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Abstract

A relatively unexplored problem in facial expression
analysis is how to select the positive and negative samples
with which to train classifiers for expression recognition.
Typically, for each action unit (AU) or other expression, the
peak frames are selected as positive class and the nega-
tive samples are selected from other AUs. This approach
suffers from at least two drawbacks. One, because many
state of the art classifiers, such as Support Vector Machines
(SVMs), fail to scale well with increases in the number of
training samples (e.g. for the worse case in SVM), it may
be infeasible to use all potential training data. Two, it of-
ten is unclear how best to choose the positive and negative
samples. If we only label the peaks as positive samples, a
large imbalance will result between positive and negative
samples, especially for infrequent AU. On the other hand, if
all frames from onset to offset are labeled as positive, many
may differ minimally or not at all from the negative class.
Frames near onsets and offsets often differ little from those
that precede them. In this paper, we propose Dynamic Cas-
cades with Bidirectional Bootstrapping (DCBB) to address
these issues. DCBB optimally selects positive and negative
class samples in training sets. In experimental evaluations
in non-posed video from the RU-FACS Database, DCBB
yielded improved performance for action unit recognition
relative to alternative approaches.

1. Introduction
The face is one of the most powerful channels of nonver-

bal communication. Facial expression provides cues about

emotional response, regulates interpersonal behavior, and

communicates aspects of psychopathology. While people

have believed for centuries that facial expressions can reveal

what people are thinking and feeling, it is only recently that

the face has been studied scientifically for what it can tell us

time
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Figure 1. Examples of AU12. Frames between the onset and off-

set as differentiated as strong, subtle, and ambiguous AUs. The

strong frames typically correspond to the peak of the AU and the

ambiguous ones to the onset and offset. Our approach iteratively

selects the positive and negative frames that optimize classification

performance.

about internal states, social behavior and psychopathology.

Faces possess their own language. To represent the ele-

mental units of this language, Ekman and Friesen [14] pro-

posed the Facial Action Coding System (FACS). FACS seg-

ments the visible effects of facial muscle activation into ”ac-

tion units.” Each action unit is related to one or more facial

muscles. The FACS taxonomy was defined by manually ob-

serving graylevel variation between expressions in images

and to a lesser extent by studying the electrical activity of

underlying facial muscles [10]. Because of its descriptive

power, FACS has become the state of the art in manual mea-

surement of facial expression and is widely used in studies

of spontaneous facial behavior [15]. Much effort in auto-

matic facial image analysis seeks to automatically recog-

nize FACS action units [23, 32, 26]. This task is challenging

for several reasons: More than 7000 AU and AU combina-

tions have been observed [24], non-frontal pose and moder-

ate out-of-plane head motion are common and the temporal

scale of facial actions is highly variable.

Selection of training samples presents an additional chal-

lenge given the complexity of facial action units and the
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large data sets encountered in working with non-posed, real-

world data. Most approaches to AU recognition pose the

task as a binary classification. For a given AU, video frames

annotated as peaks are used as positive examples in training,

and those that have been annotated as other AU or neutral

(i.e. AU 0) are randomly selected for inclusion in the neg-

ative class. This approach presents at least two problems.

One is that the number of samples in the positive and nega-

tive class typially is unbalanced, with a small set of positive

examples and a very large set of negative ones. Another

is that the number of potential training samples easily may

exceed the limits of the classifier. Support Vector Machines

(SVMs), for instance, fail to scale well with with increases

in the number of training samples(e.g. O(n3) for the worse

case in SVM). Yet, how best to choose the positive and neg-

ative samples is problematic. If we only choose the peaks

as positive samples, there will be a large imbalance between

positive and negative samples, especially for infrequent AU,

and many examples of moderate or lower intensity may be

neglected. On the other hand, if all the frames from onset to

offset are labeled as positive, there is risk of significant error

in training the classifier, as samples close to the onsets and

offsets may differ impereptably from the negative cases.

To address these issues, we propose Dynamic Cascades

with Bidirectional Bootstrapping (DCBB), an extension of

AdaBoost typically used in face detection [30]. Manual

FACS annotation labels the onset, peak, offset of AUs [10],

but training with all the samples is computationally expen-

sive and the use of subtle or ambiguous frames from near the

onset and offset impairs learning. As illustrated in figure 1,

action units near the onset and offset (dotted red line) may

be subtle and difficult to distinguish from non-AU frames.

