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ABSTRACT

We address the problem of incrementally recovering a ma-
trix of tracked image points, based on partial observations of
their trajectories. Besides partial observability, we assume
the existence of gross, but sparse, noise on the known entries.
This problem has obvious applications in real-time tracking
and structure from motion, where observations are plagued by
self-occlusion and outliers. Recently, work in the optimiza-
tion community has spun optimal methods for matrix comple-
tion when this matrix is known to be low rank by minimizing
the nuclear norm, the sum of its singular values. Despite ex-
hibiting several optimality properties, no available algorithms
perform this minimization incrementally.

In this paper, we build upon the Nuclear Norm Robust
PCA method and SPectrally Optimal Completion to propose a
fast and incremental algorithm which is able to cope with out-
liers. We present experiments showing the competitive speed
of our method while maintaining performance comparable to
the state-of-the-art.

Index Terms— Incremental Matrix Completion, Nuclear
Norm, Outliers, Structure from Motion, Tracking

1. INTRODUCTION

Several applications in computer vision [1, 10, 2] rely on a
tracking process to produce a set of point trajectories of an
object moving along several image frames. However, this pro-
cess is usually plagued by self-occlusion and drifting, result-
ing in gross outliers and partial trajectories [1]. We focus on
the problem of recovering in an incremental fashion the full
set of trajectories of a rigid object tracked along several im-
ages, while correcting existing outliers. We formulate a ma-
trix completion algorithm which, for every addition of a new
frame, minimizes the rank of the resulting measurement ma-
trix, which we know beforehand to be close to 4. This prob-
lem has already been explored by Aguiar et al. [2, 3] in the
same context. Their method, SPectrally Optimal Completion
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(SPOC), iteratively completes the matrix while enforcing the
obtained result to be as close to rank-4 as possible. SPOC is
optimal, as long as the occlusion pattern follows a Young dia-
gram, i.e., the number of occluded coordinates is a monotonic
function of the rows or columns and they are not alternated
with known coordinates (e.g., they occupy the upper triangu-
lar of the observation matrix). In practice, we do not have this
pattern due to points disappearing and reappearing in different
positions due to self-occlusion. Moreover, their method relies
on a bounded estimate for the fifth singular value, which is
contaminated by the existence of gross outliers.

In the last few years, work in the optimization community
has spun several methods for matrix completion [4, 5, 6, 7, 8]
when this matrix is known to be low rank. One popular ap-
proach is to minimize the nuclear norm (the sum of singular
values) [4, 5, 6, 9]. It has been shown [5] that this function,
the convex envelope of the rank operator, actually achieves
the same minimizer under broad conditions. In contrast to
SPOC, these approaches are able to deal with arbitrary pat-
terns of occlusion and gross outliers, thus allowing a solution
for the trajectory correction problem as a whole. Their use
of singular value decompositions of the entire matrix at each
iteration of the gradient, however, makes them impracticable
for real time sequential estimation. The method we propose
assumes, instead, an initial subset of frames is known. Then,
it builds up on the convergence achieved for each frame to cal-
culate the subsequent one. For each new frame, it alternates
between the use of nuclear norm minimization for outlier re-
moval on the known trajectories and SPOC for matrix com-
pletion. The combined use of these techniques allows coping
with outliers and arbitrary occlusion patterns in an iterative
fashion, while keeping the number and size of Singular Value
Decompositions in the nuclear norm minimization to a mini-
mum, thus resulting in a faster algorithm.

Very recently, Balzano et al. [7] proposed an incremental
matrix completion algorithm, by performing a gradient de-
scent on the Grassmanian manifold of rank deficient matrices
(GROUSE). In this paper, we show that this approach, albeit
very fast, yields worse results than other methods (and our
own) when data is subject to gross sparse outliers, due to the
fact that it estimates the row and column subspaces of the
complete matrix rather than the entries themselves.



