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Abstract

Appearance Models (AM) are commonly used to model
appearance and shape variation of objects in images. In
particular, they have proven useful to detection, tracking,
and synthesis of people’s faces from video. While AM have
numerous advantages relative to alternative approaches,
they have at least two important drawbacks. First, they are
especially prone to local minima in fitting; this problem be-
comes increasingly problematic as the number of parame-
ters to estimate grows. Second, often few if any of the local
minima correspond to the correct location of the model er-
ror. To address these problems, we propose Filtered Compo-
nent Analysis (FCA), an extension of traditional Principal
Component Analysis (PCA). FCA learns an optimal set of
filters with which to build a multi-band representation of the
object. FCA representations were found to be more robust
than either grayscale or Gabor filters to problems of local
minima. The effectiveness and robustness of the proposed
algorithm is demonstrated in both synthetic and real data.

1. Introduction
Component Analysis (CA) methods such as Principal

Component Analysis (PCA) have been widely applied in
visual, graphics, and signal processing tasks over the last
two decades. PCA is a key learning component of Appear-
ance Models (AM). AM have proven especially powerful
for face tracking and synthesis relative to alternative ap-
proaches (e.g. optical flow) [4, 15, 25, 1, 6, 8, 3].

In applications such as face detection and tracking, the
goal is to search for a minimum residual between the image
and the model across rigid (e.g. rotation and translation)
and non-rigid parameters. For instance, consider fig. (1), in
which a face has been placed in an arbitrary image. In fig.
(1.a), we plot the normalized correlation surface error be-
tween the ideal template (face) and the image in a 101×101

patch centered in the middle of the face. This surface error
has nice local properties: it has just one well defined global
minimum that corresponds to the expected location of the
face. However, if we learn a generic PCA model of the fa-
cial appearance variation from training data and try to locate
the face again, two undesirable effects may occur. First, the
location of the optimal parameter (translation) fails to corre-
spond to the location of the face (delineated by the the black
dot in the figure), see fig. (1.b). Second, many local minima
may be found. Even if a gradient descent algorithm begins
close to the correct solution, the occurrence of local minima
is likely to divert convergence from the desired solution.

The aim of this paper is to explore the use of a new tech-
nique, Filtered Component Analysis (FCA). FCA learns a
multiband representation of the image that reduces the num-
ber of local minima and improves generalization relative to
using PCA on grayscale. Fig. (1.c) shows the main point
of the paper. By building a multiband representation with
FCA, we are able to locate the minimum in the right lo-
cation (black dot) and reduce the number of local minima
close to the optimal one.

2. Previous Work
This section reviews previous work on subspace tracking

and the role of representation in subspace analysis.

2.1. Subspace detection and tracking

Subspace trackers build the object’s appearance/shape
representation from the PCA of a set of training samples.
Let di ∈ <d×1 (see notation 1) be the ith sample of a

1Bold capital letters denote a matrix D, bold lower-case letters a col-
umn vector d. dj represents the j column of the matrix D. dij denotes
the scalar in the row i and column j of the matrix D and the scalar i-th el-
ement of a column vector dj . All non-bold letters will represent variables
of scalar nature. ||x||2 =

√
xT x designates Euclidean norm of x. The

vec(D) operator transforms D ∈ <d×n into an dn-dimensional vector
by stacking the columns. ◦ denotes the Hadamard or point-wise product.
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Figure 1. a). Normalized correlation error surface of the image with the face (94 × 97) in a 101 × 101 patch. b) Error function with
a generic grayscale appearance model. The black dot denotes the optimal position of the face. c) Error function of a multiband learned
representation using FCA. The location of the face corresponds to the minimum of the function.

training set D ∈ <d×n and B ∈ <d×k the first k princi-
pal components. The k principal components B maximize
maxB

∑n
i=1 ||BT di||22 = ||BT ΓB||F under the constraint

BT B = I, where Γ = DDT =
∑

i didT
i is the covari-

ance matrix (zero mean data). The columns of B form an
orthonormal basis that spans the principal subspace. If the
effective rank of D is much less than d, we can approxi-
mate the column space of D with k << d principal compo-
nents. The sample di can be approximated as a linear com-
bination of the principal components as di ≈ Bci where
ci = BT di.