To optimize the sampling of positive cases, DCBB uses an

iterative approach to sample AU, beginning with the peak

and near-by frames and then extending iteratively toward

the onset and offset. Selection continues until maximum

recognition occurs. Specifically, DCBB starts by selecting

the peak and two adjacent frames as samples in the pos-

itive class and uses a cascade AdaBoost classifier as first

approximation. Next, a boostraping approach is used to se-

lect frames that belong to the positive and negative class

until training convergence. Figure 1 illustrates the idea of

spreading from the AU peaks to the subtle AUs.

2. Previous Work

This section describes previous work on FACS and prior

work on automatic recognition of AUs from video.

2.1. FACS

The Facial Action Coding System (FACS) [14] is a

comprehensive, anatomically-based system for measuring

nearly all visually discernible facial movement. FACS de-

Figure 2. FACS coding typically involves frame-by-frame inspec-

tion of the video, paying close attention to transient cues such

as wrinkles, bulges, and furrows to determine which facial ac-

tion units have occurred and their intensity. Full labeling re-

quires marking onset, peak and offset and may include annotating

changes in intensity as well. Left to right, evolution of an AU 12

(involved in smiling), from onset, peak, to offset.

scribes facial activity on the basis of 44 unique action units

(AUs), as well as several categories of head and eye posi-

tions and movements. Facial movement is thus described

in terms of constituent components, or AUs. Any facial ex-

pression may be represented as a single AU or a combina-

tion of AUs. For example, the felt, or Duchenne smile is

indicated by movement of the zygomatic major (AU12) and

orbicularis oculi, pars lateralis (AU6). FACS is recognized

as the most comprehensive and objective means for measur-

ing facial movement currently available, and it has become

the standard for facial measurement in behavioral research

in psychology and related fields. FACS coding procedures

allow for coding of the intensity of each facial action on a 5-

point intensity scale (which provides a metric for the degree

of muscular contraction) and for measurement of the timing

of facial actions. FACS scoring produces a list of AU-based

descriptions of each facial event in a video record. Fig. 2

shows an example for AU12. Comprehensive reviews of

automatic facial coding may be found in [23, 32, 26].

2.2. Automatic FACS recognition from video

Two main streams in the current research on automatic

analysis of facial expressions consider emotion-specified

expressions (e.g., happy or sad) and anatomically based fa-

cial actions (e.g., FACS). The pioneering work of Black

and Yacoob [5] recognizes facial expressions by fitting lo-

cal parametric motion models to regions of the face and then

feeding the resulting parameters to a nearest neighbor clas-

sifier for expression recognition. De la Torre et al. [13]

use condensation and appearance models to simultaneously

track and recognize facial expression. Chang et al. [8] use

a low dimensional Leipschitz embedding to build a mani-

fold of shape variation across several people and then use

I-condensation to simultaneously track and recognize ex-

pressions. Lee and Elgammal [17] use multi-linear models

to construct a non-linear manifold that factorizes identity

from expression. Recently there has been an emergence of
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efforts toward explicit automatic analysis of facial expres-

sions into elementary AUs [29, 21] as they are very suit-

able to be used as mid-level parameters in automatic facial

behavior analysis [9]. Several promising prototype systems

were reported that can recognize deliberately produced AUs

in either near frontal view face images (Bartlett et al., [2];

Tian et al., [26]; Pantic & Rothkrantz, [22]) or profile view

face images (Pantic & Patras, [21]). These systems em-

ploy different machine learning methods and different im-

age representations as they are the key stages for automatic

AU recognition.

Most work in automatic analysis of facial expressions

differs in choice of features and/or classifiers. Bartlett et

al. [3] investigate machine learning techniques including

SVMs, Linear Discriminant Analysis, and AdaBoost, con-

cluding that the best recognition performance is obtained

through SVM classification on a set of Gabor wavelet coef-

ficients selected by AdaBoost. However, the computational

complexity of Gabor and SVMs are considerable. To de-

velop and evaluate facial action detector, large collections

of training and test data are necessary. Although high scores

have been achieved on posed facial action data[28, 31, 25],

only a small number of studies being conducted on non-

posed spontaneous data [7, 3, 19]. The latter are preferable

to posed as they are representative of real world facial ac-

tions. In our paper, we focus on a problem common to al-

most all approaches to facial expression analysis; that is,

how best to exploit the training data to improve classifica-

tion performance. We evaluate our approach by detecting

FACS action units (AU) in a relatively large data set of non-

posed, spontaneous facial behavior.

