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Abstract. In the last few years, Facial Expression Synthesis (FES) has been a
flourishing area of research driven by applications in character animation, com-
puter games, and human computer interaction. This paper proposes a photo-
realistic FES method based on Bilinear Kernel Reduced Rank Regression
(BKRRR). BKRRR learns a high-dimensional mapping between the appearance
of a neutral face and a variety of expressions (e.g. smile, surprise, squint). There
are two main contributions in this paper: (1) Propose BKRRR for FES. Several
algorithms for learning the parameters of BKRRR are evaluated. (2) Propose a
new method to preserve subtle person-specific facial characteristics (e.g. wrin-
kles, pimples). Experimental results on the CMU Multi-PIE database and pictures
taken with a regular camera show the effectiveness of our approach.

1 Introduction

Photorealistic facial expression synthesis (FES) has recently become an active research
topic in computer vision and graphics. Applications of FES can be found in diverse
fields such as character animation for movies and advertising, computer games, interac-
tive education [1], video teleconferencing [2], avatars [3,4], and facial surgery planning
[5]. Generating photo-realistic facial expressions still remains an open research problem
due the uncanny ability of people to perceive subtle details in people’s faces.

Learning-based methods (e.g. [6,7]) have become a popular approach for FES. How-
ever, the use of these methods has several challenges: (1) Muscle deformations due to
expression changes can have a large number of degrees of freedom. There are more than
20 groups of facial muscles innervated by facial nerves [8]. The combinations of their
movements are nearly innumerable. To model all this variability learning-based meth-
ods typically require large amounts of training samples for accurate FES. (2) Synthesis
of some facial expressions requires to model subtle facial deformations, for instance
wrinkles during squinting. (3) A good model should be able to decouple the identity of
the subject from the expression, pose, and illumination while preserving person-specific
details (e.g. pimples, beard). (4) Typically the dimensionality of the images is large in
comparison with the amount of training samples which causes over-fitting of the model.
To address these problems, this paper proposes Bilinear Kernel Reduced Rank Regres-
sion (BKRRR) to learn a nonlinear mapping between the frontal neutral image and
images with different facial expressions of a subject. Fig. 1 illustrates the process for
FES using BKRRR.

The two main contributions of this paper are: (1) Propose BKRRR for FES. BKRRR
learns a nonlinear mapping from a neutral face to other facial expressions (e.g. smile,
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Fig. 1. Synthesizing facial expressions from a neutral face using BKRRR

surprise, squint) that effectively decouples the identity and expression changes. We ex-
plore the use of three algorithms for learning the parameters in KRRR and BKRRR, that
are based on Subspace Iteration (SI), generalized eigen-decomposition, and Alternated
Least Square (ALS). We evaluate the accuracy and computational complexity of each
method. (2) Propose a modification of BKRRR to capture subtle person-specific facial
features (e.g. glasses, pimples, wrinkles, beard).

The rest of the paper is organized as follows. Section 2 reviews related work on
FES. Section 3 describes the KRRR model and three algorithms to learn the KRRR
parameters. Section 4 formulates the Bilinear KRRR model, and explores its use to
preserve subtle facial details not present in the training samples. Section 5 describes the
experimental results, and Section 6 finalizes the paper with the conclusions.

2 Previous Work

Liu et al. [6] proposed a geometric warping algorithm in conjunction with the Expres-
sion Ratio Image (ratio between the neutral image and the image of a given expression)
to synthesize new expressions preserving subtle details such as wrinkles and cast shad-
ows. Zhang et al. [7] synthesized facial expressions using a local face model. Each
region of the face was reconstructed as a convex combination of the corresponding
regions in the training set. The synthesized face regions were later blended along the
region boundaries. Regression-based approaches find solutions as the weighted combi-
nations of the training data. However, it is unclear how the combination of training data
can reproduce subtle local appearance features presented only in the testing samples
such as wrinkles, glasses, beard, or pimples. In related work, Nguyen et al. [9] used
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extensions of Principal Component Analysis (PCA) to remove glasses and beards in
images, and used regression techniques to fill out the missing information.