2. PROPOSED APPROACH

The problem of recovering the full set of N point trajectories
along F partial observations can be formulated as estimating
incomplete entries of a rank deficient matrix W ∈ R2F×N ,
while correcting the subset of known ones that have been con-
taminated by noise. For a rigid object, it has been shown [10]
that a matrix piling point trajectories along several frames can
be obtained by the product of a matrix M stacking the camera
motion matrices and a 3D shape matrix S, as

W = MS>. (1)

As such, the resulting measurement matrix W has, in absence
of noise, a rank that is less or equal than 4. Aguiar et al. [3]
showed that for a matrix W with a single entry x missing

W =

[
x v>

u A

]
, (2)

the completion such that its fifth singular value σ̂5 is mini-
mized is, under broad conditions, unique. To obtain the solu-
tion, they use the Cauchy Interlacing Theorem to place a tight
bound on σ̂5, as

σ̂5 ≈ max

{
σ5

([
v>

A

])
, σ5

([
u A

])}
. (3)

Then, they obtain the completion in closed form as the root of
the characteristic polynomial of the matrix WW>

p(σ̂5) = det(WW> − σ̂2
5I) = 0, (4)

a quadratic equation ax2 + bx + c = 0 with b2 = 4ac and
coefficients a, b, c given by

a = det

[
0 u>

u B

]
(5)

b = 2det

[
0 v>A>

u B

]
(6)

c = det

[
0 v>A>

Av B

]
, (7)

where B = uu> + AA> − σ̂2
5I. Furthermore, to complete

a matrix exhibiting a pattern of occlusion that is a Young di-
agram, they show that sequentially estimating the unknown
values from the right to the left and from the bottom to the
top yields the optimal reconstruction for W. This approach,
called SPectrally Optimal Completion (SPOC), has an overall
complexity of O

(
No ×max {S,D}

)
, where No < N is the

number of occluded points and S,D denote the complexities
of finding the bound in (3) and determinants in (5). The in-
cremental nature of SPOC allows us to cast the problem of
completing trajectories in this fashion. In this case, we want
to perform the spectrally optimal completion of the matrix

W̃(i+1) =

[
? Ŵ(i+1) ?

W(i)

]
(8)

that stacks a set of new measurements Ŵ(i+1) with occluded
entries ? on top of matrix W(i), containing the reconstruction
of the previous iteration. Despite its speed and immediate ap-
plicability to incremental estimation, SPOC has two caveats:
1) It assumes known values are not corrupted by noise and 2)
to be able to deal with arbitrary patterns, a permutation ma-
trix has to be determined to convert the matrix to a Young
diagram format, in general not always possible. In the re-
mainder of this section, we show how to deal with these two
shortcomings.

Finding Permutations Let us consider, without any loss
of generality, we have already access to a complete set of
trajectories W(i) and are given a new set of observations
Ŵ(i+1), for only a subset of the tracked points.

As already discussed, in order to estimate the trajectories
of the new frame using SPOC, we have to permute the whole
observation matrix W̃(i+1) such that it obeys a Young dia-
gram. At this point, we should note that due to the nature
of the problem, we know that the (x, y) coordinates for each
point are either known or unknown together. Therefore, the
permutation obtained is optimal in the sense that, for each
new frame, it is always able to convert the matrix to the form
of a Young diagram. Moreover, this intrinsic relation between
coordinates allows to find the permutation in a deterministic
fashion. We make a single pass through all points in frame
(i+ 1) and position them counting from the beginning or the
end, according to whether they are (respectively) known or
unknown entries. The resulting algorithm (Alg. 1) has linear
complexity in the number of points N , therefore not raising
the overall order of complexity of the method.

Algorithm 1 Finding permutations for SPOC at frame (i+1)

Initialize known count k = 0
Initialize unknown count u = 0
for all Points j ∈ 1 : N do

if Point W̃(i+1),j is known then
Increment k
Pj,N−k = 1

else
Pj,u = 1
Increment u

end if
end for

After applying the permutation, the obtained matrix
W̃(i+1)P obeys a Young diagram of the form

W̃(i+1)P =

[
? Ŵ(i+1)

W(i)P

]
, (9)

allowing its completion to be obtained with SPOC.
Outlier removal The method as presented thus far is able

to do trajectory estimation sequentially, but still relies on the
assumption that points known at frame (i+ 1) do not contain



errors. We let go of this assumption and deal with the possible
existence of gross, but sparse, outliers in the tracked coordi-
nates. To do so, we note that matrix completion algorithms
based on nuclear norm minimization, albeit slow, provide this
needed resilience [4, 5, 6, 9]. To get the best of both worlds,
we propose the use of Robust PCA [5] on the known columns
of W̃(i+1)P. This technique is intrinsically tied with the for-
mulation of nuclear norm matrix completion, with its only
difference being that there are no unknown entries, as

minimize ||A||∗ + λ||E||1
subject to W = A+E,

(10)

where E models a matrix of outliers, as sparse as possible. As
with Matrix Completion, there is evidence [5] this problem
exhibits the same minimizer as its non-convex counterpart

minimize rank(A) + λ||E||0
subject to W = A+E.