Once the model has been learned (i.e. B is known),
tracking is achieved by finding the parameters a of the
geometric transformation f(x, a) that aligns the data w.r.t.
the subspace. In the case of an affine transformation,

f(x, a) =
(

a1

a2

)
+

(
a3 a4

a5 a6

) (
x− xc

y − yc

)
where

a = (a1, a2, a3, a4, a5, a6) are the affine parameters and
x = (x1, y1, · · · , xn, yn) is a vector containing the coor-
dinates of the pixels to track. Given an image di, sub-
space trackers or detectors find a and ci that minimize:
minci,a||di(f(x, a))−Bci||22 (or other normalized error). If
a = (a1, a2), i.e. just translation, the search can be done ef-
ficiently over the whole image using the Fast Fourier Trans-
form (FFT). Searching for a = (a3 = a6, a5 = a4), that is,
rotation and scale, can also be done efficiently in the log-
polar representation of the image with the FFT [13].

⊗ denotes convolution. 1k ∈ <k×1 is a vector of ones. Ik ∈ <k×k is the
identity. ||A||F = tr(AT A) = tr(AAT ) designates the Frobenious
norm of a matrix. tr(A) =

P
i aii is the trace of the matrix A.

It is important to notice that f can also model non-
rigid motion. For instance, consider f(BScs, a) =∑k

i=1 cs
i f(bS

i , a), where BS is a non-rigid shape model
learned by computing PCA on a set of registered shapes [6]
and cs the non-rigid parameters. In this case, f(BScs, a)
will account for rigid and non-rigid motion. A standard
approach to efficiently search over the rigid a and non-
rigid cs parameters, is to use gradient descent methods
[1, 6, 15, 3, 8].

2.2. Representation in subspace analysis

Most work on AM uses some sort of normalized
grayscale to build the representation. However, regions of
graylevel values can suffer from large ambiguities, camera
noise, and changes in illumination. More robust representa-
tion can be achieved by local combination of pixels through
filtering. Filtering of the visual array is a key element of the
primate visual system [19].

Using different representations for subspace recognition
were explored by Bischof et al. [2]. In the training stage, the
authors built a subspace by filtering the PCA-grayscale ba-
sis with steerable filters [10]. In the recognition phase, they
filtered the test images and performed robust matching, ob-
taining improved recognition performance over grayscale.
Yilmaz et al [27] show how to improve face recognition un-
der illumination changes using PCA filtered images. On
the other hand, multiband representations (e.g. Gabor) have
been typically used as features for many visual classifica-
tion tasks [19]. In related work on component analysis,



several tensor factorization of image ensembles have been
proposed over the past few years [18, 22, 26]. These ap-
proaches avoid the vectorization effect of the image and find
a reduced rank multi-linear approximation of the graylevel
images.

In the context of AM, Mckenna et al. [16] pro-
posed a facial feature tracker based on Gabor wavelets
and shape models, showing improved tracking performance
over grayscale approaches. Cootes et. al [5] found that a
non-linear representation of edge structure could improve
subspace matching. Stegmann and Larsen [24] report that
building subspaces for AM in an augmented space of inten-
sity, hue and edges performed better in the task of localizing
faces. In similar fashion, [7] make use of wedgelet regres-
sion trees to reduce the computational complexity of stan-
dard Active AM. De la Torre et al. [9] found that subspace
tracking was improved by using a multiband representation
created by filtering the images with a set of Gaussian filters
and its derivatives.

This work differs in several aspects from previous work.
First, we explicitly learn a set of optimal spatial filters
adapted to the object of interest, rather than using hand-
picked ones. Once the filters are learned, we build a multi-
band representation of the image that has improved error
surfaces with which to fit AM. We evaluate quantitatively
the properties of the error surfaces and show how FCA
outperforms current methods in appearance based detection
and tracking applications.

3. Filtered Component Analysis

Many component analysis methods (e.g. PCA, LDA)
build data models based on the second order statistics (co-
variance matrices) of the signal. In particular, PCA finds a
linear transformation that decorrelates the data by exploit-
ing the correlation across samples. PCA models the corre-
lation across pixels of different images, but not the spatial
statistics within each of the images. In this section, we pro-
pose Filtered Component Analysis (FCA) that learns a bank
of orthogonal filters that decorrelate the spatial statistics of
a set of images. Once the FCA filters are learned, we build a
multi-band representation that provides more robust match-
ing and generalizes better than grayscale.

