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Abstract

With the emergence of new applications centered around
the sharing of image data, questions concerning the protec-
tion of the privacy of people visible in the scene arise. Re-
cently, formal methods for the de-identification of images
have been proposed which would benefit from multi-factor
coding to separate identity and non-identity related factors.
However, existing multi-factor models require complete la-
bels during training which are often not available in prac-
tice. In this paper we propose a new multi-factor framework
which unifies linear, bilinear, and quadratic models. We de-
scribe a new fitting algorithm which jointly estimates all
model parameters and show that it outperforms the stan-
dard alternating algorithm. We furthermore describe how
to avoid overfitting the model and how to train the model
in a semi-supervised manner. In experiments on a large
expression-variant face database we show that data coded
using our multi-factor model leads to improved data utility
while providing the same privacy protection.

1. Introduction
Recent advances in both camera technology as well as

supporting computing hardware have made it significantly
easier to deal with large amounts of visual data. This en-
ables a wide range of new usage scenarios involving the
acquisition, processing and sharing of images. However,
many of these applications are plagued by privacy prob-
lems concerning the people visible in the scene. Exam-
ples include the recently introduced Google Streetview ser-
vice, surveillance systems to help monitor patients in nurs-
ing homes [3], and the collection and distribution of medical
face databases (studying e.g. pain [1]).

In most of these applications knowledge of the identity
of people in the image is not required. This makes the case
for image de-identification, the removal of identifying in-
formation from images, prior to sharing of the data. Privacy
protection methods are well established for field-structured
data [19], however, work on images is still limited. The
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Figure 1. Illustration of the proposed multi-factor de-identification
algorithm. We compute multi-factor models over fully and par-
tially labeled training data. During runtime image data is factor-
ized using the models prior to de-identification resulting in im-
proved data utility.

implicit goal of these methods is to protect privacy and pre-
serve data utility, e.g. the ability to recognize gender or
facial expressions from de-identified images. While initial
methods discussed in the literature were limited to apply-
ing naı̈ve image obfuscation methods such as blurring [15],
more recent methods such as the k-Same algorithm provide
provable privacy guarantees and preserve data utility [16].

Previously introduced methods operate directly on im-
age data which varies both with identity as well as non-
identity related factors such as facial expressions. A natural
extension of these methods would use a factorization ap-
proach to separate identity and non-identity related factors
to improve preservation of data utility. However, existing
multi-factor models such as the bilinear models introduced
by Tenenbaum and Freeman [20] or tensor models [22] re-
quire complete data labels during training which are often
not available in practice. To address this problem we pro-
pose a new multi-factor framework which combines linear,
bilinear, and quadratic models and enables semi-supervised
learning consistent with the needs of the de-identification
application. Figure 1 illustrates our approach.

We make the following contributions in this paper. We



introduce a new multi-factor framework which unifies lin-
ear, bilinear, and quadratic models into one formulation
(Section 3.1). We describe a fitting algorithm for the joint
estimation of the model parameters which improves signif-
icantly upon the standard alternating fitting algorithm (Sec-
tion 3.3). We then show how to include regularization terms
into the fitting framework to prevent the model from over-
fitting the data (Section 4.4). On synthetic data, inclusion
of the regularization term improves classification perfor-
mance from 60% to 83.3% for mixed linear, bilinear, and
quadratic models. We furthermore show that our frame-
work allows for semi-supervised training of data (Section
4.5). In de-identification experiments we demonstrate im-
proved data utility rates for a data representation using co-
efficients of a mixed linear and bilinear model learned in a
semi-supervised manner (94.7% classification accuracy vs.
75% for a more conventional model; Section 5.3).

This paper is organized as follows. We provide back-
ground material on image de-identification in Section 2.
Section 3 defines our model and introduces the joint fitting
algorithm. In Section 4 we show how to enforce additional
constraints within the framework and how to train the model
in a semi-supervised manner. We present experimental re-
sult from applying the framework for a de-identification
task in Section 5.

2. Face De-Identification

The goal of face de-identification is to remove identi-
fying information from images, ideally while preserving
most aspects of the data to enable usage after processing.
Currently available image de-identification algorithms fall
into one of two groups: ad-hoc distortion methods and
the k-Same [16] family of algorithms implementing the k-
anonymity protection model [19]. In this section we de-
scribe both approaches.