3. Facial appearance features
This section describes the process for facial feature

alignment using Active Appearance Models and the con-

struction of appearance features.

3.1. Facial alignment

725 1137 1366

2297 2968 3258

Figure 3. AAM tracking across several frames

Over the last decade, appearance models have become

increasingly important in computer vision and graphics. Pa-

rameterized Appearance Models (PAMs) (e.g. Active Ap-

pearance Models, Morphable Models, Eigentracking) have

been proven useful for detection, facial feature alignment,

and face synthesis [6, 12, 11, 20]. In particular, Active

Appearance Models (AAMs) [11] have proven an excellent

tool for aligning facial features with respect to a shape and

appearance model. In our case, the AAM is composed of 66
landmarks that deform to fit perturbations in facial features.

Person-specific models were trained on approximately 5%
of the video. Fig. 3 shows an example of AAM [20] track-

ing of facial features in several subjects from the RU-FACS

[4] video data-set. Once the tracking is done, facial align-

ment can be achieved using the registration parameters, and

several alignment methods are possible.

3.2. Appearance Features

Similarity 

Transformation

Backward

Mapping

Piece-wise

Affine 

Warpping

Figure 4. Two-step alignment

Appearance-based representation have been widely used

in the literature on AU recognition [3, 27]. For many AU,

appearance, appearance features have been shown to out-

perform shape features(See [1] for comparison of shape and

appearance features). In this section, we explore the use of

local SIFT descriptors [18] as appearance features. After

the face is tracked using AAMs, similarity transform is used

to register the face with respect to an average face while

the difference of scale, in-plane-rotation and transformation

among the images are removed (see middle column in Fig.

4). The features are computed using SIFT descriptors [18]

around the points of interest which are tracked in AAMs.

Moreover, we also use some areas that have not been ex-

plicitly tracked (e.g. nasolabial furrow). To obtain accurate

positions of these areas that have not been tracked, we use

a backward piece-wise affine warp with the same topology
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Figure 5. Bidirectional Bootstrapping

of Delaunay triangulation to set up the correspondence be-

tween them through sequences. Fig. 4 shows the two step

process for registering the face to a canonical pose for AU

recognition. Purple squares represent tracked points and

blue dots represent non-tracked meaningful points. Broken

lines of corresponding colors show the mapping between

the fixed specified points on based shape and corresponding

points on person-specific shape.

4. Dynamic Cascades with Bidirectional Boot-
strapping

This section explores the use of a dynamic boosting tech-

niques to select the positive and negative samples that im-

prove classification performance in AU recognition.

Bootstrapping [16] is a general technique that is applica-

ble in conjunction with many learning algorithms. During

bootstrapping, the active set of positive or negative exam-

ples is extended by including examples that were misclassi-

fied in the previous round, thus emphasizing samples close

to the decision boundary. In this section, a modified ver-

sion of positive and negative sample bootstrapping is pro-

posed to enhance the generalization ability of the training

working set, which we refer to as Bidirectional Bootstrap-

ping. Our approach begins by using only peaks of the AU

and two frames side of the peaks as positive samples. After

that, Bidirectional Bootstrapping is used to spread the pos-

itive samples from the peak frame to other frames and re-

define the representative negative working set. That is, the

positive working set is extended by including samples that

were classified correctly in the cascade classifier. With the

bootstrapping of positive samples, the generalization abil-

ity of the classifier is gradually enhanced. The active posi-

tive and negative working sets are then used as an input to

the Classification and Regression Tree (CART) that returns

a hypothesis, which updates the weights in the manner of

Gentle AdaBoost and the training continues. Figure 5 illus-

trates the process.

4.1. Initial Learning

In this section, we propose to use AU peak frames as

positive samples in the initial learning. The algorithm has

been summarized in Table 1.

Input:

• Positive data set P0 (contains AU peak frames p and

p ± 1);

• Negative data set Q (contains other AUs and non-

AUs);

• Target false positive ratio Ftarget;

• Maximum acceptable false positive ratio per cascade

stage fmax;

• Minimum acceptable true positive ratio per cascade

stage dmin;

Initialize:

• Current cascade stage number t = 0;

• Current overall cascade classifier’s true positive ratio

Dt = 1.0;

• Current overall cascade classifier’s false positive ratio

Ft = 1.0;

• S0 = {P0, Q0} is the initial working set. The num-

ber of positive samples is Np. The number of negative

samples is Nq = Np × R0, R0 = 8;

While Ft > Ftarget

1. t = t + 1;ft = 1.0; Normalize the weights ωt,i for

each sample xi to guarantee that ωt = {ωt,i} is a dis-

tribution.