3.1. Learning spatial correlation

Previous research [9, 2, 5] has shown the importance
of representation in AM. However, researchers have used
hand-picked filters to represent the signal. Instead, FCA
will learn a set of orthogonal spatial filters optimal for
variance preservation. Variance preservation of image spa-
tial statistics is a realistic assumption to build a generative
model for detection or tracking appearance. For instance,
active AM [5, 15] build a model of shape/appearance based

on variance preservation of the training images.
Given a set of training images, D ∈ <d×n, our aim is

to model the spatial statistics of the signal by learning the
filter F that minimizes:

E1(F,µ) = min
F,µ

n∑
i=1

||di ⊗ F− µ||22 (1)

Recall that ⊗ denotes convolution, and µ = 1
n

∑n
i=1 di⊗F

is the mean of the filtered signal. If µ is known, the optimal
F can be achieved by solving:

Avec(F) = b A =
∑n

i=1

∑
(x,y) d(x,y)

i d(x,y)
i

T

b =
∑n

i=1

∑
(x,y) µ(x,y) ◦ d(x,y)

i (2)

where (x, y) is the domain where the convolution is valid
and d(x,y)

i is a patch of the filter size (fx, fy) centered at
the coordinates (x, y). The matrix A can be computed
efficiently in space or frequency from the autocorrelation
function of di. Analogously, b is estimated from the cross-
correlation between di and µ. Alternatively, one could use
the integral image [12] to efficiently compute eq. 2.

Without imposing any constraints on the filter coeffi-
cients, the optimal solution of eq. 1 is given by µ = 0
and F = 0 (although an iterative algorithm will rarely
converge to this solution). To avoid this trivial solution,
we impose that the sum of squared coefficients is 1, i.e.
vec(F)T vec(F) = 1. The latter constraint can be elegantly
solved by noticing that the convolution is a linear operator,
and eq. 2 can be rewritten as:

E2(F) = min
F

n∑
i=1

||(di − µ′)⊗ F||22 (3)

where µ′ = 1
n

∑n
i=1 di is the sample mean. Now eq. 3 can

be solved by finding the eigenvector with smallest eigen-
value of A =

∑n
i=1

∑
(x,y)(di − µ′)(x,y)(di − µ′)(x,y)T

.

3.2. Learning a multiband representation

In this section, we show how to find a set of filters
F1, ··· ,F that decorrelates the spatial statistics of the image
and are orthogonal to each other. Observe that FCA is anal-
ogous to PCA but now rather than decorrelating the signal
with the covariance of the data, we decorrelate the spatial
statistics over a set of images.

In our particular tracking application, we are interested
in finding a set of filters that preserve the spatial statis-
tics of the object of interest and has minimal response to
background. This filter set can be obtained by maximizing
EFCA(F1, ··· ,F ):

EFCA =
F∑

f=1

n∑
i=1

||di ⊗ Ff ||22 − λ

n2∑
j=1

||db
j ⊗ Ff ||22 (4)



where db
j denotes the jth sample of the background. Let

T = [vec(F1) vec(F2) · · · vec(FF )] be a matrix of all
the vectorized filters, the filters should satisfy TT T =
IF×F . After taking the derivatives with respect to Ff , it
can be shown that the optimal solution satisfies the follow-
ing eigenvalue problem:

(A− λUα)T = TΩ (5)

A =
∑n

i=1

∑
(x,y) d(x,y)

i d(x,y)
i

T
α = max(A)

max(U)

U =
∑n2

j=1

∑
(x,y) db

j

(x,y)
db

j

(x,y)T

If λ is large, the set of filters will predominantly cancel the
background. If λ is small the filters will be adapted to the
object.With λ close to one the filters will achieve trade-off
between modeling the signal (i.e object) and removing the
background. Typically 0 ≤ λ ≤ 2. α is an artificially
introduced parameter to normalize the energies of A and
U.

The solution to eq. 5 is given by the leading eigen-
vectors of (A − λαU). At this point, it is interesting
to consider again the analogy with PCA. PCA will find
the leading eigenvectors of

∑n
i=1 didT

i whereas FCA will
find the leading eigenvectors (assuming λ = 0) of A =∑n

i=1

∑
(x,y) d(x,y)

i d(x,y)
i

T
. While PCA finds the direc-

tions of maximum variation of the covariance matrix, FCA
finds the directions of maximum variation of the sum of all
overlapping patches.

