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Abstract. Unsupervised discovery of commonalities in images has re-
cently attracted much interest due to the need to find correspondences in
large amounts of visual data. A natural extension, and a relatively unex-
plored problem, is how to discover common semantic temporal patterns
in videos. That is, given two or more videos, find the subsequences that
contain similar visual content in an unsupervised manner. We call this
problem Temporal Commonality Discovery (TCD). The naive exhaustive
search approach to solve the TCD problem has a computational complex-
ity quadratic with the length of each sequence, making it impractical for
regular-length sequences. This paper proposes an efficient branch and
bound (B&B) algorithm to tackle the TCD problem. We derive tight
bounds for classical distances between temporal bag of words of two seg-
ments, including `1, intersection and χ2. Using these bounds the B&B
algorithm can efficiently find the global optimal solution. Our algorithm
is general, and it can be applied to any feature that has been quantified
into histograms. Experiments on finding common facial actions in video
and human actions in motion capture data demonstrate the benefits of
our approach. To the best of our knowledge, this is the first work that
addresses unsupervised discovery of common events in videos.

Key words: Temporal bag of words, branch and bound, temporal com-
monality discovery.

1 Introduction

Unsupervised discovery of visual patterns in images has been a long standing
computer vision problem driven by applications to cosegmentation [8,15,20],
learning grammars of images [34], detecting irregularity [6] and automatic tag-
ging [23]. Although recently there has been several work on unsupervised dis-
covery of visual patterns in images, a relatively unexplored problem in computer
vision is to discover common temporal patterns among video sequences. For in-
stance, given two or more videos, finding the segments that contain common
human actions. Fig. 1 illustrates the main problem addressed in this paper.
Given two videos from “As Good As It Gets” and “Indiana Jones And The
Last Crusade”, this paper proposes an unsupervised method to find multiple
subsequences that share similar semantic contents (e.g., Kissing or Handshake).
Through the paper, we will refer to this problem as Temporally Commonality
Discovery (TCD).

Recall that TCD is a fully unsupervised problem, so no prior knowledge is
provided—we do not know what the commonalities are, how many there are and
where they start and end. A naive method to find desired pair(s) of common
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Fig. 1. Temporal Commonality
Discovery (TCD). Given two
videos from the movies “As Good
As It Gets”(top) and “Indi-
ana Jones And The Last Cru-
sade”(left), how to discover in
an unsupervised manner the com-
mon actions between them? In
this case our algorithm found seg-
ments of Kissing and Handshak-
ing as common actions between
both videos. Note that the com-
mon segments can have different
lengths.

subsequences would be the sliding window approach, i.e., exhaustively search all
possible pairs of subsequences and select the pair(s) with the highest score(s).
However, the complexity of this approach scales quadratically with the length
of both sequences, O(m2n2), for two sequences of length m and n. For instance,
in the case of two sequences with 200 and 300 frames, there are more than
three billion possible matchings that need to be computed at different lengths
and locations. Therefore, the naive approach is computationally prohibitive for
reasonable length sequences.

Inspired by [13,32] that used the branch and bound (B&B) algorithm to effi-
ciently search for optimal image patches or video volumes, we propose to adopt
B&B for searching simultaneously over all possible segments in each video se-
quence (see Fig. 1). Two are the main contributions of this study: (1) Introduce
the new problem of unsupervised TCD. While there exist studies that address
commonality discovery in images [8,15,20,30], to the best of our knowledge there
is little work that tackles unsupervised search of commonalities in video se-
quences. Also, note that there are several studies that address the problem of
event detection or sequence labeling of human actions in video (e.g., [12,27,32]).
However, unlike TCD, those studies require learning a set of classifiers from
training data. (2) Formulate the TCD as an integer optimization problem and
propose an efficient B&B algorithm that finds the globally optimal solution. We
derive new tight bounds for `1, intersection and χ2 distances between histograms,
allowing the B&B scheme to discard large portion of the search space. Experi-
mental validation on standard datasets for finding similar facial expressions in
video and human actions in motion capture data illustrates the benefits of our
approach.

