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Abstract

Kernel machines (e.g. SVM, KLDA) have shown state-of-
the-art performance in several visual classification tasks.
The classification performance of kernel machines greatly
depends on the choice of kernels and its parameters. In this
paper, we propose a method to search over a space of pa-
rameterized kernels using a gradient-descent based method.
Our method effectively learns a non-linear representation
of the data useful for classification and simultaneously per-
forms dimensionality reduction. In addition, we suggest a
new matrix formulation that simplifies and unifies previous
approaches. The effectiveness and robustness of the pro-
posed algorithm is demonstrated in both synthetic and real
examples of pedestrian and mouth detection in images.

1. Introduction
Kernel methods [21, 22] are increasingly used for data

clustering, modeling and classification problems because of
their state-of-the-art performance, simplicity, and lack of
local minima problems. Kernel machines such as SVM,
KPCA, or KLDA project data into (usually) high dimen-
sional feature spaces, where linear decision surfaces corre-
spond to non-linear decision surfaces in the original input
space. The performance of any kernel machine greatly de-
pends on the type of kernel and its parameters. The kernel
explicitly defines a similarity measure between two samples
and implicitly represents the mapping of the input space to
the feature space. In general, different problems require
different feature spaces, and a domain-specific kernel is a
useful feature for an algorithm to have. In this paper, we
propose a method to learn a non-linear mapping of the data
useful to improve classification in kernel machines. Besides
improving performance, learning a good similarity measure
which reflects the structure of the data can be useful for
other tasks such as visualization or clustering.

Fig. 1 shows the main aim of this paper. We have
synthetically generated two multimodal three-dimensional
Gaussian classes. Two of the dimensions are relevant
for classification and the other dimension is high-variance

Figure 1. Learning a non-linear mapping useful for classification.
Top left: original data. Top right: non-relevant features for clas-
sification. Bottom left: meaningful projections that preserve dis-
criminability. Bottom right: final non-linear mapping.

Gaussian noise with the same mean. In this example, our
algorithm finds a low dimensional non-linear embedding
(a quadratic mapping) where the data is linearly separable.
Moreover, it discards the undesirable dimension not rele-
vant for classification. Observe that with a Gaussian Ra-
dial Basis Function (RBF) kernel, we could achieve similar
classification performance in this particular problem; how-
ever, the Gaussian kernel hides the simplicity of the solution
found by our algorithm (a quadratic mapping). Moreover,
the Gaussian RBF kernel does not provide a mechanism to
remove irrelevant features to increase classification accu-
racy.

The remainder of the paper is organized as follows: sec-
tion 2 reviews previous work, section 3 introduces a param-
eterized kernel, and section 4 proposes an error function to
fit it. Section 5 explores the relation of our parameteriza-
tion with standard methods. Section 6 describes a gradient-
based algorithm to learn the kernel. Section 7 provides the
experiments and section 8 summarizes the conclusions.
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2. Previous work
Since the introduction of kernel machines in the 90s, lit-

erature on metric and kernel learning(including learning the
parameters and hyperparameters) has increased. It is be-
yond the scope of this paper to review all previous work
along these lines, but a good review on metric learning
can be found in [27], and for kernel selection methods see
[21, 22].

A common approach for kernel matrix learning employs
semi-definite programming (SDP) [16, 17, 5] to maximize
some type of alignment with respect to an ideal kernel. A
major limitation of SDP is its computational complexity
[1]. This limitation has restricted its application to small
scale problems. Recently, [15] posed the kernel selection
for kernel linear discriminant analysis as a convex optimiza-
tion problem. To optimize over a positive combination of
known kernels, the authors used interior point methods with
a computational cost of O(d3 + n3), where d is the dimen-
sion of the samples and n the number of samples. Along
these lines, [25] learns a Mahalanobis distance metric in
the kNN classification setting by SDP. The learned distance
metric enforces the k-nearest neighbors to belong always to
the same class, while examples from different classes are
separated by a large margin. A less computationally ex-
pensive approach, [13] utilize a boosting algorithm to learn
”weak” kernel functions. In different but related work in
computer vision, [26] learns a kernel matrix for non-linear
dimensionality reduction via SDP. In the context of SVM,
[3] employed a gradient descent algorithm to minimize the
leave-one-out estimation of the generalization error over the
kernel parameters.