Also recall that FCA is different from previous tensor
factorization approaches [18, 22, 26] in several aspects.
First, our goal is to build a multi-band signal representation
by concatenating filtered versions of images and computing
PCA after that, rather than performing tensor factorization
on graylevel images. Tensor approaches explore the corre-
lation between all rows and columns, but do not explore the
correlation between overlapping patches. Also, note that
our particular filters are not separable.

Figure 2. a) Training images of faces and background (top image).
b) FCA filters for λ = 0, λ = 1 and size 11× 11.

Fig. (2.a) shows many examples of faces and back-
ground patches. Fig. (2.b) shows the set of FCA filters for

λ = 0 and λ = 1 for size 11×11. Observe that the first FCA
filter is an average filter (left corner), and the other filters are
differential filters at different orientations and scales.

3.3. Multiband subspace detection

In traditional subspace detection, PCA is computed from
a set of training images. After the training stage, the goal
is to detect the object of interest over different orienta-
tion, scales and translations. If the scale and orientation is
known, detection can be achieved finding the translational
parameters a = (a1, a2) that minimize:

E3 = minci,a
||di(x + a)−Bci||22

||di(x + a)||22
(6)

Evaluating eq. 6 at each location (x, y) can be computa-
tionally expensive. For a particular position (x, y) com-
puting the coefficients (i.e. ci) is equivalent to correlat-
ing the image with each basis of subspace B, and stacking
all values for each pixel. For large regions, this correla-
tion is performed efficiently in the frequency domain us-
ing the Fast Fourier Transform (FFT) (i.e. C1 = bT

1 I =
IFFT (FFT (b1) ◦ FFT (I))). Similarly, the local energy
term, ||di(x + a)||22, can be computed efficiently using the
convolution in the space or frequency domain. Alterna-
tively, these expressions can be computed efficiently using
the integral image [12].

In multiband tracking, we represent an image as a con-
catenation of filtered images. For a particular image di and
a set of filters (F1, · · · ,Ff ), there are several ways to mod-
ify eq. 6:

E4 =
∑F

f=1 Ωf
||di⊗Ff−Bfci||22

||di⊗Ff ||22
(7)

E5 =
∑F

f=1 Ωf
||di⊗Ff−Bfcf

i ||
2
2

||di⊗Ff ||22
(8)

Parameters Ωf are the eigenvalues of (A−λαU), obtained
by FCA. E4 filters the training images and builds PCA
based on the set of stacked filtered images. On the other
hand, E5 computes an independent PCA for each represen-
tation such that the coefficients for each filtered image are
uncoupled (i.e. cf

i differs for each filtered image).

4. Experiments
To test the validity of our approach, we have performed

several sets of experiments in face detection and facial fea-
ture tracking. The first set of experiments consists on detect-
ing a face embedded in an arbitrary image (see fig. 1) using
a generic model. In the second set, we test the ability of
FCA to improve tracking in Active AM [6, 1, 25, 4, 15, 9].

In all experiments a generic face model is built from 150
subjects from the IBM ViaVoice AV database [17] and the
CMU Multi-PIE Database [11], after aligning the data with



Procrustes Analysis [6]. Once the FCA filters are learned,
a multi-band representation is built for each of the 150 im-
ages, and PCA is computed retaining 80% of the total en-
ergy. For comparison purposes, multi-band PCA is also
calculated for other representations (e.g. Gabor, graylevel
and derivatives, oriented pair filters [14]). In the experi-
ments, we consider Gabor Filters because of the good re-
sults reported by other researchers in the area. In addition,
these filters have been shown to provide optimal localiza-
tion properties in both spatial and frequency domain and
thus are well suited for tracking problems.

4.1. Understanding FCA

In order to compute a FCA filter set, 400 images con-
taining faces and 400 background patches are randomly se-
lected from the IBM database. Using these training sam-
ples, FCA filters are computed at 5 different scales (3 × 3,
5 × 5, 7 × 7, 9 × 9 and 11 × 11 pixels), using eq. 5 for
different λ values.

Given a new face image not present in the training set,
we embedded it in a bigger background image (see fig. 3).
We efficiently compute the error in all possible translations
with the FFT. Fig. (3) shows an example of the resulting
error surface for each FCA band, in comparison with the er-
ror surfaces given by normalized grayscale. The grayscale
representation has several local minima and the global min-
imum is misplaced. On the other hand, the sum of the
three FCA bands produces an error surface with a correctly-
placed global minimum. The first band is an average filter
that smoothes the error surface and decreases its variabil-
ity (avoids some spurious saddle points and local minima),
already giving a reasonable approximation to the desired
output. The second and third bands (derivative filters in
different orientations) also have the global minimum in the
correct position; in addition, they cancel out other spurious
local minima and widen the gap from the global minimum
to the closest local minimum.