2 Related Work

Our work is inspired by recent success on using B&B with Support Vector Ma-
chines (SVM) for efficient template matching. Lampert et al. [13] proposed Ef-
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ficient Subwindow Search (ESS) to find the optimal subimage that maximizes
the prediction score of a pre-trained SVM classifier. Hoai et al. [12] combined
a multiclass SVM with Dynamic programming for efficient temporal classifica-
tion and segmentation. Yuan et al. [32] generalized Lampert’s 4-D search to
the 6-D Spatio-Temporal Branch-and-Bound (STBB) by incorporating time, to
search for spatio-temporal volumes. However, unlike TCD, these approaches are
supervised and require a training stage.

Recently, there have been interests in temporal clustering algorithms for un-
supervised discovery of human actions. Wang et al. [30] exploited deformable
template matching of shape and context in static images to discover action
classes. Si et al. [25] learned an event grammar by clustering event co-occurrence
into a dictionary of atomic actions. Zhou et al. [33] combined spectral cluster-
ing and dynamic time warping to cluster time series, and applied it to learn
taxonomies of facial expressions. Turaga et al. [28] used extensions of switch-
ing linear dynamical systems for clustering human actions in video sequences.
However, if we cluster two sequences that only have one segment in common,
previous methods for clustering time series will likely need many clusters to find
the common segments. In our case, TCD discovers only similar segments and
avoids the need for clustering all the video that is computationally expensive
and prone to local minima. Another unsupervised technique related to TCD
is motif detection [18,19]. Time series motif algorithms find repeated patterns
within a single sequence. Minnen et al. [18] discovered motifs as high-density re-
gions in the space of all subsequences. Mueen and Keogh [19] further improved
the motif discovery problem using an online technique, maintaining the exact
motifs in real-time performance. Nevertheless, these work detects motifs within
only one sequence, but TCD considers two (or more) sequences. Moreover, it is
unclear how these technique can be robust to noise.

The longest common subsequence (LCS) [10,17,21] is also related to TCD.
The LCS problem consists on finding the longest subsequence that is common
within a set of sequences (often just two) [21,31]. Closer to our work is the algo-
rithm for longest consecutive common subsequence (LCCS) [31] that finds the
longest contiguous part of original sequences (e.g., videos). However, different
from TCD, these approaches have a major limitation in that they find only iden-
tical subsequences, and hence are not robust to noise that is typical in realistic
videos.

3 Unsupervised TCD

3.1 Problem Formulation

In the following, we will assume that at least one commonality exists among
a pair of time series (e.g., two video sequences), represented as matrices A =
[a1, . . . ,am] and B = [b1, . . . ,bn] (see notation1). We formulate the TCD prob-
lem as the integer programming over two integer intervals [b1, e1] ⊆ [1,m] and

1 Bold capital letters denote a matrix X, bold lower-case letters a column vector x.
xi represents the ith column of the matrix X. All non-bold letters represent scalars.
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[b2, e2] ⊆ [1, n]:

min
b1,e1,b2,e2

d
(
ϕA[b1,e1], ϕB[b2,e2]

)
, (1)

s.t. ei − bi ≥ `,∀i ∈ {1, 2},

where A[b1, e1] = [ab1 , . . . ,ae1 ] denotes the subsequence of A that begins from
frame b1 and ends in frame e1 (similar for B[b2, e2]). ϕx is a feature mapping
for a sequence x (see Sec. 3.3 for details), d(y, z) is a distance measurement
between two feature vectors y and z, and ` controls the minimal length for each
subsequence to avoid the trivial solution of both lengths being zero.