Tensor-based approaches [10,11,12] perform Higher-Order Singular Value Decom-
position (HOSVD) to factorize the normalized face appearance into identity, expression,
pose, and illumination. Given the factorization, FES [13,14,15] is done by first comput-
ing the identity coefficients of the new testing person, and then reassembling the identity
factor with expression factors learned by the HOSVD. A drawback of tensor-based ap-
proaches is the need of fully labeled examples across illumination, expressions, and
pose. Moreover, it’s also unclear how tensor-based methods can preserve subtle person-
specific features (e.g. wrinkles, pimples).

Other methods learn the dynamics of the facial expression changes given several
video sequences of different subjects performing the same expression. Bettinger et
al. [16] used a sampled mean shift and a variable length Markov model to generate
person-specific sequences of facial expressions. Zalewski et al. [17] clustered the shape
and texture components with a mixture of probabilistic PCA. Each cluster corresponds
to a facial expression and clusters are used for FES. Chang et al. [18] introduced a
probabilistic model to learn a nonlinear dynamical model on a manifold of expressions
containing the neutral and six universal expressions. In the field of computer graphics,
several works used 3D models to dynamically animate avatars [19,20,21]. See [22] for
a more extensive review of facial expression synthesis methods.

3 Kernel Reduced Rank Regression (KRRR)

Since its introduction in the early 1950s by Anderson [23], the reduced-rank regression
(RRR) model has inspired a wealth of diverse applications in several fields such as
signal processing [24] (also known as reduced-rank Wiener filtering), neural networks
[25] (also known as asymmetric PCA), time series [23], and computer vision [26]. This
section describes KRRR and explores three methods to compute its parameters.

3.1 Error Function for Kernel Reduced Rank Regression (KRRR)

Let X = [x1, · · · ,xn] ∈ �dx×n (see the footnote for notation1) be a matrix containing
the vectorized images of neutral faces for n subjects, and Y = [y1, · · · ,yn] ∈ �dy×n

contains the vectorized images of the same subjects with a different expression.
Due to lack of training samples to constrain the regression parameters, learning a

linear regression between two high-dimensional data sets is usually an ill-posed prob-
lem. Consider learning the regression matrix T that optimizes minT ||Y−TX||2F . The
optimal T can be found in closed-form as T = YXT (XXT )−1. If dx > n the matrix
XT X will be rank deficient. In this situation dimensionality reduction or regulariza-
tion is often necessary. A common approach is to independently learn low-dimensional

1 Bold capital letters denote matrices X, bold lower-case letters a column vector x. xj represents
the jth column of the matrix X. All non-bold letters represent scalar variables. xij denotes the
scalar in the row i and column j of the matrix X and the scalar ith element of a column vector
xj . ‖x‖2

2 denotes the L2-norm of the vector x. tr(A) =
∑

i aii is the trace of the matrix
A and diag(a) denotes an operator that generates a diagonal matrix with the elements of the
vector a. ‖A‖2

F = tr(AT A) = tr(AAT ) designates the Frobenious norm of matrix A.
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models for each data set using PCA/KPCA, and then learn a linear or nonlinear relation
between projections using any supervised learning technique (e.g. neural networks).
Applying PCA/KPCA separately to each set preserves the directions of maximum vari-
ance within sets, but these do not necessarily correspond to the direction of maximum
covariation between sets [26]. That is, independently learning low-dimensional models
may result in a loss of important details relevant to the coupling between sets. The RRR
model [23,24,25] finds a linear mapping, T ∈ �dx×dy , that minimizes the LS error
subject to rank constraints on T, effectively reducing the number of free parameters to
estimate. The RRR model minimizes ||Y −TX||2F subject to rank(T) = k. A mathe-
matically convenient way to impose rank(T) = k is to explicitly factorize T = BAT ,
where A ∈ �dϕ×k and B ∈ �dy×k are regression matrices, and k denotes the rank of
the reduced rank model.

The Kernel RRR (KRRR) model minimizes the following energy function:

min
A,B

‖Y − BAT ϕ(X)‖2
F , (1)

where ϕ(·) is a nonlinear function that transforms X to a (usually) high-dimensional
feature space. The surface of Eq. (1) has a unique minimum, up to an invertible k × k
affine transformation [27].