4.2. Robustness to noise and illumination

This experiment is designed to test the robustness of
FCA to noise and varying illumination conditions. A subset
of 100 subjects from the IBM database (not in the training
set) are randomly chosen and embedded in background im-
ages. Then, random impulsional noise is added (see fig. 4.a)
and the error in each location is efficiently computed (orien-
tation and scale are known) with the FFT. To quantitatively
compare each filter bank, three different surface error statis-
tics have been computed. Given a patch of 101×101 pixels
around the optimal location of the face (which is known be-
forehand), we compute the following statistics: 1) distance
between the global minimum and the face center, 2) dis-
tance between the correct minimum and closest local mini-
mum, and 3) Amount of local minima. The amount of local

Grayscale

Combined FCA

Figure 3. Error surfaces for grayscale and for each FCA band

minima in an error surface is calculated by counting those
pixels with sign change in x and y derivatives and positive
values in the second derivatives.

Figure 4. a) (left) Original image and test image with added im-
pulsional noise. b) (right) FCA(11,4) and Gabor(8,4) .

Table 1 shows the average results for the described er-
ror statistics for three representations: a set of four 11× 11
pixels FCA filters (see fig. 4.a (top)), the best-performing
Gabor filter set (see fig. 4.b (bottom)) and the normalized
grayscale. In all our experiments, we report the results of
the set of Gabor filters with the same spatial domain than
the corresponding FCA filter set. A global minimum is said
to be correct if it falls within a region of 3×3 pixels around
the theoretical minimum. All the representations have sim-
ilar accuracy; however, the amount of local minima is very
high in the grayscale, and both grayscale and Gabor fail to
provide a sufficiently high global-closest minimum margin
in comparison with FCA filters. These results are quite sta-
ble across spatial domains of the FCA filter sets and have
therefore been omitted in the interest of space.

The second experiment tests the robustness of FCA to il-
lumination changes. A total of 120 faces (30 subjects, 4 im-
ages each) under varying illumination conditions (see fig.
5) are taken from the CMU PIE database [23]. Using the
same approach as in the previous experiment, each face is
embedded in a background image and the error surfaces are



gray FCAλ=0 FCAλ=0.5 Gabor(8,4)
(1) 98 99 99 99
(2) 9.73 24.36 24.03 19.01
(3) 30.06 1.45 1.49 2.46

Table 1. Experiments on noisy data. Statistics: (1) Percentage of
correct global minimum. (2) distance between correct and closest
local minimum. (3) Average number of local minima.

computed for each filter set. Results from this experiment
are shown in table 2. In this case, FCA clearly outperforms
any other technique in all three statistics of the error func-
tions. Accuracy is higher than grayscale and Gabor by 33%
and 12% respectively, while keeping the closest minimum
at least 25.37% further away and having the lowest density
of local minima. It is worth noting that the best-performing
filter set has been FCAλ=0 due to the different background
training and testing statistical properties. Fig. (6) shows the
error surface for a particular subject; as we can observe, the
properties of FCA are more desirable than grayscale or Ga-
bor filters in terms of location and density of local minima.

Figure 5. Changes in illumination on the PIE database.

gray FCAλ=0 FCAλ=0.5 Gabor(8,4)
(1) 41 74 73 62
(2) 14.59 26.37 26.04 19.68
(3) 3.28 1.4 1.41 1.92

Table 2. Experiments on illumination. (1),(2),(3) see table1.

The last experiment of this section explores FCA per-
formance on real images. 10 images have been collected
in the lab (see Fig. 7) with an inexpensive webcam, and
roughly manually-selecting the same scale in the faces as
in the training images. Table 3 shows the detection re-
sults of this experiment. As we can see FCA consistently
outperforms other representations that included Gabor and
grayscale in all metrics.

gray FCAλ=0 FCAλ=0.5 Gabor(8,4)
(1) 20 80 80 70
(2) 15.71 18.05 25.52 13.53
(3) 2 2 1.2 2.4

Table 3. Experiments on images taken in the lab.(1), (2), (3) see
table 1

4.3. Tracking with Active Appearance Models

In this experiment, we test the ability of FCA to over-
come local minima problems in Active Appearance Models

Figure 7. Some test images.