2. While ft > fmax

(a) For each feature φm, train a weak classifier on

S0 and find the best feature φi (the one with the

minimum classification error).

(b) Add the feature φi into the strong classifier Ht,

update the weight in Gentle AdaBoost manner.

(c) Evaluate on S0 with the current strong classifier

Ht, adjust the rejection threshold under the con-

straint that the true positive ratio does not drop

below dmin.

(d) Decrease threshold until dmin is reached.

(e) Compute ft under this threshold.

END While

4
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3. Fi+1 = Ft × ft; Dt+1 = Dt × dmin; keep in Q0 the

negative samples that the current strong classifier Ht

misclassified, record its size as Kfq.

4. Repeat using detector Ht to bootstrap false positive

samples from negative Q randomly until the negative

working set has Nq samples.

END While
Output:

A t-levels cascade where each level has a strong boosted

classifier with a set of rejection thresholds for each weak

classifier. The final training accuracy figures are Ft and Dt.

Table 1: Initial Learning

4.2. Dynamic Learning

Once a cascade of peak frame detectors is obtained in the

Initial Learning stage, we are able to enlarge the positive

set to increase the discriminative performance of the whole

classifier. The AU frames detector will become stronger

as new AU positive samples are added during the training

step, and the distribution of positive and negative samples

will be more representative of the whole training data. A

constraint scheme is designed in dynamic learning to avoid

add ambiguous AU frames to the dynamic positive set. The

algorithm has been summarized in Table 2.

Input

• Cascade detector H0, from the Initial Learning step;

• Dynamic working set SD = {PD, QD};

• All the frames in this action unit as potential positive

samples P = {Ps, Pv}. Ps contains the strong positive

samples, P0 contains peak related samples described

above, P0 ∈ Ps. Pv contains obscure positive samples;

• A large negative data set Q, which contains all the

other AUs and non-AUs. Its size is Nqtotal.

Update positive working set by spreading in P and up-
date negative working set by bootstrap in Q Dynamic
cascade learning:

Initialize: We set the value of Np as the size of P0. The size

of the old positive data set is Np old = 0. Current diffusing

stage is t = 1.

While (Np − Np old)/Np > 0.1

1. AU Positive Spreading: Np old = Np. Using current

detector on the potential positive data set P to pick

up more positive samples, Pspread are all the positive

examples that decided by the cascade classifier Ht−1.

2. Constrain the spreading: k is the index of current

AU event, i is the index of current frame in this event.

Calculate the similarity values (Eq. 1) between the

peak frame in event k and all peak frames with the

lowest intensity value ’A’, the average similarity value

is Sk. Calculate the similarity value between frame i
and peak frame in event k, its value is Ski, if Ski <
0.5 × Sk, frame i will exclude from Pspread.

3. After above step, the remained positive work set is

Pw = Pspread, Np = size of Pspread. Using Ht−1

detector to bootstrap false positive samples from the

negative set Q until the negative working set Qw has

Nq = Np × Rt samples, the ratio Rt will become

smaller while Np the become larger.

4. Train the Cascade Detector Ht with the dynamic work-

ing set {Pw, Qw}. As Rt varies, the maximum accept-

able false positive ratio per cascade stage fmaxt
also

becomes smaller (Eq. 2).

5. t = t + 1; empty Pw and Qw.

END While

Table 2: Dynamic Learning

In eq.1, n is the total number of AU sections with inten-

sity ’A’, and m is the length of the AU features. The simi-

larity description used in eq.1 is the Radial Basis Function

between the appearance representation of two frames.