Given a sequence pair A and B, the goal of TCD is to find the two most
common intervals [b1, e1] and [b2, e2], such that problem (1) is minimized. Note
that, as illustrated in Fig. 1, the discovered sequences A[b1, e1] and B[b2, e2]
can have different lengths, thus we don’t assume a fixed length for discovered
sequences. A naive approach for solving (1) is to search over all possible loca-
tions for (b1, e1, b2, e2). However, it leads to an algorithm with computational
complexity O(m2n2), which is prohibitive for regular videos with hundreds or
thousands of frames. To cope with this problem, this paper proposes a B&B
algorithm to efficiently find the global optimal solution to (1).

3.2 Optimization by Branch and Bound (B&B)

With a proper bounding function, the B&B framework is significantly more effi-
cient than exhaustive approaches. In this section, we leverage B&B to efficiently
find the global solution for problem (1).

Problem interpretation: To have a better understanding of the search
space, we first re-formulate the problem (1) as the problem of searching over two
sequence’s timelines (as illustrated in Fig. 1). A rectangle r in the search space
indicates one candidate solution (b1, e1, b2, e2) for (1). This candidate solution
would match a segment in video A beginning at b1 and ending at e1 with another
segment in video B beginning at b2 and ending at e2. To allow a more efficient
representation for searching, we parameterize each step as searching over sets of
candidate solutions. That is, we search over intervals instead of individual value
for each parameter. Each parameter interval corresponds to a rectangle set in the
search space, i.e., R = [B1, E1, B2, E2], where Bi = [bloi , b

hi
i ] and Ei = [eloi , e

hi
i ]

(i=1 and 2) indicate tuples of parameters ranging from frame lo to frame hi.
The B&B algorithm: Algorithm 1 summarizes the proposed TCD pro-

cedure. We use a priority queue Q to maintain the search process. Each state
in Q contains a rectangle set R, its upper bound u(R) and lower bound l(R).
Each iteration starts by selecting the rectangle set R from the top state, which
is defined as the state containing the maximal lower bound (recall that lower
bounds can be negative; see Sec. 3.3 for details of the bounds). Then in the
branch step, each rectangle set is split by its largest interval into two disjoint
subsets. For example, suppose E2 is the largest interval, then R → R′ ∪ R′′

where E′2 := [elo2 , b
elo2 +ehi

2

2 c] and E′′2 := [b e
lo
2 +ehi

2

2 c + 1, ehi2 ]. In the bound step,
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Fig. 2. An example of TCD for two synthetic 1-D time series (best viewed in
color). Note that in this case when ` = 20, a naive sliding window approach
needs more than 5 million evaluations while the proposed B&B method takes
only 1181 to converge. (a) Search ranges at iterations (it) #1, #300 and #1181
over sequences A and B. Commonalities A[b1, e1] and B[b2, e2] are discovered at
convergence (#1811). (b) Convergence curve of the lower bound. (c) Histograms
of the discovered commonalities.

we calculate the bounds for the lowest dissimilarity for each rectangle set, and
then update new rectangle sets and bounds into Q. The algorithm terminates
when R contains a unique entry. Fig. 2 shows an example of TCD for discover-
ing commonality between two 1-D sequences. Despite that in the worst case the
complexity of B&B can be still O(m2n2), we will experimentally show that in
general B&B is much more efficient than the naive search.

Note that the optimal discovered sequences can be of length greater than
`. To show an example, consider two 1-D sequences A = [1, 2, 2, 1] and B =
[1, 1, 3]. Suppose we use `1 distance, set the minimal length ` = 3, and represent
their 3-bin histograms as ϕA[1,4] = [2, 2, 0], ϕA[1,3] = [1, 2, 0] and ϕB = [2, 0, 1].
Hereby we can conclude by showing the distances: d`1(ϕA[1,4], ϕB) = 3 < 4 =
d`1(ϕA[1,3], ϕB).