(11)

Although we are still limited by the performance of sin-
gular value decompositions in the Robust PCA method, they
do not put such a heavy burden on the global time since they
are applied to smaller dimension matrices with no occluded
entries. The final algorithm, which joins both methods, is
summarized in Alg. 2.

Algorithm 2 Joint Matrix Completion using SPOC and
RPCA

for all new frames i ∈ 1 : F do
Calculate P s.t. W̃(i+1)P has a Young pattern (Alg. 1)
Remove outliers from known columns of W̃(i+1)P us-
ing RPCA (10)
Estimate W(i+1) using SPOC on corrected W̃(i+1)P

end for

Note that in this method, we assumed the existence of an
initial set of known frames W(i). It should be noted, however,
that this initialization is not critical, as this sub-matrix can
also be found from partial observations by using existing ma-
trix completion algorithms. We should also note the fact that
although doing sequential permutations might lead to subop-
timal completions — since the matrix as a whole may not be
converted to a Young diagram — this is attenuated by the fact
that we use Robust PCA on each iteration. As the number of
new frames grows, the RPCA step on the sub-matrices should
correct all of the outliers in the original matrix.

3. EXPERIMENTS

To motivate the importance of this problem, we generate tra-
jectories of a sphere (Fig. 1(a)) and depict a typical scenario
of tracking with self-occlusion (Fig. 1(b)). In this case, we
have N = 64 points tracked around F = 30 cameras, but
only 70% of the entries are known and 20% have outliers.

Using our method, we are able to retrieve the full original set
of trajectories (Fig. 1(c)).

Comparison with state-of-the-art We generate random
matrices W as in (1) with N = 100 points along F = 20
frames, where M and S are sampled from a uniform distri-
bution living in the interval [0, 4]. We occlude from the first
2×N frame a variable number of entries (No ∈ [1, 80]).
Then, we add to approximately 25% of the non occluded
points sparse noise generated from a uniform distribution
on the interval [−3, 3]. We measure the mean norm of
the difference between completed entries against ground
truth (normalized by the ground truth norm) and the total
runtime of the algorithm. We compare our results against
Singular Value Thresholding (SVT) [4], OptSpace [8] and
GROUSE [7], using code provided by the methods authors.
We use τ = 25

√
N × F and δ = 2 in SVT to increase speed

while maintaining comparable accuracy. For OptSpace, we
use tol = 10−6. For eachNo, results are averaged among 50
tests, with approximately 10 being discarded in the OptSpace
case due to numerical stability problems. Fig. 2 shows ob-
tained error vs. time. Results show that incremental methods
RPCA+SPOC and GROUSE are significantly faster than their
non-incremental counterparts, with the former outperforming
the latter in accuracy.
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Fig. 2. Average time vs. average error for single frame com-
pletion. Time standard deviation is negligible at shown scale.

To assess outlier correction and incremental completion
performance, we generate N = 100, F = 10 matrices W
and corrupt 25% of its entries with outliers (generated as be-
fore). Then, we incrementally concatenate this matrix with
another F = 10 measurements, varying the number of frames
having half its entries randomly occluded. Figure 3 shows the
normalized residual norm separated by known and unknown
entries of the entire matrix, averaged over 40 tests. Results
corroborate the incremental stability of SPOC+RPCA. The
monotonic tendency in the error for known entries shows the
effectiveness of random permutations, necessary for conver-
sion to young formats, in the correction of randomly posi-
tioned outliers in the entire matrix by applying RPCA to just
a subset of the matrix. Furthermore, the known entries error
results show that when compared to baseline (original SPOC,
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Fig. 1. Tracking a ball with self-occlusion and outliers. (a) Ground truth; (b) Partial data; (c) Estimated trajectories.

which leaves known entries intact), nuclear norm methods
such as SVT are able to correct outliers, whereas subspace
estimation methods like OptSpace or GROUSE increase the
corruption.
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Fig. 3. Average normalized residual norm for unknown (top)
and known (bottom) entries of matrix W.

4. CONCLUSIONS

We have presented a method to recover point trajectories of
a rigid object while being subject to gross outliers and self-
occlusion. Results show that our method outperforms exist-
ing algorithms performing the same task, both in accuracy
and speed. Our algorithm can be applied sequentially, allow-
ing for real-time implementations, where only a small subset
of the data is available beforehand. Further work should ex-
ploit the formulation of a spectrally optimal completion while
subject to outliers in the obtained data points into a single op-
timization problem, so as to avoid the use of Robust PCA
algorithms on the same columns more than once.
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