In the literature of metric learning, Goldberger et al. [12]
proposed Neighbourhood Component Analysis that com-
putes the Mahalanobis distance that minimizes an approxi-
mation of the classification error. Similarly, [23] optimizes
the linear discriminant analysis (LDA) criteria in a semi-
supervised manner to estimate the metric. Conversely, other
attempts such as those in [14, 9] find a distance metric to
improve classification performance.

In previous work, typically, a parameterized family of
linear or non-linear kernels (e.g. Gaussian, polynomial)
is chosen, and the kernel parameters are tuned with some
sort of cross-validation. In this paper, we consider the more
generic problem of finding a functional mapping of the data.
Moreover, we simultaneously reduce the dimensionality of
the data and find the non-linear mapping using an algorithm
of complexity O(dn2).

3. Parameterizing the Kernel
Many visual classification tasks (e.g. object recognition)

are highly complex and non-linear kernels provide a good
tool to model illumination, view-point, or internal object

variability. Learning a non-linear kernel is a relatively diffi-
cult problem. For instance, proving that a function is a ker-
nel is a challenging mathematical task. A given function is
a kernel if, and only if, the value it produces for two vectors
corresponds to a dot product in some feature Hilbert space.
This is the well-known Mercer’s theorem: ”Every positive
definite, symmetric function is a kernel. For every kernel
K, there is a function ϕ(x) : k(d1, d2) = 〈ϕ(d1), ϕ(d2)〉.”,
where 〈〉 denotes dot product. To avoid the problem of prov-
ing that a similarity function is a kernel, it is common to pa-
rameterize the kernel as a positive combination of existing
kernels (e.g. Gaussian, polynomial) [15].

In this paper, we propose to parameterize a kernel as a
positive combination of normalized kernels as follows:

T = DT AD T̂ = dm(T)−
1
2 Tdm(T)−

1
2

Tt = DT AtD T̂t = dm(Tt)−
1
2 Ttdm(Tt)−

1
2

K1(A,α) =
∑p

t=0 αtT̂�t

K2(A1, · · · ,Ap,α) =
∑p

t=0 αtT̂�t
t (1)

where αt ≥ 0 ∀t, p is the number of terms in the expansion,
the columns of D ∈ <d×n(see notation 1) contain the orig-
inal data points, d denotes the dimension of the data and n
the number of samples. Each element ij of the matrix T,
tij = dT

i Adj contains the weighted dot product between
the samples i and j. Each element ij of the matrix T̂ repre-
sents the weighted cosine of the angle between the samples

i and j (i.e. t̂ij = dT

i Adjq
dT

i AdidT

j Adj

). T̂�k exponentiates

each of the entries in T. K1 is a positive combination of
T̂�k, and if A is positive definite, K1 will be a valid ker-
nel because of the closure properties of kernels [22]. The
rank of each of the matrices T̂ and T̂t is less or equal to
min{d, n}, but K1 might be full rank. The same interpre-
tation holds for K2 with the difference that for each kernel
T̂t there is a different metric matrix At, that is, each kernel
might have a different subspace to project the data onto.

The kernel expansion suggested in eq. 1 is in spirit simi-
lar to the Taylor series expansion of a multivariate function.
In fact, K1 and K2 can directly represent the polynomial
kernel and are closely related to the exponential one. Con-
sider a set of normalized samples (i.e. d̂i = di/||di||2), the
Taylor series expansion of two elements of the exponential

1Bold capital letters denote a matrix D, bold lower-case letters a col-
umn vector d. dj represents the j column of the matrix D. dij denotes
the scalar in the row i and column j of the matrix D and the scalar i-th
element of a column vector dj . All non-bold letters represent variables of
scalar nature. diag is an operator that transforms a vector to a diagonal
matrix or takes the diagonal of the matrix into a vector. dm(A) is a matrix
that contains just the diagonal elements of A. ◦ denotes the Hadamard or
point-wise product. 1k ∈ <k×1 is a vector of ones. Ik ∈ <k×k is the
identity matrix. tr(A) =

P
i aii is the trace of the matrix A and |A|

denotes the determinant. ||A||F = tr(AT A) designates the Frobenious
norm of a matrix. A�k denotes point-wise power, i.e. ak

ij ∀i, j.



kernel will be kij = e
||

ˆdi−
ˆdj ||

2
2

σ2 =
∑∞

r=0
(2)r

σ2rr! (1−d̂
T

i d̂j)r,
which has same form as the expansion proposed in eq. 1 if
At = Id ∀t. On the other hand, K1 and K2 are not transla-
tional invariant kernels (unlike Gaussian RBF).