Differences from ESS [13] and STBB [32]: Although the proposed B&B
algorithm is in spirit similar to ESS and STBB, it has three essential differences
from these methods: (1) Different search space. ESS and STBB search over spa-
tial coordinates of an image or spatio-temporal volumes in a video, while TCD
searches over beginning and ending positions of the segments in two sequences.
(2) ESS and STBB are supervised techniques and seek for highly confident re-
gions according to a pre-trained SVM classifier; TCD is unsupervised. (3) We
introduce new bounding functions for the B&B framework that guarantee effi-
ciency and optimality for the TCD problem. Moreover, ESS and STBB consider
only upper bounds, while TCD incorporates both upper and lower bounds and
hence is able to prune the priority queue for accelerating the search.
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Algorithm 1: Temporal Commonality Discovery

input : Feature lists for a sequence pair A,B; minimal length `
output: Optimal rectangle r∗ in the temporal search space

1 Initialize Q ←empty priority queue;
2 Initialize R← [1,m]× [1,m]× [1, n]× [1, n];
3 while Size of R is not 1 do
4 Split one interval into two disjoint sets R→ R′ ∪R′′ (branch step);
5 Compute bounds in Sec. 3.3 for two new intervals R′ and R′′ (bound step);
6 Push both R′ and R′′ into Q, ordered by bounds;
7 Pop the top state R from Q;

8 end
9 Assign the optimal rectangle r∗ ←R;

3.3 Construction of a Bounding Function

Representation of signals: Throughout the paper we will use the Bag of Tem-
poral Words (BoTW) model [26,32] to represent video segments. Observe, that
any features that can be discretized into histograms can fit into our framework.
In BoTW the codebook is built using a clustering method (e.g., k-means) to
group similar feature vectors. Each frame is then quantized according to the
k-entry dictionary. The histogram for a given sequence is then built by accumu-
lating individual frame histograms. We represent the feature mapping ϕA[b1,e1]

in (1) as the histogram of temporal words for the subsequence in the interval
[b1, e1]. Another notable benefit of the histogram representation is that it allows
for fast recursive computation using the concept of integral image [29]. That is,
for frame t, we accumulate the sum of ϕA[1,t] of the histograms up to t. Using
this structure, we can efficiently compute the histogram for any subsequence
A[t1, t2] as ϕA[t1,t2] = ϕA[1,t2] − ϕA[1,t1−1].

Properties of bounding functions: Recall that R is a rectangle set and
r ≡ (b1, e1, b2, e2) a rectangle in the temporal search space representing two
subsequences A[b1, e1] and B[b2, e2]. We denote d(r)=d(ϕA, ϕB) as the distance
between their histograms ϕA and ϕB. The smaller the value of d(ϕA, ϕB), the
more likely the sequences share commonalities. To harness the B&B framework,
we need to find an upper bound u(R) and a lower bound l(R) that satisfy the
three properties:

(a) u(R) ≥ maxr∈R d(r),
(b) l(R) ≤ minr∈R d(r),
(c) u(R) = d(r) = l(R), if r is the only element in R.

Properties (a) and (b) ensure that u(R) and l(R) appropriately bound all can-
didate solutions in R from above and from below, whereas (c) guarantees the
algorithm to converge to the optimal solution. As shown in problem (1) our goal
is to minimize a distance function. Hence u(R) in this case is not relevant for
the minimization. However, we can use u(R) to prune the priority queue for
speeding our search, i.e., eliminate any state S that satisfies l(S) > u(R) [3].



