contributes to have
plenty and very spread anchors all over the scenario.

• Extraction of real tracking traces for Mobile Ad hoc NET-
works (MANET) using DWMDS to measure the impact
that the mobility of the nodes has in the performance of
the MANET routing protocols.

• Study in detail anchors distribution techniques to mini-
mize the number of anchors without compromising the
accuracy of the algorithm.
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