3.1. Dealing with high dimensional data

At ∈ <d×d is a matrix that captures the correlation rela-
tion between features. For high dimensional data (e.g. im-
ages) At is a very large matrix. For instance, consider a set
of images of 100× 100 pixels (vectors in <10000), the met-
ric matrix At will have dimensions of <10000×10000. For
At to be full rank, we would need at least 10000 indepen-
dent samples, and even that would result in a poor estimate.
In our context, working with these very high dimensional
matrices presents two problems: computational tractability
(storage and efficiency) and lack of generalization (rank de-
ficiency).

In order to generalize better and alleviate storage and
computational demands, we follow recent work [7] and fac-
torize the matrix At as a low dimensional subspace plus a
noise term (scaled identity matrix). That is, we approximate
each matrix At as At ≈ BtBT

t + λtId where λt ≥ 0 ∈ <
and Bt ∈ <d×k. Where k is the dimension of the subspace
where to project the data. Factorizing the covariance as the
sum of outer products and a diagonal matrix is an efficient
(in space and time) manner to reduce the dimensionality of
the data. If At is a covariance matrix, this factorization
is the same as Probabilistic Principal Component Analysis
[20, 24]. It is worthwhile to point out two important as-
pects of the previous factorizations. Firstly, observe that to
compute Atdi ≈ Bt(BT

t di) + λtdi storing/computing the
full d × d covariance is not required. Secondly, the orig-
inal matrix At has d(d + 1)/2 free parameters; whereas,
the number of parameters after the factorization is reduced
to k(2d − k + 1)/2 (assuming orthogonality of Bt), and
hence, it is not so prone to over-fitting.

4. Learning from an ideal kernel

In the previous section, we have proposed a possible ex-
pansion of a parameterized kernel. Ideally, we would like
to directly optimize the kernel parameters to minimize the
Bayes classification error; however, this is usually a hard
task because the underlying distribution of the data is un-
known and usually some sort of bounds are optimized in-
stead. In this section, we explore the use of an ideal refer-
ence kernel to learn the kernel parameters.

In the ideal case, we would like to estimate the parame-
ters of the kernel (A,α) to produce a block diagonal matrix
(assuming samples in the same class are contiguous). That
is, if two samples belong to the same class, the kernel func-
tion should output a similarity of 1 and 0 otherwise. This

ideal matrix can be expressed as the following factoriza-
tion: F = GGT , where G ∈ <n×c is a dummy indicator
matrix such that

∑
j gij = 1, gij ∈ {0, 1} and gij is 1 if

di belongs to class Cj . Recall that n refers to the number
of samples and c the number of classes. A reasonable mea-
sure of distance between this ”ideal” kernel matrix and the
parameterized one is given by:

E1(A,α) = ||F−K(A,α)||F ∝
tr(K(A,α)2)− 2tr(K(A,α)F) (2)

This measure of distance between kernels is closely
related to the one proposed by [5]. Cristianini et al.
[5] propose to minimize the alignment between kernels
with: E2(A,α) = tr(K(A,α)F)√

tr(K(A,α)K(A,α))
. Minimiza-

tion of E1 is more convenient to optimize and very sim-
ilar (but not equivalent) to maximization of E2. Ob-
serve that if we take the log of E2 and change the sign,
E2 ∝ 0.5log(tr(K(A,α)2))− log(tr(K(A,α)F), which
is closely related to minimization of E1.