2.1. Ad-hoc De-Identification Algorithms

Across a number of different communities the problem
of protecting privacy of people visible in images has been
addressed. The majority of approaches employ simple ob-
fuscation methods such as blurring (smoothing the image
with e.g. a Gaussian filter with large variance) or pixelation
(image subsampling) [7, 15]. While these algorithms are
applicable to all images, they lack a formal privacy model.
As a consequence no guarantees can be made that the pri-
vacy of people visible in the images is actually protected.
Privacy protection is evaluated, if at all, only in human sub-
ject studies. It has been shown that these naı̈ve algorithms
are easy to defeat [16] and typically neither preserve pri-
vacy nor the utility of the data [11]. Phillips [17] proposed
an algorithm for privacy protection of facial images through
reduction of the number of eigenvectors used in reconstruct-
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Figure 2. Examples of de-identified face images for different val-
ues of the privacy parameter k.

ing images from basis vectors. A direct trade-off between
privacy protection and data utility is established through the
introduction of the privacy operating characteristic (POC),
a plot similiar to a receiver operating characteristic (ROC)
often used in pattern classifier design.

2.2. The k-Same Framework

The k-Same family of algorithms [11,13,16] implement
the k-anonymity protection model [19] for face images.
Given a person-specific1 set of images H = {I1, . . . , IM},
k-Same computes a de-identified set of images Hd =
{Id

1, . . . , I
d
M} in which each Id

i indiscriminately relates to
at least k elements of H . It can be shown that the best pos-
sible success rate for a face recognition algorithm linking an
element of Hd to the correct face in H (independent of the
algorithm used) is 1

k . See [16] for details. k-Same achieves
k-anonymity protection by averaging the k closest faces for
each element of H and adding k copies of the resulting av-
erage to Hd. The algorithm selects images for averaging
based on raw Euclidean distances in image space or Princi-
pal Component Analysis coefficient space [16]. In order to
use additional information such as gender or facial expres-
sion during image selection, k-Same-Select was introduced
in [11]. The resulting algorithm provides k-anonymity pri-
vacy protection while preserving data utility as evidenced
by both gender and facial expression recognition experi-
ments. See Figure 2 for example images. All algorithms of
the k-Same family work directly on images, either raw or
PCA-encoded. These methods would benefit from a recod-
ing that separates out identity and non-identity related fac-
tors. We propose a framework in the next section to achieve
this goal.

3. Reconstructive Models
In this section we introduce our unified framework for

linear, bilinear, and quadratic models. We define the model
1In a person-specific set of faces each subject is represented by no more

than one image.



in Section 3.1 and discuss ambiguities inherent in the model
in Section 3.2. We describe two fitting algorithms, the al-
ternating and joint fitting algorithm, in Section 3.3. We em-
pirically compare the performance of the two algorithms in
Section 3.4.

3.1. Model Definition

We define the general model M for data dimension k as

Mk(µ,B1,B2,W,Q1,Q2; c1, c2) =

(1 cT
1 cT

2 )
 µk B2

k 0
B1

k Wk Q1
k

0 Q2
k 0


︸ ︷︷ ︸

Ωk

 1
c2

c1


(1)

with mean µ, linear bases B1,B2, bilinear basis W,
quadradic bases Q1,Q2, and coefficients c1 and c2. c1 ∈
Rr1 , c2 ∈ Rr2 ,µ ∈ Rd,B1 ∈ Rd×r1 with B1

k ∈ R1×r1 ,
B2 ∈ Rd×r2 ,Wk ∈ Rr1×r2 ,Q1

k ∈ Rr1×r1 ,Q2
k ∈ Rr2×r2 .

To avoid redundancy, Q1,Q2 could be either symmetric or
upper triangular. Here we choose upper triangular.