[6, 15]. In this case, we have constructed a multiresolution
model of appearance patches around each of the 68 land-
marks from 150 different subjects [9], taking 3 images per
subject. The image samples were randomly chosen from
the CMU PIE database [11] and aligned with Procrustes
Analysis [6]. Once the shape and appearance FCA mod-
els are built (see fig. 8) retaining 80% of the energy, we
use standard gradient descent methods to fit a new image to
the model [9], although more efficient methods could use
inverse composition [15, 1].

Figure 8. Multiband representation for each FCA filter.

In the case of AAM, evaluating the performance of the
algorithm in terms of density of local minima is harder due
to the high dimensionality of the parameter space. To eval-
uate the algorithm, we run two different tests: first, shape
and rigid motion coefficients are randomly perturbed and
the algorithm convergence ratio is measured, as well as the
mean squared error between the final solution and the ini-
tial landmarks. Second, we test if the ideal solution is a
local minimum of the model as follows: starting in the cor-
rect position, deviation after convergence is compared to
the ground truth. In both tests, FCA have shown superior
performance w.r.t. grayscale, Gabor filters, gradient com-
binations and oriented pair filters [14] that we omit in the
interest of space.

4.3.1 Convergence analysis

In this section, we report results on convergence after per-
turbing the ground truth parameters with gaussian noise
(up to 7 pixels/landmark). Fig. (9) shows a perturbed
ground truth image (9.a) and the same image after conver-
gence (9.b). The convergence threshold has been set to 3
pixels/landmark w.r.t. the ground truth in terms of mean
squared error. Table 4 shows the average results, for 100
random faces using different filtering techniques. The test-
ing images do not include any of the subjects used in the
training stage. All results are reported after 50 iterations of
the algorithm.

As it is shown in Table 4, FCAλ=1(11, 4) is the best per-
forming representation, outperforming grayscale by 35%



Figure 6. (1) Error surface for grayscale. (2) Error surface for Gabor(8,4). (3) Error surface for FCAλ=0(11, 4).

Filter set Conv(%) Mean Error
Grayscale 36 3.52
Grayscale+Gradient(X,Y) 40 3.45
Gabor(8,4) 43 3.42
FCAλ=0(11, 4) 69 2.84
FCAλ=1(11, 4) 71 2.82

Table 4. AAM convergence tests for the CMU PIE database after
random perturbation of the initial parameters. Gabor(X,Y) and
FCA(X,Y) denote a set of Y filters with spatial scale X.

and Gabor(8,4) by 28% in the CMU PIE database [11].
Fig. (10) shows the corresponding error distributions for
this test.

Figure 9. a)Random perturbation of the ground truth. b) Con-
verged image.
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Figure 10. Error distribution for several filters in PIE database.

4.3.2 Stability of local minima

In this experiment, we test the stability of local minima.
That is, we verify if there is a local minimum in the cor-
rect location (ground truth). The AAM model and fitting
strategy is the same as the previous experiment [9]. We
randomly select 100 subjects not present in the training set,
and the fitting algorithm is initialized to the correct position
(manually labeled). Table 5 shows the non-diverged tests
percentage after 50 iterations.

Filter set Conv(%) Mean Error
Grayscale 60 3.28
Grayscale+Gradient(X,Y) 51 3.40
Gabor(8,4) 56 3.46
FCAλ=0(11, 4) 75 2.80
FCAλ=1(11, 4) 86 2.69

Table 5. AAM stability tests for the CMU PIE database. Ga-
bor(X,Y) and FCA(X,Y) denote a set of Y filters with scale X.

In this test, FCA also outperforms any other single or
multiband representation at any scale. Particularly, it is 26%
better than grayscale and 30% than the best Gabor set. Fig.
(11) shows the error distributions for different filters in this
test.
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Figure 11. Stability test error distribution for several filters in PIE
database.



5. Conclusions and Future Work

In this paper, we have proposed FCA to build a multi-
band representation for appearance models that provides a
more robust matching. FCA outperforms Gabor, oriented
pair filters and grayscale representations. Additionally, we
have introduced quantitative metrics for evaluating the error
surface.

FCA has shown promising results, however future work
should consider the use of different constraints for the filters
(e.g. vec(F)T 1fx×fy = 1). Also, it will be worth to explore
the use of some recently proposed non-linear filters (e.g.
[21, 20]) in the context of appearance models.
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