One drawback of eq. 2 is that it enforces the same sim-
ilarity measure (i.e. 1) for two samples of the same class
whether they lie near or far away in the input space. This
behavior can produce over-fitting and remove important in-
formation regarding class discriminability. Moreover, we
can have an unbalanced problem where a particular class
has more samples than another class, and we would like to
have a mechanism to compensate for that. Furthermore, any
real data set contains a number of outliers that can bias the
solution. To account for these situations, we introduce a
matrix W ∈ <n×n that will individually weight each pair-
wise points. For instance, to account for outliers we will
weight all the rows and columns of the outlying data as 0.
To compensate for the fact that two samples have large dis-
similarity in the input space, we will enforce a small link

between these samples e.g. wij = e
−
||di−dj ||

2
2

β2 ∀i 6= j. To
incorporate W in the formulation, we modify eq. 2 as:

E3(A,α) = ||W ◦ (F−K(A,α))||F ∝
tr((W ◦K(A,α))(K(A,α) ◦W)T )

−2tr((W ◦K(A,α))(W ◦ F)) (3)

5. Relationship with Linear Discriminant
Analysis

It is interesting to point out the relationship between the
proposed kernel expansion and Linear Discriminant Anal-
ysis (LDA) [8, 11]. LDA finds a low dimensional space
where the means of the classes are far from each other while
the within-class covariance is as compact as possible. The
linear projection matrix Blda can be computed in closed
form by solving a generalized eigen-value problem. The



eigenvalue problem is defined between the second-order co-
variance matrices, conveniently expressed in matrix form as
[7]:

(n− 1)St =
n∑

j=1

(dj − m)(dj − m)T = DP1DT

(n− 1)Sw =
c∑

i=1

∑
dj∈Ci

(dj − mi)(dj − mi)T = DP2DT

(n− 1)Sb =
c∑

i=1

ni(mi − m)(mi − m)T = DP3DT

where Sb is the between-class covariance matrix and rep-
resents the average of the distances between the mean of
the classes. Sw represents the within-class covariance ma-
trix, and it is a measure of the average compactness of each
class. St is the total covariance matrix. m = 1

nD1n is the
mean vector of all the samples, and mi is the mean vector
for the class i. ni is the number of samples for class i and∑c

i=1 ni = n. Pi are projection matrices (PT
i = Pi and

P2
i = Pi) with the following expressions [7]:

P1 = I− 1
n1n1T

n P2 = I−G(GT G)−1GT

P3 = G(GT G)−1GT − 1
n1n1T

n (4)

One possible optimization criteria for LDA minimizes the
following expression:

tr
(
(BldaT

DDT Blda)−1(BldaT
DG(GT G)−1GT DT Blda)

)
where (GT G)−1 ∈ <c×c is a diagonal matrix containing
the inverse of the number of samples per class. A closed
form solution for Blda can be obtained by solving the fol-
lowing generalized eigenvalue problem:

DDT Blda = DG(GT G)−1GT DT BldaΛ (5)

Consider the simplified case, where the matrix At =
BtBT

t , that is, we only select the second term of the ex-
pansion of K2. Finding the optimal Bt that minimizes:

E4(Bt) = ||(DT BtBT
t D)− F||F (6)

w.r.t. Bt, and using the fact that BT
t DDT Bt = Λ2 , it

can be shown that the solution of E4 satisfies the following
eigen-equation:

DDT Bt = DFDT BtΛ2 (7)

Observe that if F = G(GT G)−1GT , we will have the
same solution as LDA, that is, eq. (5) and eq. (7) are equiv-
alent. Our kernel expansion is a consistent non-linear gen-
eralization of standard LDA [8, 11].

If d << n and DDT is full rank, standard packages
for generalized eigenvalue problems can efficiently solve

eq. (5). However, for high dimensional data (d >> n)
solving the previous equation directly is not computation-
ally efficient in neither space nor time. Fortunately, using
the fact that the solutions of B are linear combinations of
the data (i.e. B=Dα), multiplying both sides by DT and as-
suming DT D is invertible, the original eigenvalue problem
is equivalent to solve FDT Dα = DT DαΛ3, which is of
much lower dimension (n× n) [6].

6. Learning the Kernel

In this section, we derive several optimization strategies
to learn the parameterized kernel.

6.1. Optimization

In the interest of space, we derive the optimization rules
for the most generic error function. We show how to opti-
mize:

E5(A1, · · · ,Ap,α) = ||W ◦ (F−K2)||F (8)

w.r.t. A1, · · · ,Ap,α, since optimizing K1 is very similar.
To optimize eq. 8, we use an alternating strategy of fixing
At parameters and optimizing w.r.t. α and vice versa. This
will monotonically decrease the error of E5.