While Eqn. (1) defines a quadratic model, it in fact con-
tains lower-dimensional linear, bilinear and quadratic mod-
els as special cases. To illustrate this we set W = Q1 =
Q2 = 0 and obtain

MLin
k (µ,B1,B2, 0, 0, 0; c1, c2) =

=
(1 cT

1 cT
2 )

 µk B2
k 0

B1
k 0 0

0 0 0

 1
c2

c1


= µk + cT

1 B1
k + B2

kc2

the linear model in c1 and c2. Similarly, for Q1 = Q2 = 0
we obtain the bilinear model

MBilin
k (µ,B1,B2,W, 0, 0; c1, c2) =

=
(1 cT

1 cT
2 )

 µk B2
k 0

B1
k Wk 0

0 0 0

 1
c2

c1


= µk + cT

1 B1
k + B2

kc2 + cT
1 Wkc2

Mixtures of the components yield model combinations, i.e.
mixed linear and bilinear, mixed bilinear and quadratic, etc.

3.2. Model Ambiguities

The model as defined in Eqn. (1) is ambiguous, i.e. there
exists transformations of c1, c2, and Ωk that produce iden-
tical data vectors. In the linear case the ambiguity is well
known:

µT + cT
1 B1T

= µT + cT
1 RR−1B1T

(2)

for any invertible R. So for B̄1T

= R−1B1T

, c̄T
1 = cT

1 R
it holds that

µ + c̄T
1 B̄1T

= µ + cT
1 B1T

(3)

This ambiguity is broken in the case of PCA due to the or-
dering of the basis vectors according to the corresponding
eigenvalues. In the case of the general model defined in
Eqn. (1) arbitrary linear reparametarizations are possible:

Mk(Ωk; c1, c2) =

=
(1 cT

1 cT
2 )

 µk B2
k 0

B1T

k Wk Q1
k

0 Q2
k 0

 1
c2

c1


=

(1 cT
1 cT

2 )
ΦlΦ

−1

l ΩkΦrΦ
−1

r

 1
c2

c1

 (4)

with

Φl =

 1 o1 o2

0 R11 R12

0 R21 R22

 ,Φr =

 1 o2 o1

0 R22 R21

0 R12 R11


and o1 ∈ Rr1 ,o2 ∈ Rr2 , R11 ∈ Rr1×r1 , R12,R21 ∈
Rr1×r2 , and R22 ∈ Rr2×r2 . The first column of both
matrices Φl and Φr must be (1 0 0)T due to the
structure of the coefficient vectors (1 cT

1 cT
2 ) and

(1 c2 c1)T , each with a leading 1. As a consequence
of these ambiguities the model parameters obtained during
fitting are not unique. Therefore special care must be taken
to normalize parameters during the synthetic experiments
described in Section 3.4.

3.3. Model Fitting

The goal of fitting is to compute the parameters that min-
imize the model reconstruction error for a given training
data set D = [d1 . . .dn]:

arg min
Γ,C1,C2

n∑
l=1

‖M(Γ; c1(l), c2(l))− dl‖22 (5)

with the bases Γ = (µ,B1,B2,W,Q1,Q2) and coeffi-
cients C1 = (c1(1), . . . , c1(n)),C2 = (c2(1), . . . , c2(n)).

For the linear model MLin the corresponding minimiza-
tion problem is

arg min
B,C

n∑
l=1

‖MLin(B; c(l))− dl‖22 (6)

where we combined the separate bases B1,B2 into B
and the coefficients C1,C2 into C = (c(1), . . . , c(n)).
Eqn. (6) can be minimized efficiently by using PCA (see



The Alternating Fitting Algorithm
Initialization
Randomly initialize µ,B1,B2,W,Q1,Q2; C1,C2

Iterate
(I1) Compute ∆Γ in

arg min∆Γ ‖M(Γ + ∆Γ; C1,C2)−D‖22
Update Γ← Γ + ∆Γ

(I2) Compute ∆C1 in
arg min∆C1

‖M(Γ; C1 + ∆C1,C2)−D‖22
Update C1 ← C1 + ∆C1

(I3) Compute ∆ΓC2 in
arg min∆C2

‖M(Γ; C1,C2 + ∆C2)−D‖22
Update C2 ← C2 + ∆C2

Figure 3. The alternating fitting algorithm.