Sk =
1
n

n∑
j=1

Sim(fk,fj), j ∈ [1 : n]

Sik = Sim(fi,fk) = e−(Dist(i,k)/max(Dist(:,k)))2

Dist(i, k) =
[ m∑

j=1

(fkj − fij)2
]1/2

, j ∈ [1 : m] (1)

The dynamic positive work set becomes larger but the

negative samples pool is finite, so Rt and fmaxt
need to

be changed dynamically. Also, some AUs, like AU12,

are more frequent than others. After the spreading stage,

the ratio between positive and negative samples becomes

balanced, except for some rare AUs (e.g., AU4, AU10)

which keep unbalanced because of the scarceness of pos-

itive frames in the database. Instead of tuning these thresh-

olds one by one, we assume that the false positive rate fmaxt

changes exponentially in each stage t, which means

fmaxt
= fmax × (1 − e−αRt)

Rt = β × R0 × Nqtotal/Np (2)

In our experiment, we set α as 0.2 and β as 0.04 re-

spectively because those values are suitable for all the AUs

to avoid lacking of useful negative samples in RU-FACS

database.

5
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5. Experiments

This section reports experimental results for AU recog-

nition on the RU-FACS database [4]. RU-FACS consists of

video-recorded interviews with 34 men and women of vary-

ing ethnicity. Interviews were approximately minutes in du-

ration. Video from four subjects could not be processed for

technical reasons (e.g., noisy video), which resulted in data

from 29 participants. Meta-data included manual FACS

codes. The FACS codes include the peak frame as well as

the onset and offset frame for each action unit. Because

some AUs occurred too infrequently, we focus our exper-

iments on ten AUs: AU1, AU2, AU4, AU6, AU7, AU10,

AU12, AU14, AU15, AU17. For all the AUs, the SIFT de-

scriptor is built using a square of 48 × 48 pixels and the

face is normalized to have 212 × 212 pixels. We trained 10

dynamic cascade classifiers as described in section 4, using

one versus all scheme for each AU. 19 subjects were ran-

domly selected as training, and the remaining 10 subjects

were used as testing subjects.

5.1. Positive Samples Spreading in Training Step

This section illustrates the bootstrapping approach to se-

lect positive and negative samples and the improvement in

ROC (Receiver-Operator Characteristic) curves at succes-

sive iterations. ROC curves are obtained by plotting true

positives ratio against false positives ratio for different de-

cision threshold values.

In our method, the forced constrain is introduced by set-

ting the lowest boundary of similarity description as de-

scribed in eq.1. The value of the weight (0.5) in the stage

”Constrain the spreading” of Dynamic Learning can be var-

ied between 0.3 to 0.6, the results are insensitive to the value

in this range. While the newly adopted positive samples

are becoming closer to the optimal hyperplane which de-

cided by the previous cascade classifier, the less samples

will be picked up during the Bootstrap stage. So the spread-

ing speed defined in the stage ”While” of Dynamic Learning

are used to prevent the spreading from subtle AU frames to

ambiguous AU frames. Empirical analysis shows that when

it reaches a low level (0.1 in our experiment), the boundary

between strong AU frames and ambiguous AU frames can

be considered reached.

Fig. 6 shows the labeling for AU12 for subject S015.

There are eight AU12 labeled units of varying intensity

from A (trace level) to D (close to maximum). The curves in

the lower panel represent the similarity (eq. 1) between each

peak and the neighboring frames. This graphic shows the

complex temporal patterns and the positive samples spread-

ing in each step. The positive samples in each step are repre-

sented by Green Asterisk, Red Plus sign, Blue Cross, Black

Circle. The later adopted frames(Black Circle, Blue Cross)

are mainly crowd around the low value areas of similar-

ity curve in high intensity AU, conversely the frames with

Black circle and Blue cross are scattered around the crest

of similarity curve in low intensity AU, see it in subfigure

number 3, 8 and 7. It is interesting to observe subfigure

number 2 and number 8, the action is shrinking among the

unit while the wave of the similarity curves are adopted at

last or not adopted as positive samples. Subfigure number 7

shows that for low intensity AU, only the frames around the

peak frame are adapted as positive samples. The ellipses in

the bottom curves with different gray values (from black to

gray) correspond to the strong AU frames, subtle AU frames

and ambiguous AU frames which are illustrated in Figure 1.
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Figure 7. The ROCs improve with the spreading of positive sam-

ples

Fig. 7 shows the improvement in the ROCs using our

approach. The first number between lines | denotes the area

under the ROC, the second number the size of positive sam-

ples in the testing dataset and separated by / is the size of

negative samples in the testing dataset, the third number de-

notes the size of positive samples in training working sets

and separated by / the total frames of current AU in training

data sets. We illustrate the method with the AU4 and AU12,

where AU4 has a minimum number of examples and AU12

has the largest number of examples. We can observed that

the area under the ROC for frame-by-frame classification is

greatly improved after applying our method. The area im-

proves faster for the case of AU4 than AU12, because the

peak frames of AU12 with different intensity in the initial

step for learning represent the maximum number of AUs

while for AU4, the new adopting positive samples can im-

prove the representative ability a lot, as very few positive

samples can be used in the initial training set.