Unsupervised Temporal Commonality Discovery 7

Bounding individual histogram bins: Suppose A+ and A− are the
longest possible and shortest possible subsequence of A for a given rectangle
set R. We denote their K-bin unnormalized histograms as ϕA+ = {h+1 , . . . , h

+
K}

and ϕA− = {h−1 , . . . , h
−
K}. Let r ∈ R be a rectangle in the search space repre-

senting two subsequences A[b1, e1] and B[b2, e2] with histograms {h1, . . . , hK}
and {k1, . . . , kK}. Considering both histograms of A+,A− and B+,B−, we can
represent the range for the bth histogram bins as

0 ≤ h−b ≤ hb ≤ h
+
b , 0 ≤ k−b ≤ kb ≤ k

+
b . (2)

For normalized histograms, we use the fact that |A−|< |A[b1, e1]|< |A+| and

|B−|< |B[b2, e2]|< |B+|, where |X| =
∑K
b=1 ϕXb is summation over histogram

bins of a sequence X. Then we can rewrite (2) for the ranges of normalized bins

ĥb=hb/|A[b1, e1]| and k̂b=kb/|B[b2, e2]|:

0 ≤
h−b
|A+|

≤ ĥb ≤
h+b
|A−|

, 0 ≤
k−b
|B+|

≤ k̂b ≤
k+b
|B−|

. (3)

Bounding distance between histograms: With the per-bin bounds, we
show in the following exemplar constructions of bounds between histograms, i.e.,
`1, intersection, and χ2 distance, which have been widely applied to many tasks
such as objection recognition [9,13] and action recognition [7,11,14,16,22].

1) Bounding `1 distance: Applying the operators min/max on (2), we get

min(h−b , k
−
b ) ≤ min(hb, kb) ≤ min(h+b , k

+
b ), (4)

max(h−b , k
−
b ) ≤ max(hb, kb) ≤ max(h+b , k

+
b ).

Reordering both the above inequalities, we obtain the upper bound ub and lower
bound lb for the bth histogram bin:

lb = max(h−b , k
−
b )−min(h+b , k

+
b ) (5)

≤ max(hb, kb)−min(hb, kb) = |hb − kb|
≤ max(h+b , k

+
b )−min(h−b , k

−
b ) = ub.

Summing all the histogram bins, we obtain the bounds of the `1 distance for two
unnormalized histograms ϕA, ϕB:

l`1(R) =

K∑
b=1

lb ≤
K∑
b=1

|hb − kb|︸ ︷︷ ︸
d`1 (ϕA,ϕB)

≤
K∑
b=1

ub = u`1(R). (6)

Similarly, we can obtain the bounds for normalized histograms ϕ̂A, ϕ̂B by the
same operations as (4) and (5):

l̂`1(R) =

K∑
b=1

l̂b ≤ d`1(ϕ̂A, ϕ̂B) ≤
K∑
b=1

ûb = û`1(R), (7)

where
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l̂b = max(
h−b
|A+|

,
k−b
|B+|

)−min(
h+b
|A−|

,
k+b
|B−|

), (8)

and ûb = max(
h+b
|A−|

,
k+b
|B−|

)−min(
h−b
|A+|

,
k−b
|B+|

). (9)

2) Bounding intersection distance: Given two normalized histograms

ϕ̂A = {ĥ1, . . . , ĥK} and ϕ̂B = {k̂1, . . . , k̂K}, we define their intersection distance
by the Hilbert space representation [24]:

d∩(ϕ̂A, ϕ̂B) = −
K∑
b=1

min(ĥb, k̂b). (10)

By (3) and (4), we can find its lower bound and upper bound:

l∩(R) = −
K∑
b=1

min(
h+b
|A−|

,
k+b
|B−|

) and u∩(R) = −
K∑
b=1

min(
h−b
|A+|

,
k−b
|B+|

). (11)

3) Bounding χ2 distance: The χ2 distance has been proven to be a good
metric to measure distance between two histograms for TCD due to its simplicity
and efficiency. The χ2 distance is defined as

dχ2(ϕ̂A, ϕ̂B) =

K∑
b=1

(ĥb − k̂b)2

ĥb + k̂b
. (12)

Incorporating the bounds l̂b and ûb for normalized histograms in (8) and the
inequalities in (3), we obtain the lower bound and upper bound for dχ2 by
summing throughout all histogram bins:

lχ2(R) =

K∑
b=1

(max(0, l̂b))
2

h+b /|A−|+ k+b /|B−|
and uχ2(R) =

K∑
b=1

û2b
h−b /|A+|+ k−b /|B+|

.