The Joint Fitting Algorithm
Initialization

Randomly initialize µ,B1,B2,W,Q1,Q2; C1,C2

Iterate
(I1) Compute ∆ = (∆Γ,∆C1,∆C2) in

arg min∆ ‖M(Γ + ∆Γ; C1 + ∆C1,C2 + ∆C2)−
D‖22
Update Γ← Γ + ∆Γ
Update C1 ← C1 + ∆C1

Update C2 ← C2 + ∆C2

Figure 4. The joint fitting algorithm.

e.g. [5]). This, however, is not the only way. Assuming ini-
tial parameter estimates B0 and C0 we can minimize the
expression in Eqn. (6) by alternating between computing
updates ∆B that minimize ‖MLin(B0+∆B; C)−D‖22 and
updates ∆C that minimize ‖MLin(B0; Co + ∆C)−D‖22
[21]. Both equations are linear in their unknowns and can
therefore be solved directly. In the case of linear models this
alternated least squares algorithm has been shown to always
converge to the global minimium [2].

PCA does not generalize to bilinear or quadratic mod-
els, however the alternating algorithm does. (Note that
for bilinear models and fully labeled data, the iterative
Tenenbaum-Freeman algorithm can be used [20]). We
can minimize Eqn. (5) by solving separately in turn for
updates ∆Γ, ∆C1, and ∆C2. See Figure 3. In each
case the corresponding minimization problem is linear in
its unknowns and can therefore be solved directly. In or-
der to e.g. compute the basis update ∆Γ we compute
arg min∆Γ ‖E − T∆Γ∆Γ‖22, with the current reconstruc-
tion error E = D −M(Γ; C1,C2) and the constraint ma-
trix TΓ. ∆Γ can be computed in closed form as ∆Γ =
(TT

ΓTΓ)−1TT
ΓE. ∆C1 and ∆C2 are computed in a simi-

lar manner.
While the alternating algorithm works well for linear

Figure 5. Comparison of the covergence frequency for the alter-
nating and joint fitting algorithm on synthetic data. The fitting al-
gorithms are initialized with ground-truth data perturbed by noise
of varying magnitude. Results are shown for different model con-
figurations combining the mean (M), linear (L), bilinear (B), and
quadratic (Q) components. The joint fitting algorithm is more ro-
bust as shown by higher frequencies of convergence across models
and initial perturbations.

models it has issues for higher-order models. The lineariza-
tion into separate component updates ignores the coupling
between the bases Γ and coefficients C1,C2. As a con-
sequence the algorithm is more prone to local minima (see
results in Section 3.4). To improve performance we pro-
pose to jointly solve for updates to all parameters at the
same time. By dropping second order terms and reorganiz-
ing components we can transform the minimization prob-
lem arg min∆Γ,∆C1,∆C2

‖M(Γ + ∆Γ; C1 + ∆C1,C2 +
∆C2)−D‖22 into a similar form as above:

arg min
∆Γ,∆C1,∆C2

‖E −TΓ,C1,C2

 ∆Γ
∆C1

∆C2

 ‖22 (7)

with E = D − M(Γ; C1,C2) and the constraint matrix
TΓ,C1,C2 . Figure 4 summarized the algorithm. See [10]
for details.

3.4. Experiments

In order to compare the performance of the alternat-
ing and joint fitting algorithms we use synthetic data with
known ground-truth. We randomly generate bases and co-
efficient matrices (drawn from a zero mean, unit variance
normal distribution) and perturb both with varying amounts
of noise before initializing the fitting algorithm. For each
noise level the bases and coefficients are then normalized to
ensure that all models are initialized at the same reconstruc-
tion error. We evaluate the fitting algorithms by comparing
the ground-truth models with the fitted models.



In all experiments we report results averaged over five
different ground-truth settings with three different initial-
ization settings each for a total of 15 experiments for ev-
ery model and fitting algorithm. We run every algorithm
until convergence (normalized ground-truth error falls be-
low a threshold) or a maximum of 150 iterations, whichever
comes first. Figure 5 compares the frequency of conver-
gence for different variations of the joint and alternating
fitting algorithms for different initial reconstruction errors.
Across all conditions, the joint fitting algorithm performs
better than the alternating algorithm. For the combined lin-
ear, bilinear and quadratic model (M+L+B+Q) the joint al-
gorithm converges in 80% of all cases whereas the alter-
nating algorithm only converges in 61% of trials. The dif-
ference is even larger for the combined linear and bilin-
ear model (M+L+B) where the joint algorithm converges
in 96.2% of all trials compared to 68.6% for the alternat-
ing algorithm. The joint fitting algorithm also converges
faster, requiring on average 8.7 iterations in comparison to
86.7 iterations for the alternating algorithm (for an initial
ground-truth error of 20.0).