We use a gradient descent approach to efficiently and
incrementally optimize for At. The gradient updates are
given by:

An+1
t = An

t − η ∂E5
∂At

(9)
∂E5
∂At

= 2αttD(M2 −M3)DT ∀ t

M1 = (K2 − F) ◦ T̂�(t−1)
t ◦W�2

M2 = dm(Tt)−
1
2 M1dm(Tt)−

1
2

M3 = dm(Tt)−
3
2 diag

(
(dm(Tt)−

1
2 M1 ◦Tt)1n

)
The major problem with the update of eq. 9 is determin-

ing the optimal η. In our case, η is found with a line search
strategy [10]. Also, observe that it might be the case that
At is no longer positive semi-definite. One possible solu-
tion is to compute the eigenvectors of At and add an iden-
tity matrix scaled by absolute value of the largest negative
eigenvalue. On the other hand, we can guarantee a positive
semidefinite matrix by computing the gradient w.r.t. Bt:

Bn+1
t = Bn

t − η ∂E5
∂Bt

(10)
∂E5
∂Bt

= 2αttD(M2 −M3)DT Bt ∀t

At this point, it is worthwhile to mention that the complexity
of the updates is O(dn2), far less expensive than SDP ap-
proaches. λt is optimized using the fmincon function from
Matlab.



Once all At have been updated, α values can be opti-
mized using quadratic programming. After rearranging, eq.
8 can be expressed as:

E6(α) ∝ αT Zα− 2pT α α ≥ 0 (11)

where zij =
∑

lk w2
lkki

lkkj
lk and pi =

∑
lk w2

lkflkki
lk. Re-

call that kij corresponds to the ij element of K2. We use
the quadprog function from Matlab to optimize w.r.t. α
while satisfying α ≥ 0.

6.2. Initialization and other issues

Minimizing eq. (8) with respect to α,A1, · · · ,Ap is a
non-convex optimization problem prone to many local min-
ima. Without a good initial estimation, the previous opti-
mization scheme easily converges to a local minima. To get
a reasonable estimation, we initialize each of the parame-
ters A1, · · · ,Ap with the LDA solution and the means of
the clusters resulting from k-means clustering. The α vec-
tor is initialized with a uniform value. Moreover, we start
from several random initial points and select the solution
with minimum error after convergence.

To avoid over-fitting problems and for computational
convenience, we stochastically train the algorithm. That is,
we randomly select subsets of training data, run a few itera-
tions of the gradient descent algorithm, select other random
subsets of data, and proceed in this manner until conver-
gence.

7. Experiments
In this section, we report comparative results of our al-

gorithm with standard SVM approaches in image classifica-
tion problems. In all of the experiments, we have used the
C-SVM from the LIBSVM [2].

7.1. Synthetic data

Consider fig. (1), where 200 samples have been gener-
ated from four 3D Gaussians (50 each) for two different
classes (XOR problem). For each of the Gaussians, the z
coordinate is noise with same mean and high variance. Ob-
serve that the XOR problem is not linearly separable and a
non-linear kernel is needed.

In this case, we learn a matrix A ∈ <3×3 common to all
the kernels. After convergence, the rank of matrix A is 3
with eigenvalues l1 = 1.9860 l2 = 0.6843 l3 = 0.0009.
The smallest eigenvalue corresponds to the eigenvector
aligned with the z direction, where the non-discriminative
information lies. That is, the null space of A contains the
random non-discriminative directions. Even more interest-
ing is the interpretation of the α vector. All of the αt param-
eters are close to zero except for the powers of two. This is
because, for samples within the same cluster, the cosine of

Figure 2. Top row: examples images of pedestrians. Bottom row:
examples of non-pedestrian images misclassified as pedestrians by
the algorithm.

the angle will be approximately 1; between the samples of
a different cluster and same class the cosine will be −1; be-
tween clusters of different classes will be approximately 0.
Hence, by converting the negative −1 values to 1 by pow-
ering to an even number, we will achieve the ideal matrix
(assuming zero mean data).