3.2 Learning Parameters for KRRR

This section explores three numerical schemes to optimize Eq. (1). The three methods
are the Matlab function eigs to solve Generalized Eigenvalue Problems (GEPs), the
Subspace Iteration (SI) method, and Alternated Least-Squares (ALS) procedure. We
compare the computational cost as well as the error achieved by the algorithms.

1-Matlab Eigs function (EIGS): Without loss of generality the matrix A in Eq. (1)
can be expressed as a linear combination of ϕ(X), i.e. A = ϕ(X)α, where α ∈
�n×k. K = ϕ(X)T ϕ(X) is the kernel matrix such that each entry kij(xi,xj) =
〈ϕ(xi), ϕ(xj)〉 measures the similarity between two samples by means of a kernel func-
tion. Optimizing over B (i.e. B = YKα(αT K2α)−1) and substituting the optimal B
value in Eq. (1) results in the following minimization w.r.t α:

min
α

tr
{

(αT K2α)−1(αT KYT YKα)
}

. (2)

Solving α is a GEP, and we used the Matlab eigs function. Once α is known, B ∈
�dy×k can be computed with standard regression as:

B = YKα(αT K2α)−1. (3)

2-Subspace Iteration (SI): The SI method [28] is an extension of the Power method to
solve GEPs. Given two symmetric matrices, S1 ∈ �n×n and S2 ∈ �n×n, and an initial
random matrix α0 ∈ �n×k, the SI method [28] alternates the following steps:

S1α̂t+1 = S2αt (4)

S = α̂T
t+1S1α̂t+1 T = α̂T

t+1S2α̂t+1 (5)

SW = TWΔ (6)

α̂t+1 = α̂t+1W α̂t+1 = α̂t+1/||α̂t+1||F .
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where t denotes the iteration step. In our case, S1 = K2 and S2 = KYT YK. The first
step, Eq. (4), of the SI algorithm solves a linear system of equations to find α̂t+1. In the
second step, Eq. (5), the data is projected onto the estimated subspace. In order to im-
pose the constraints that αT

t+1S1αt+1 = Λ and αT
t+1S2αt+1 = Ik, a normalization is

done by solving the following k × k generalized eigenvalue problem, SW = TWΔ,
Eq. (6), where W ∈ �k×k is the eigenvector matrix. It can be shown [28] that as t
increases, αt+1 will converge to the eigenvectors of problem (2) and Δ to the eigen-

values. The convergence is achieved when |δk+1
t −δk

t |
δk+1

t

< ε ∀i, where δk
i denotes the

kth-largest generalized eigenvalue.

3-Alternated Least Squares (ALS): The ALS algorithm alternates between
fixing α and solving for B with Eq. (3), and fixing B and solving for α, where α =
K−1YT B(BT B)−1.

For all methods we used probabilistic PCA to factorize the matrix K as K≈USUT+
σ2In. This factorization is beneficial to regularize the solution and make some algo-
rithms more efficient (e.g. solving Eq. 4). See [29] for more information.

Comparison of EIGS, SI and ALS
To evaluate the computational complexity and accuracy of the three approaches to com-
pute the parameters in KRRR, we used 50% of the subjects from session 1 in the CMU
Multi-PIE [30] database as training set. The neutral and smiling faces were used for
training. We used a Gaussian kernel and the local bandwidth is selected as the mean
pair-wise distance. The dimension of the images is dy = 35999 pixels. The number of
people n = 125, and k is set to k = 37, that preserves 99.9% of the K2 energy (an
upper bound on the rank of the GEP).

The performance is measured using the Gradient Mean Square Error (GMSE) [12]:

GMSE =
1
rc

rc∑

i=1

∥
∥
∥
∥
∥

[∇Fx(i)
∇Fy(i)

]

true

−
[∇Fx(i)
∇Fy(i)

]

syn

∥
∥
∥
∥
∥

2

F

, (7)

between the synthesized expression and the ground truth image, where F ∈ �r×c is
the face image of size r × c pixels, [F(i)]syn and [F(i)]true represent the gray level
of the ith pixel in the synthesized expression and the ground truth image respectively.[∇Fx(i)
∇Fy(i)

]

is the gradient at the ith pixel. GMSE measures the difference in gradients.