4. Multi-Factor Models with Constraints

The joint fitting algorithm described in Section 3.3 com-
putes bases and coefficients iteratively by minimizing the
model reconstruction error for a given training dataset. See
Eqn. (5). While the resulting model succeeds at reconstruct-
ing the data, no other properties (e.g. affinity of class coef-
ficients, basis orthonormality) are enforced. In order to ac-
complish this we add further constraints to the energy func-
tion on the coefficients, the bases or both. We then strive to
compute

arg min
Γ,C1,C2

n∑
l=1

‖M(Γ; c1(l), c2(l))− dl‖22 +

+ λ1Θ1(C1,C2) + λ2Θ2(Γ) (8)

where Θ1 and Θ2 refer to sets of constraints. The parame-
ters λ1 and λ2 balance the magnitude of the terms. In this
section we describe how to enforce coefficient equality con-
straints (Section 4.1) and basis normality constraints (Sec-
tion 4.2).

4.1. Coefficient Constraints

Let S1 = {s1
1, . . . , s

1
m1
}, S2 = {s2

1, . . . , s
2
m2
} be sets of

coefficient indices of elements in C1 and C2, respectively,
for which we want to enforce equality. We then strive to

compute

arg min
Γ,C1,C2

n∑
l=1

‖M(Γ; c1(l), c2(l))− dl‖22 +

+ λ11

∑
s1

i
,s1

j
∈S1

s1
i
6=s1

j

‖c1(s1
i )− c1(s1

j )‖22 +

+ λ12

∑
s2

i
,s2

j
∈S2

s2
i
6=s2

j

‖c2(s2
i )− c2(s2

j )‖22 (9)

Linearalizing the expression in Eqn. (9) as described in Sec-
tion 3.3 leads to

arg min
∆Γ,∆C1,∆C2

‖ERE −TΓ,C1,C2

 ∆Γ
∆C1

∆C2

 ‖22 +

+ λ11‖EC1 −TS1∆C1‖22
+ λ12‖EC2 −TS2∆C2‖22 (10)

with the reconstruction error ERE = D −M(Γ; C1,C2),
the coefficient constraint error for C1 (C2 is defined
analogously)

EC1 =

 c1(s1
i1

)− c1(s1
i2

)
. . .

c1(s1
im−1

)− c1(s1
im

)

 (11)

and the coefficient constraint matrices TS1 ,TS2 . The prob-
lem defined in Eqn. (10) can be solved as constraint least
squares problem with linear equality constraints (see e.g.
[6]). To do so we stack the components of Eqn. (10) and
compute

arg min
∆Γ,∆C1,∆C2

‖

(
ERE

λ11 ∗EC1

λ12 ∗EC2

)
− (12)

−

 TΓ,C1,C2

0 λ11 ∗TS1 0
0 0 λ12 ∗TS2

 ∆Γ
∆C1

∆C2

 ‖22
The solution to Eqn. (12) can be computed in the same way
as the solution to the unconstrained least squares problem.
Since the coefficient constraints are added individually and
independently for the factors c1 and c2, the framework en-
ables semi-supervised learning (see Section 2).

4.2. Basis Constraints

While PCA produces orthonormal basis vectors for lin-
ear models, direct minimization of Eqn. (7) typically results
in non-orthogonal basis vectors of length greater than one.
In order to enforce orthonormality on the linear components



B1 and B2 we set Θ2 = ‖B1T

B1 − I‖22 + ‖B2T

B2 − I‖22
and compute

arg min
Γ,C1,C2

‖M(Γ; C1,C2)−D‖22 +

+ λ2(‖B1T

B1 − I‖22 + ‖B2T

B2 − I‖22) (13)

Linearalizing the expression leads to the same constrained
least squares problem as above in Eqn. (12)

arg min
∆Γ,∆C1,∆C2

‖
(

ERE

λ2 ∗EB

)
− (14)

−
(

TΓ,C1,C2

λ2 ∗TB 0 0

) ∆Γ
∆C1

∆C2

 ‖22
with the basis constraint error EB and the basis constraint
matrix TB .