(13)
The derived lower and upper bounds clearly satisfy the bounding properties

(a) and (b). To show how property (c) holds, one can consider the case that R
contains only one rectangle r. Take the d`1 for example, when r∈R is the unique
rectangle, we have h+b = hb = h−b and k+b = kb = k−b , and thus Eq. (5) becomes
ub = |hb − kb| = lb. Hereby we obtain l`1(R) = d`1(ϕA, ϕB) = u`1(R). One can
show property (c) holds for other distances in a similar manner.

4 Extensions to Multiple TCD and Video Indexing

In the following we show how a simple modification of our proposed algorithm
can be applied to multiple TCD and video indexing.

Discover multiple commonalities: For realistic sequences that often con-
tain more than one commonality, we can discover multiple commonalties by
applying Algorithm 1 repeatedly. Every time Algorithm 1 returns an optimal
rectangle in the temporal search space that represents the best match. Once a
commonality is found, we remove the corresponding rectangle from the search
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space and then begin over the search process to find the next best. The pro-
cess continues until a desired number of rectangles have been retrieved or the
returned matching distance d(·, ·) is greater than some threshold, which depends
on the desire of applications.

Note that our implementation is different from the conventional multiple-
object detection tasks [13]. In object detection, the whole spatial region is re-
moved to search for the next object. In our case, we can not remove all the
time-segments for both time sequences because we might miss some commonal-
ity at the same location. Instead, we position those rectangles to the bottom of
the priority queue by imposing a large penalty to their scores. Using this strat-
egy, we are able to handle many-to-many mapping, i.e., A[b1, e1] can match
multiple subsequences in B and vice versa.

Video indexing: A simple modification of the proposed B&B algorithm
could be useful for efficient searching for a video with similar content. That is,
given a query video, how to efficiently search for common subsequences in a
longer video. Let Q be the query sequence we want to find in the target video
T. We can modify (1) by fixing one of the pairwise sequences:

min
bt,et

d
(
ϕT[bt,et], ϕQ

)
s.t. et − bt ≥ `. (14)

The problem now becomes simpler but it still is an integer programming. Never-
theless, Algorithm 1 can be applied again to find the optimal match efficiently.
Searching for multiple segments can also be done as discussed above. Note that
we do not claim that this indexing algorithm is state-of-the-art. We just want
to illustrate the versatility of our approach.

5 Experimental Results

We evaluated our approach on two experiments. First, we discovered common
facial events in the RU-FACS database [5]. Second, we found multiple common
human actions in CMU-Mocap dataset [1]. The code is available at http://www.
humansensing.cs.cmu.edu/software/tcd.html.

5.1 Common Facial Events Discovery
This experiment evaluates the capability of our algorithm to find similar facial
events in the RU-FACS database [5]. The RU-FACS database consists of digitized
video and manual coding of 34 young adults. They were recorded during an
interview of approximately 2 minutes duration in which they lied or told the
truth in response to an interviewer’s questions. Pose orientation was mostly
frontal with moderate out-of-plane head motions. We selected the Action Unit
(AU) 12 (i.e., smile) from 15 subjects that had most occurrence of this facial
AU. We collected 100 segments containing one AU-12 and other AUs, resulting
in 4, 950 video sequence pairs with different subjects.