Fig. 2 (a) shows the average GMSE (Eq. (7)) over 125 training subjects. As shown
in Fig. 2 (a), all methods achieve similar errors. Table 2 (b) shows the computational
complexity to compute α using the Matlab function eigs (EIGS), the SI and ALS pro-
cedure. The time in seconds on a PC with 2.2GHz CPU was 0.077s, 0.036s, and 1.100s
for EIGS, SI and ALS respectively. The SI method achieved comparable accuracy and
was more computationally efficient than ALS or eigs from Matlab.

3.3 FES with KRRR

This section shows experimental results using KRRR for FES. Given a neutral face
of an untrained subject xt, we can synthesize a new facial expression yt as a linear
combination of facial expressions from the training set (i.e. Y):
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Fig. 2. (a) Average GMSE to compute parameters of KRRR using Matlab eigs function (EIGS),
SI, and ALS. (b) Computational complexity to compute α using the EIGS, SI, and ALS methods.

yt ≈ BαT k(·,xt) = YKα(αT K2α)−1αT k(·,xt) = Ygt, (8)

where gt = Kα(αT K2α)−1αT k(·,xt) ∈ �n×1 is the coefficient that weights the
contributions of each training sample. k(·,xt) ∈ �n×1 is the column vector of the
kernel between the training samples and xt.

Note that in Eq. (8), the overall pixel intensity of yt depends on the elements of the
kernel vector k(·,xt), which are close to 1 when xt is close to the training data X.
However, the kernel values are smaller than 1 when xt is far away. To normalize the
kernel (i.e.

∑n
j=1 gtj ≈ 1), we use the Soft-Max kernel [31]:

k(xi,xj) =
exp

(−‖xi−xj‖2
2

σ2

)

∑
l exp

(−‖xl−xj‖2
2

σ2

) , i, j = 1, · · · , n. (9)

Fig. 3 shows an example of smiling facial expression synthesis using KRRR on subjects
from session 1 (249 subjects) of the CMU Multi-PIE [30]. We used 50% of the subjects
for training and the remaining for testing. All selected faces have been manually labeled
with 66 landmarks and warped to a normalized template (see Fig. 3 (a)). The warping
was done by interpolating the triangular meshes between the original landmarks and the
canonical template. Note that the wrapping alone cannot result in realistic synthesis of
expressions because it cannot model appearance changes (e.g. wrinkles and teeth). We
compared the synthesis capabilities for three kernels: linear, Gaussian, and Soft-max.
We provided two measures of error between the synthesized expression (syn) and the
ground truth image (true): the average Gradient Mean Square Error (GMSE) defined in
Eq. (7) and the Normalized Inner-Product (NIP):

NIP =
1
rc

∑rc
i=1[F(i)]true[F(i)]syn

‖[F]true‖F ‖[F]syn‖F

. (10)

GMSE measures the difference in gradients, while NIP measures the correlation be-
tween gray-level values.

As can be seen in Fig. 3 the Soft-Max kernel synthesized more photo-realistic images
being able to reproduce the teeth while preserving the facial hair. It also achieved the
higher NIP value.
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Fig. 3. (a) 66 facial landmarks and the geometrically normalized face. (b) Synthesizing smil-
ing faces with KRRR. Neutral test image, linear kernel, Gaussian kernel, Soft-Max kernel, and
ground truth. The first number in the brackets indicates the average GMSE and the second repre-
sents the average NIP, defined in Eq. (7) and (10) respectively.

4 Bilinear Kernel Reduced Rank Regression

In the previous section, we have shown how LRRR and KRRR can be used for FES.
However, observe that RRR and KRRR are unsuccessful in preserving details of the
original images (e.g. wrinkles, pimples, glasses). This is because the synthesized image
is a combination of the training set images, and in the training set many of these features
are not present (see Fig. 3). In this section, we propose to use Bilinear KRRR (BKRRR)
to effectively decouple identity and expression factors by enforcing the same identity in
the synthesis of different expressions. The BKRRR is able to preserve person-specific
facial features and greatly improve the synthesis performance.