4.3. Coefficient and Basis Constraints

The constraints for coefficients and basis vectors as de-
scribed in Sections 4.1 and 4.2 can be directly combined
resulting in the minimization problem

arg min
∆Γ,∆C1,∆C2

‖


ERE

λ11 ∗EC1

λ12 ∗EC2

λ2 ∗EB

−

−


TΓ,C1,C2

0 λ11 ∗TS1 0
0 0 λ12 ∗TS2

λ2 ∗TB 0 0


 ∆Γ

∆C1

∆C2

 ‖22
4.4. Dealing with Overfitting

Given enough degrees of freedom, every model is prone
to overfitting the training data and subsequently general-
ize poorly to unseen data [9]. To address overfitting in our
framework we include a penality term on the magnitude of
the bilinear and quadratic bases into the energy function:

arg min
Γ,C1,C2

n∑
l=1

‖M(Γ; c1(l), c2(l))− dl‖22 +

+ λ1Θ1(C1,C2) + λ2Θ2(Γ) +

+ λ3(‖WT W‖22 + ‖Q1T

Q1‖22 + ‖Q2T

Q‖22)(15)

In order to show the benefit of including regularization
terms into Eqn. (15) we conduct synthetic classification
experiments. We first randomly generate synthetic linear
(ML), mixed linear and bilinear (MLB), and mixed linear,
bilinear, and quadratic models (MLBQ). We then randomly
generate class means and class members distributed around

Figure 6. Comparison of regularized and non-regularized fitting
algorithms for different data complexities. We synthetically gen-
erate linear (ML), mixed linear/bilinear (MLB), and mixed lin-
ear/bilinear/quadratic (MLBQ) data and fit ML, MLB, and MLBQ
models to it. We measure classification accuracies for extracted
test coefficients against training coefficients for all combinations
of fitted models and data complexities. Across all data models,
fitting the regularized MLBQ model (shown as MLBQ/R) per-
forms best (83.3% accuracy). Non-regularized fitting algorithms
perform well only in matched conditions but degrate substantially
in non-matched conditions (e.g. fitting MLBQ to linear data).

the class means for both the c1 and c2 coefficients, produc-
ing both “training” as well as “testing” coefficients. Instan-
tiating the different models with the training coefficients we
obtain linear, mixed linear and bilinear, and mixed linear,
bilinear and quadratic data. We compare different fitting
algorithms by initializing the algorithms with a perturbed
version of the training data and ground-truth model, fitting
a model to the data, and classifying the extracted testing co-
efficients against the training coefficients. In Figure 6 we
compare the recognition rates for fitting all types of mod-
els (ML, MLB, or MLBQ) to all types of data (again ML,
MLB, and MLBQ). For fitting MLB and MLBQ models we
also show results for the regularized version of the energy
function. Overall fitting the MLBQ model with regulariza-
tion (MLBQ/R) performs best across all three data models
(83.3% accuracy vs. 60% for the non-regularized version).
The non-regularized fitting algorithms perform well only in
matched conditions (i.e. with fitted to data of equal com-
plexity). In the case of mismatches (e.g. fitting MLBQ to
linear data), performance decreases noticeably.

4.5. Semi-Supervised Training

With the growing availability of large numbers of im-
ages from e.g. photo sharing sites such as Flickr, there
is increasing interest in semi-supervised learning methods
which are able to use incompletely labeled data [23]. Previ-



ously proposed algorithms to fit multi-factor models such as
the Tenenbaum-Freeman algorithm [20] require complete
labels for all training examples. In our framework, coeffi-
cient constraints are added individually per training vector
and factor. Constraints can be included for only c1, or only
c2, or both. See Eqn. (9) in Section 4.1. As a consequence
we can include training vectors were only e.g. identity in-
formation but not expression information is available.