We represented features as the distances between the height of lips and teeth,
angles for mouth corners and SIFT descriptors in the points tracked by Active
Appearance Models (AAM) [33] (see Fig. 4(a) for an illustration). We built a
1,000-entry codebook on a random subset of 50,000 feature vectors (see Sec. 3.3).

http://www.humansensing.cs.cmu.edu/software/tcd.html
http://www.humansensing.cs.cmu.edu/software/tcd.html
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Fig. 3. Efficiency comparison between TCD and the naive sliding window (SW)
approach. (a) Parameters for each SWi: size-ratio (SR), stepsize (SS), and aspect

ratios (AR) as 2p. (b) Histograms ratio of the number of evaluation log nTCD

nSWi
. (c)

Histograms of difference between resulting distances d(rSW)− d(rTCD).

Efficiency comparison with the naive sliding window: This experiment
evaluates the increase in speed in comparison with the naive sliding window
(SW) approach. In the standard SW approach there are three parameter settings
to improve efficiency [29]. We denote the parameters as SWi (i = 1, 2, 3); see
Fig. 3(a) for detailed settings. The size-ratio (SR) refers to the window scaling
factors, the stepsize (SS) is the window offset, and the ratio of the window width
to its height is the aspect ratio (AR). We refer to [29] for more details about
the parameters. Recall the lengths of two sequences are m,n and the minimal
length for each sequence is `. We fixed the maximal and the minimal rectangle
sizes for SW to be (m× n) and (`

√
AR× `√

AR
), respectively.

To be independent of a particular implementation, we measured the discovery
speed as the number of evaluations that TCD and SW need to compute the
bounding functions. The number of evaluations are referred as nTCD and nSWi

(i=1, 2, 3). Fig. 3(b) shows the histograms of the log ratio for nTCD/nSWi . Light
green bars show that TCD requires less evaluations than SW, while dark blue
bars indicate the opposite. Red vertical line indicates the average ratio. The
smaller the ratio value, the less times TCD has to evaluate the distance bounds.
Although SW was parameterized by standard settings [13,29] to search only a
subset of the search space, TCD searches the entire space yet still performs on
average 6.18 times less evaluations than SW.

In order to evaluate the discovery quality, we also compared the difference
between the distances measured by TCD and SW, i.e., d(rSW)− d(rTCD). The
larger the difference the worse results SW got. Fig. 3(c) shows the histograms of
these differences. One can observe that the differences are always greater than
or equal to zero. This is because our method always finds the global optimum.
Recall that SW, depending on the parameter settings, only does a partial search,
hence it is not surprising that it often performs worse than our method.
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(b) A discovery example on RU-FACS(a)
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Fig. 4. (a) Facial features extracted from the tracked points as in [33]. (b) An ex-
ample of common discovered facial events (indicated by dashed-line rectangles).
(c)(d) Accuracy evaluation on precision-recall and average precision (AP).

Accuracy evaluation: Because the problem of TCD is relatively new in
computer vision, to the best of our knowledge there are no baselines we could
compare to. Hence, for a baseline comparison, we selected the state-of-the-art
method in longest common consecutive subsequence matching (LCCS) [31]. Ob-
serve that when the feature representation for each frame was quantized into a
temporal word, the unsupervised TCD problem can be naturally interpreted as
an LCCS. For fair comparisons with the LCCS that uses a 0-1 distance, in this
experiment we used `1 distance. The minimal subsequence length ` was fixed to
the same value for both LCCS and TCD. To evaluate the performance, we mea-
sured the overlap score between the ground truth and the discovered segments,

as usually used in object detection tasks [9]: overlap(r, g)= area(r∩g)
area(r∪g) , where r is

the rectangle in the search space representing a discovered commonality, and g is
the ground true rectangle indicating the correct match. The higher the overlap
score, the better the algorithm discovered the commonality. We consider that
a rectangle is correct if the overlap score is greater than a threshold ε (here
ε = 0.5). Fig. 4(b) shows an example of a correct discovery. We evaluated the
event-level accuracy as precision and recall.