4.1 Error Function for BKRRR

Let X = {x1, · · · ,xn} ∈ �dx×n be a matrix containing the dx dimensional input
vectors representing neutral faces for n different subjects, and Yl = {y1, · · · ,yn} ∈
�dy×n be a matrix containing the vectorized images of the same n subjects with the lth

expression (l = 1, · · · , r) (e.g. smile, surprise, disgust, squint, and scream). BKRRR
extends KRRR, Eq. (1), by minimizing:

E(α,BExp
l ,BNeu) =

r∑

l=1

‖Yl − BExp
l αT K‖2

F + ‖X − BNeuαT K‖2
F , (11)

recall that A = ϕ(X)α and it represents the space of identity, while BNeu is a basis to
reconstruct neutral faces and BExp

l is a basis for reconstructing the lth facial expression.
Unlike KRRR, BKRRR seeks to approximate all r expressions and the neutral face with
the same identity coefficients. Observe that reconstructing the neutral testing image
(second term in Eq. 11) will be a key component of our algorithm to decide which
person-specific features will be able to be reconstructed as a combination of the training
set. K ∈ �n×n is the kernel matrix containing the similarity between the neutral faces
in the training samples. α, BNeu and BExp

l are respectively computed as:

min
α

tr

{

(αT K2α)−1

[

αT K

(
r∑

l=1

YT
l Yl + XT X

)

Kα

]}

,
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Fig. 4. Synthesis of facial expressions with BKRRR. First column shows the input image, the sec-
ond the synthesized neutral image, the third, fourth and fifth show the synthesized smile, surprise
and disgust expression respectively. Observe that BKRRR can not reconstruct the glasses.

BNeu = XKα(αT K2α)−1, (12)

BExp
l = YlKα(αT K2α)−1, (l = 1, · · · , r). (13)

Similar to Section 2, solving α is a GEP and we use the SI method.
The matrix Θ = αT K ∈ �k×n in BKRRR contains subspace of identity variation.

Given a new testing image xt, the synthesized expression can be obtained as:

yt = BExp
l αT k(·,xt), (14)

where k(·,xt) is the kernel vector for xt. Similarly, for the neutral face:

xNeu
t = BNeuαT k(·,xt), (15)

which approximates the neutral expression of the testing sample using the training data
(2nd column of Fig. 4). The synthesis of the neutral face image from the training images
is important to recover subtle person-specific features and its use will be discussed in
the next section. Fig. 4 also shows other synthesized expressions (smile, surprise and
disgust) using the BKRRR model.

4.2 Preserving Person-Specific Features

Fig. 3 and Fig. 4 show a fundamental problem of regression approaches: the syn-
thesized image is a combination of the data, and it is usually difficult to reconstruct
subtle person-specific features of the testing image as holistic combinations of train-
ing samples. Moreover, it is not realistic to assume that the training data includes all
possible iconic variations (e.g. types of glasses, beards, eyes half closed). In addition,
the BKRRR minimizes a least-square error, which typically does not preserve subtle
person-specific features such as pimples that might have small energy (see Fig. 3 and
4). This section shows how to combine the regression results with the synthesized neu-
tral image to preserve subtle person-specific features.

Fig. 5 illustrates the process to preserve person-specific facial details. Given a neutral
test face xt (Fig. 5 (a)), we first synthesize the neutral image as a combination of the
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Fig. 5. FES using BKRRR that preserves person-specific facial features such as glasses and beard

training data using Eq. (15), this image is denoted as xNeu
t ∈ �dx×1 (Fig. 5 (c)). The

resulting image xNeu
t is warped onto the normalized template of the expression we

want to target, xN2E
t ∈ �dy×1 (Fig. 5 (d)). We then apply BKRRR to generate yt

using Eq. (14) (Fig. 5 (b)). A weighted mask (Fig. 5 (e)) is computed by subtracting

xN2E
t from yt as: mt = exp

( |xN2E
t −yt|

β

)
, where mt ∈ �dy×1 denotes the weighted

mask, β is a scalar selected to ensure that elements of mt are between 0 and 1. The
weighted mask has high values in regions where the appearance changes due to the
expression variation (e.g. teeth and cheeks), and low values where the training data can
not reconstruct person-specific features (e.g. glasses).