5.2. Improving recognition accuracy

This section reports experiments results for AU recogni-

tion and compares with previous approaches that use shape

or appearance and Support Vector Machines (SVMs) [19]

for classification.

We have trained the classifiers using 19 subjects from the

RU-FACS dataset and we have selected the remaining 10

6
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Figure 6. The spreading of positive samples during each dynamic training step for AU12. See text for the explanation of the number

between bars.
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Figure 8. ROC curve for 10 AUs using three different methods: SVM and appearance features (App+SVM), SVM and shape features

(shape+SVM), our method (App+Boost) and Initial learning in our method(Init+Boost).

subjects for testing. We report results on 10 AUs using our

dynamic bidirectional cascade classifiers on the appearance

features (as explained in section 3), and using one versus

all strategy. We measure the performance using a frame-by-

frame ROC curve. The ROC curves for the 10 AUs can be

seen in Figure 8. There are four curves with different labels,

’App+Boost’ the proposed method, ’Shp+SVM’ is shape

features with SVM [19], ’App+SVM’ [19] is appearance

features with SVM, ’Init+Boost’ is initial learning stage in

the proposed method. As we can observe, our method out-

performs in most AUs to the SVM with shape or appearance

features. The SVM is trained using as positive samples the

peaks of the current AUs and two adjacent frames. The neg-

ative samples are selected randomly (but the same for shape

and appearance methods). The ratio between positive and

negative samples is fixed to 30. The method particularly

boost performance in AU2, AU 15 and AU 17. Moveover,

Compared with the initial learning stage, the dynamic learn-

ing stage improve the performance in each of the AUs.

6. Conclusions

This paper proposes an automatic method to automati-

cally select the set of positive and negative samples from

the training set that improves recognition performance on

AU. Our approach is able to detect subtle AUs and provides

a good segmentation for the training data. We compare

the performance with existing method using appearance and

shape features with Support Vector Machines (SVMs) and

AdaBoost, and show how our approach achieves better per-

formance. In future work, we plan to model the dynamic

patterns around the onset and offset of AU events and ex-
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cluding false positive samples for all AUs.

Acknowledgments This research was supported in part

by NIMH grant MH 51435. The first author was also par-

tially supported by the scholarship from China Scholarship

Council. The work was performed when the first author was

at Robotics Institute, Carnegie Mellon University. Thanks

to Tomas Simon, Feng Zhou, Zengyin Zhang for their valu-

able suggestions.

References
[1] A. Ashraf, S. Lucey, J. Cohn, T. Chen, K. M. Prkachin, and

P. Solomon. The painful face: Pain expression recognition

using active appearance models. Image and Vision Comput-
ing., 2009.

[2] M. Bartlett, G. Littlewort, I. Fasel, J. Chenu, and J. Movel-

lan. Fully automatic facial action recognition in spontaneous

behavior. In AFGR, pages 223–228, 2006.

[3] M. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. Fasel,

and J. Movellan. Recognizing facial expression: Ma-

chine learning and application to spontaneous behavior. In

CVPR05, pages II: 568–573, 2005.

[4] M. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. Fasel,

and J. Movellan. Automatic recognition of facial actions in

spontaneous expressions. Journal of Multimedia, 2006.

[5] M. J. Black and Y. Yacoob. Recognizing facial expressions in

image sequences using local parameterized models of image

motion. IJCV, 25(1):23–48, 1997.

[6] V. Blanz and T. Vetter. A morphable model for the synthesis

of 3d faces. In SIGGRAPH, 1999.

[7] B. Braathen, M. S. Bartlett, G. Littlewort, and J. R. Movel-

lan. First steps towards automatic recognition of spontaneous

facial action units. In Proceedings of the ACM Conference
on Perceptual User Interfaces, 2001.

[8] Y. Chang, C. Hu, R. Feris, and M. Turk. Manifold based

analysis of facial expression. In CVPR ’04 Workshops,

page 81, 2004.

[9] J. Cohn and P. Ekman. Measuring facial action by man-

ual coding, facial emg, and automatic facial image analysis.