Fig. 4(c) plots the precision-recall curves for the first output result of TCD
and LCCS. We computed the average precision (AP) [9] and found TCD outper-
forms LCCS by 15%. Compared to LCCS that finds identical subsequences, TCD
considers a histogram appearing in two sequence, it is more robust to deal with
uncertainty in noisy signals such as videos. Fig. 4(d) shows the average precision
of our approach under different parameters. We varied the minimal sequence
length ` in {20, 25, . . . , 40}, and examined the AP of the tth result individually.
As can be observed from the averaged AP (black dashed line), our method is
more robust across different settings of ` and t. As a result, TCD performed on
average 16% better than LCCS in discovering the common AU-12.
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Fig. 5. (a) An example of the top six discovered common motions. The numbers
indicate discovered commonalities. Note that we shaded the star (number 6) to
indicate an incorrect discovery that matched walk and kick. (b)(c) Precision-
recall and average precision on `1 distance. (d) Precision-recall on χ2 distance.

5.2 Multiple Common Motions Discovery in Motion Capture Data

In the second experiment we used the CMU-Mocap dataset [1] to demonstrate
the ability to discover multiple common actions (as discussed in Sec. 4). We
selected Subject 86 that contains 15 long sequences. Each sequence contains
thousands of frames and up to 10 actions (out of a total of 25 human actions)
such as walking, jumping, punching, etc. See Fig. 5(a) for an example. Each
sequence ranges from 100 to 300 frames each action. Then we randomly selected
45 pairs of sequences (each having up to 10 actions) and discovered common
actions among each pair. We downsampled each sequence by a factor of 4 to
make it 30 fps, resulting in a set of sequences with 1,200∼2,600 frames. Note
that this experiment is much more challenging than the previous one due to
longer sequences and more complicated actions. In this case, we excluded SW
for comparison because it needs 1012 evaluations which is impractical.

Each human motion was represented as the root position, orientation, and
29 relative joint angles. In order to provide a continuous representation, the 3-D
Euler angles were transformed to 3-D quaternions. Following [4], we represented
10 joints as a 30-dimensional feature vector of 3-D quaternions for each frame.

We determined a correct discovery if its overlap score is greater than a thresh-
old ε. Fig. 5(a) illustrates the first six common motions discovered by TCD. A
failure discovery is shown in the shaded number 6. Fig. 5(b) shows the precision-
recall curve for different values of ε. Using the naive `1 distance, the curve
decreases about 10% AP when the overlap score ε raises from 0.4 to 0.7, which
implies that we can obtain higher quality results without losing too much preci-
sion. For comparison with the baseline LCCS approach, Fig. 5(c) shows their APs
over various ` on the nth discovered result. LCCS performed poorly to obtain
long common subsequences since in this experiment human motions have more
variability than just one facial event (e.g., AU-12). On the other hand, TCD
utilized histogram representation, and thus allowed more tolerance in analogy
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with BoW in the context of object recognition. One can observe that AP drops
with increasing ` since the common actions in this database can have very short
distance, e.g., jump and squad. Moreover, to demonstrate the generalization
performance of our method, we also evaluated the χ2 distance and plotted the
precision-recall curve in Fig. 5(d). The bounds for χ2 distance were discussed in
Sec. 3.3. Although the Mocap dataset is very challenging in terms of various mo-
tions and diverse sequence lengths, our approach with χ2 performed 30% better
than `1 and LCCS. It shows χ2 is a more powerful measurement for histograms
than `1. Overall, using the χ2 measurement and ε = 0.5, our algorithm achieved
81% precision.

6 Discussion and Future Work

This paper introduced the new problem of TCD, to find temporal commonal-
ities between sequences in an unsupervised manner. We have shown that the
proposed B&B algorithm can efficiently find a global optimal solution for TCD.
We presented results in discovering common facial events and human actions.
It is important to observe that our method can be applied to any features that
can be quantified into histograms. Although this work has shown better perfor-
mance than baseline methods, more research can be done to speed up the search
process, e.g., [2]. Currently, we are also looking to derive tight bounds for other
metrics between temporal segments such as dynamic time warping.
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