An expression layer (Fig. 5 (f)) is computed by multiplying the mask M = diag(mt)
∈ �dy×dy by the synthesized expression yt, that is: Myt. This layer contains only
appearance variations due to expression changes (e.g. teeth and wrinkles on the cheeks).
We normalize the original neutral face xt to the expression template and obtain xExp

t ∈
�dy×1 (Fig. 5 (g)). Later a person-specific texture layer (Fig. 5 (h)) is created as: (I −
M)xExp

t . Finally, the expression face ỹt (Fig. 5 (i)) is computed as the combination of
the expression layer and the texture layer:

ỹt = Myt + (I − M)xExp
t . (16)

The final result ỹt greatly improves the resemblance to the original neutral test face
over the result of BKRRR because it has merged person-specific features that could not
be modeled by the BKRRR model.

4.3 Illumination Adaption

Fig. 6 (c) shows an example of synthesizing a smiling face using one image taken with
a regular camera with uncontrolled illumination (Fig. 6 (a)). As can be observed, the
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Fig. 6. Illumination normalization for FES

poor synthesis is the result of the different illumination conditions between training and
testing. This section proposes a simple method to normalize illumination changes.

Fig. 6 (b) shows the illumination bias computed as the difference between the origi-
nal test face and the mean face of the training set (neutral face). As can be observed, the
high values of the illumination bias on the right cheek show a large difference between
the training and testing lighting conditions. Fig. 6 (d) shows the results obtained after
the illumination normalization.

Given the test image xt ∈ �dx×1, and the mean training face x, we create a repre-
sentation that contains both the spatial and textural information of the image. That is,
Ft = [lh, lv,xt]T ∈ �3×dx and Fmean = [lh, lv,x]T ∈ �3×dx respectively, where
[lh, lv] denotes the spatial location of the pixels along the horizontal and vertical axis
respectively. Then we compute the linear transformation M ∈ �3×3 that minimizes
||Fmean −MFt‖2

F . The optimal matrix is M = Fmean(Ft)+, where ()+ denotes gen-
eralized pseudo-inverse. Then F∗

t = [lh, lv,x∗
t ]

T = Fmean(Ft)+Ft, where x∗
t repre-

sents the illumination normalized testing image. Finally, to normalize the contrast of the
image, the image is processed as: x̃t = std(x)

std(x) (x∗
t − mean(x∗

t )) + mean(x∗
t ) , where

x̃t is the resulting normalized image. std(·) and mean(·) are operators that compute
the standard deviation and mean respectively. Then x̃t is used to synthesize the smile
expression ỹt. As shown in Fig. 6 (d), the adaption algorithm greatly improves FES in
images with untrained lighting conditions.

5 Experiments

This section provides quantitative and qualitative (visual) evaluation of the techniques
proposed in this paper. We used all subjects (336) from the four sessions of the CMU
Multi-PIE database [30]. We selected the subset of frontal faces containing 919 neutral
faces, 249 smiling faces from session 1, 203 surprise faces from session 2, 203 squint
faces from session 2, 228 disgust faces from session 3 and 239 scream faces from ses-
sion 4 respectively. All selected faces have been manually labeled with 66 landmarks
and warped to a normalized template (see Fig. 3 (a)).

5.1 FES with BKRRR

This section compares the performance of Linear Reduced Rank Regression(LRRR),
KRRR, BKRRR, Tensor (HOSVD) [13,12] and BKRRRT (BKRRR with texture preser-
vation described in section 4.2). The performance of each method is measured using
GMSE (Eq. (7)) and NIP (Eq. (10)).
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(BKRRR+Texture) in terms of the average GMSE (the lower the better) and average NIP
(the higher the better)
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BKRRRT
(36.25, 0.991)Ground Truth
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Tensor
(82.58, 0.984)
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(45.64, 0.994)Ground Truth

Fig. 8. FES on neutral faces with subtle person-specific features (e.g. hair, wrinkle, glasses, mole
and beard). The first number in brackets indicates the average GMSE and the second average NIP.