Handbook of nonverbal behavior research methods in the af-
fective sciences., 2005.

[10] J. F. Cohn, Z. Ambadar, and P. Ekman. Observer-based mea-
surement of facial expression with the Facial Action Coding
System. The handbook of emotion elicitation and assess-

ment. Oxford University Press Series in Affective Science.,

New York: Oxford., 2007.

[11] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appear-

ance models. In ECCV, pages 484–498, 1998.

[12] F. de la Torre and M. Nguyen. Parameterized kernel principal

component analysis: Theory and applications to supervised

and unsupervised image alignment. In CVPR, 2008.

[13] F. de la Torre, Y. Yacoob, and L. Davis. A probabilisitc

framework for rigid and non-rigid appearance based track-

ing and recognition. In AFGR, pages 491–498, 2000.

[14] P. Ekman and W. Friesen. Facial action coding system: A

technique for the measurement of facial movement. Con-
sulting Psychologists Press., 1978.

[15] P. Ekman and J. Hager. What the Face Reveals(2nd ed.).
Oxford University Press, ISBN 0-19-517964-1, 2005.

[16] K. kay Sung and T. Poggio. Example-based learning for

view-based human face detection. TPAMI, pages 39–51,

1998.

[17] C. Lee and A. Elgammal. Facial expression analysis using

nonlinear decomposable generative models. In IEEE Inter-
national Workshop on Analysis and Modeling of Faces and
Gestures, pages 17–31, 2005.

[18] D. Lowe. Object recognition from local scale-invariant fea-

tures. In ICCV, pages 1150–1157, 1999.

[19] S. Lucey, A. B. Ashraf, and J. Cohn. Investigating sponta-

neous facial action recognition through aam representations

of the face. In K. Kurihara, editor, Face Recognition Book.

Pro Literatur Verlag, 2007.

[20] I. Matthews and S. Baker. Active appearance models revis-

ited. IJCV, pages 135–164, 2004.

[21] M. Pantic and I. Patras. Dynamics of Facial Expression:

Recognition of Facial Actions and their Temporal Segments

from Face Profile Image Sequences. IEEE Transactions
on Systems, Man, and Cybernetics - Part B: Cybernetics,

36:433–449, 2006.

[22] M. Pantic and L. Rothkrantz. Facial action recognition for fa-

cial expression analysis from static face images. IEEE Trans-
actions on Systems, Man, and Cybernetics, pages 1449–

1461., 2004.

[23] M. Pantic, N. Sebe, J. F. Cohn, and T. Huang. Affective mul-

timodal human-computer interaction. In ACM International
Conference on Multimedia, pages 669–676, 2005.

[24] K. Scherer and P. Ekman. Handbook of Methods in Nonver-
bal Behavior Research. 1982. Cambridge Univ. Press.

[25] Y. Sun and L. Yin. Facial expression recognition based on

3d dynamic range model sequences. In ECCV08, pages II:

58–71, 2008.

[26] Y. Tian, J. F. Cohn, and T. Kanade. Facial expression analy-
sis. In S. Z. Li and A. K. Jain (Eds.). Handbook of face recog-
nition. New York, New York: Springer., 2005.

[27] Y. Tian, T. Kanade, and J. F. Cohn. Evaluation of gabor-

wavelet-based facial action unit recognition in image se-

quences of increasing complexity. In AFGR, pages 229–234.

Springer, 2002.

[28] Y. Tong, W. Liao, and Q. Ji. Facial action unit recognition by

exploiting their dynamic and semantic relationships. TPAMI,
pages 1683–1699, 2007.

[29] M. F. Valstar, I. Patras, and M. Pantic. Facial action unit

detection using probabilistic actively learned support vector

machines on tracked facial point data. In CVPR ’05 Work-
shops, page 76, 2005.

[30] R. Xiao, H. Zhu, H. Sun, and X. Tang. Dynamic cascades

for face detection. In ICCV07, pages 1–8, 2007.

[31] P. Yang, Q. Liu, X. Cui, and D. N. Metaxas. Facial expres-

sion recognition using encoded dynamic features. In CVPR,

2008.

[32] W. Zhao and R. Chellappa. (Editors). Face Processing: Ad-
vanced Modeling and Methods. Elsevier, 2006.

8

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 28, 2010 at 11:13 from IEEE Xplore.  Restrictions apply. 