7.2. Pedestrian detection

Detecting people in images is key to a number of ap-
plications, ranging from intelligent vehicles to surveillance
systems or robotics. In this experiment, we will make use of
a challenging database on pedestrians recently published by
[18]. This database is especially difficult because the non-
pedestrian examples are the false positives of a shape-based
pedestrian detector. The database consists of three training
data sets and two testing data sets. Each data set has 4800
images (18× 36 pixels) with a pedestrian in the middle and
5000 non-pedestrian examples. Fig. 2 shows a few images
from this database.

Since the amount of available data for training is large
(≈ 20000 samples), we use the stochastic version of the al-
gorithm in chunks of 400 samples. We use two of the train-
ing sets for learning the parameters and the third one to tune
with cross-validation the C parameter in the C-SVM algo-
rithm and the scale parameter in the Gaussian RBF kernel.
The two testing data sets are used just for testing purposes.
Fig. (3.a) shows the error of eq. 8 versus the number of
iterations and fig. (3.b) shows the classification accuracy
versus the iterations. As expected, the error decreases on
average due to the stochastic behavior of the minimization,
and it also provides (on average) a better classification ac-
curacy. In this case, we have augmented the data vector as
[di1] to take into account the mean value. The matrix W
was set all to one.

Having three training sets and two data tests, we can
compute a total of six different ROC curves [18]. In fig.
4, we show the ROC mean curve. Fig. (2) shows some true
positives (top row) and some false positives (bottom row)
produced by our algorithm. In table 1, we show the recog-
nition performance in comparison with linear and Gaussian
RBF kernels.



Figure 3. a) Error versus iterations for two values of k (dimension
of the subspace). b) Classification accuracy versus iterations.

Figure 4. ROC curves for linear, Gaussian RBF and the parame-
terized kernel for SVM classifier.

7.3. Mouth detector

In our second experiment, we test the performance of
the algorithm detecting the mouths in 14 images taken with

Features Linear Exponential Ours
Graylevel 73.9 76.4 84.2

Table 1. Average classification results for different kernels

Figure 5. Some training examples of the IBM Database.

Figure 6. First row: Gaussian RBF SVM does not correctly detect
the mouth in three test. Second row: the same images with the
learned parameterized kernel SVM (2 out of 3 are correct).

a regular digital camera (see fig. 6). The kernel has been
learned from a set of 2500 mouths (positive examples) taken
from the IBM ViaVoice AV database [19], and aligned with
Procrustes [4] (see fig. 5). The 2500 negative examples
are selected from patches of the face that do not contain the
mouth.

Given an image with one or more frontal faces and an
estimate of the scale factor, we search over all possible lo-
cations in the image. Evaluating the kernel at each location
(x, y) can be computationally expensive. For a particular
position (x, y) computing the projection BT

t di is equiva-
lent to correlating the image with each basis vector of the
subspace Bt, and stacking all the values for each pixel.
For large regions, this correlation is performed efficiently in
the frequency domain by using the Fast Fourier Transform
(FFT) (i.e. C1 = bT

1 I = IFFT (FFT (b1) ◦ FFT (I))).
This fast search is another advantage of our formulation.
Fig. (6) shows some examples of the detection performance
of the RBF-SVM versus our parameterized kernel. In the
first row, the Gaussian RBF kernel does not correctly detect
any of the three mouths in the images; whereas, in the sec-
ond row our learned kernel detects two. Fig. (7) shows the
average ROC curve over 14 images for the learned kernel
and RBF kernel. The parameters of the RBF kernel (i.e.

e
−||xi−xj ||

2
2

2σ2 , σ and the C in the C-SVM are tuned with
cross-validation procedure.



Figure 7. Roc curves for RBF and parameterized kernel.

8. Conclusions and Future Work
In this paper, we have proposed an efficient algorithm to

learn a parameterized kernel matrix. In all the experiments,
the learned kernel outperformed standard kernels such as
polynomial or RBF after cross-validation. Although this
preliminary work has shown promising results, several is-
sues to be addressed: the need for better optimization strate-
gies that avoid local minima problems and can process a
large amount of data with a computational cost of less than
O(dn2). We are also looking for other possible kernel pa-
rameterizations that can extract interesting image features
in a supervised or unsupervised manner.
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