We used 50% of the faces from the CMU Multi-PIE database [30] for training (i.e.
125 for smile, 102 for surprise, 102 for squint, 114 for disgust and 120 for scream)
and the remaining 50% for testing and cross-validation. In the tensor method [13], we
selected all bases whose singular values are non-zero, to maximize the expressibility of
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the model (as done in [13]). For LRRR, KRRR, BKRRR, and BKRRRT we selected
the number of basis, k, as the number of eigenvectors that preserve 99.9% of the energy
in K2. This is an upper bound on the rank of the RRR model. For both the KRRR
and BKRRR methods, we used the Soft-Max kernel, and the regression matrices were
computed using the SI method. The bandwidth parameter for the Soft-Max kernel was
selected with cross-validation.

Numerical results are shown in Fig. 7. The LRRR, KRRR, BKRRR and BKRRRT
methods all have smaller average GMSE than the tensor method. The BKRRR and
KRRR have similar performance. However, recall that the BKRRR method is necessary
to synthesize the neutral face as combination of the training samples used in the BKR-
RRT. The BKRRRT outperforms visually and quantitatively (in NIP) both BKRRR and
KRRR. Fig. 8 shows several synthesized faces for all methods. The first column shows
the original test image, the second column the neutral image, the third, fourth fifth and
sixth column the synthesized image with BKRRR, LRRR, Tensor method [13] and
BKRRRT respectively. Finally, the last column shows the ground truth image. Observe
that BKRRRT can reconstruct much more accurately subtle facial features (e.g. glasses,
skin, pimples, eyelids, hairs, mole and wrinkle) than any other method. Moreover, vi-
sually it is able to generate more photo-realistic images. On the other hand, the tensor
method produces artifacts in the synthesized faces which reflects in a larger GMSE
(worse preservation of edges) and smaller NIP (bad appearance matching). BKRRRT
achieves the highest average NIP compared to all other methods. Observe, that occa-
sionally the value for GMSE is higher than LRRR. This is because there is large differ-
ence in subtle edges in the original and synthesized image (e.g. rim of glasses slightly
shifted), but BKRRRT achieves more photo-realistic results. Fig. 9 shows the average
GMSE and NIP error versus the number of bases k to synthesize smile. As expected the
error decreases w.r.t. the number of bases and BKRRRT clearly outperforms competi-
tive approaches. For more results see [32].

5.2 FES with Illumination Adaption

This experiment tests the ability of our algorithm to handle untrained illumination con-
ditions. Fig. 10 shows several images that have been taken with a regular camera under
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Fig. 9. Average GMSE (a) and average NIP (b) versus number of bases. We used 125 testing
images from the session 1 in the CMU-MultiPIE.
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Original Illumi Bias Smile Suprise Disgust Original Illumi Bias Smile Suprise Disgust

Original Illumi Bias Smile Suprise Disgust Original Illumi Bias Smile Suprise Disgust

Fig. 10. FES with images taken with a regular camera under different lighting conditions. The
input image is denoted by “original” and the illumination bias as “Illumi bias”.

different illumination conditions. The images contain subjects of varying ethnicity. Af-
ter correcting for illumination as explained in Section 4.3, our FES using BKRRRT
produces very realistic results.

6 Discussion and Future Work

This paper presents a method for FES based on Bilinear KRRR. The BKRRR model
learns a nonlinear mapping between a neutral face image and another image with a dif-
ferent facial expression of the same person. To preserve subtle person-specific features
and be robust to untrained configurations, we proposed a method to combine the result
of BKRRR with the original image. The results of our method are visually realistic
despite the limited amount of training data. Although we have illustrated the BKRRR
in the case of FES, the method is more general and can be applied to other problems
image synthesis problems. In future work, we plan to improve the performance using
local models (e.g. independently modeling eye, mouth and nose regions).
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