5. Experiments

In this section we provide experimental results for de-
identifying images encoded with the multi-factor frame-
work introduced in this paper. In Section 5.1 we describe
the data used in the experiments. We then show results
of de-identification experiments in Section 5.2. In Section
4.5 we demonstrate that usage of partially labeled data im-
proves the quality of the de-identification results.

5.1. Data Set

We use a subset of the CMU Multi-PIE face database
[12] containing 100 subjects displaying neutral, smile and
disgust expressions in frontal pose and with frontal illu-
mination. The images were captured within minutes of
each other as part of a multi-camera, multi-flash recording.
We normalize the face images by manually establishing fa-
cial feature point labels, computing an Active Appearance
Model [8, 14] over the dataset, and extracting the appear-
ance parameters for all images.

5.2. Multi-Factor Representation

In the first experiment we compare privacy protection
and data utility of the (ε, k)-map algorithm [10] (an exten-
sion of the k-Same algorithm described in Section 2.2) us-
ing two different data representations: the original AAM
appearance parameters and the combined c1 and c2 pa-
rameters extracted from a combined linear and quadratic
model. For both representations we de-identify the data, re-
construct the (normalized) image and compute recognition
rates using a whitened cosine distance PCA classifier [4]
with the de-identified images as probe and the original im-
ages as gallery. We evaluate the utility of the de-identified
images by computing facial expression classification rates
using a SVM classifier (trained on independent original im-
ages) [18]. Figure 7 plots the results of both experiments
for varying values of k for the original and multi-factor rep-
resentations. Across all values of k, expression classifica-
tion on de-identified images based on the multi-factor repre-
sentation yields better recognition rates while providing the
same privacy protection. As comparison, results for simple
blurring of the images are included as well. Figure 8 shows
examples of smile images de-identified using the proposed
framework.

Figure 7. Privacy-Data Utility map of the (ε, k)-map algorithm us-
ing original and multi-factor representations. We show PCA face
recognition and SVM facial expression classification rates for dif-
ferent values of the privacy parameter k. Usage of the multi-factor
representation (MF (ε, k)-map) results in higher expression classi-
fication accuracies than the original representation while providing
similar privacy protection. As comparison we also show results for
image blurring.

Original MF (ε, k)Blur

Figure 8. Examples of smile images de-identified using the multi-
factor (ε, k)-map algorithm.

5.3. Semi-Supervised Learning

In the second experiment we evaluate the influence of
semi-supervised learning as described in Section 4.5. For
this we split images into two sets of 50 subjects each (set
1 and set 2). We compare the performance of the k-Same-
Select algorithm on coefficients extracted in one of three
means : a) after training on set 1 and set 2 using both iden-
tity and expression labels for all elements, b) after training
on set 1 using both labels and set 2 using only identity la-
bels, and c) after training on only the subjects in set 1 using
both labels. In all cases we then de-identify images of sub-
jects in set 2. Figure 9 shows the resulting Privacy/Data
Utility map. Performance of facial expression classifica-
tion with an SVM classifier on coefficients trained without



Figure 9. Privacy-Data Utility map of the k-Same-Select algo-
rithm applied to different data representations for different values
of k. Expression classification performance for coefficients ex-
tracted from a model trained without expression labels (94% on
average, labeled “Semi”) is very close to the performance on coef-
ficients trained with full labels (95% on average, labeled “Full”).
Performance on coefficients trained in a tradional manner is no-
ticeably worse (75% on average, labeled “None”).

expression labels is very close to the performance on coefi-
cients trained with full labels (95% for full labels, 94% for
semi labels). Performance for coefficients trained on set 1
is noticeably worse (75%). For all representations the same
privacy protection is achieved.

6. Conclusion
In this paper we proposed a new framework for the com-

bined learning of linear, bilinear, and quadratic models. We
described a new fitting algorithm which jointly estimates
all model parameters and showed how to use it for semi-
supervised learning. In experiments on the CMU Multi-PIE
database we demonstrated that usage of our framework im-
proves the quality of results for algorithms de-identifying
facial images. In future work we plan to apply the frame-
work to video sequences in medical face databases.
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