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Abstract

Many computer vision problems (e.g., camera calibra-
tion, image alignment, structure from motion) are solved
through a nonlinear optimization method. It is generally
accepted that 2nd order descent methods are the most ro-
bust, fast and reliable approaches for nonlinear optimiza-
tion of a general smooth function. However, in the context of
computer vision, 2nd order descent methods have two main
drawbacks: (1) The function might not be analytically dif-
ferentiable and numerical approximations are impractical.
(2) The Hessian might be large and not positive definite.

To address these issues, this paper proposes a Supervised
Descent Method (SDM) for minimizing a Non-linear Least
Squares (NLS) function. During training, the SDM learns
a sequence of descent directions that minimizes the mean
of NLS functions sampled at different points. In testing,
SDM minimizes the NLS objective using the learned descent
directions without computing the Jacobian nor the Hes-
sian. We illustrate the benefits of our approach in synthetic
and real examples, and show how SDM achieves state-of-
the-art performance in the problem of facial feature detec-
tion. The code is available at www.humansensing.cs.
cmu.edu/intraface.

1. Introduction
Mathematical optimization has a fundamental impact in

solving many problems in computer vision. This fact is
apparent by having a quick look into any major confer-
ence in computer vision, where a significant number of pa-
pers use optimization techniques. Many important prob-
lems in computer vision such as structure from motion, im-
age alignment, optical flow, or camera calibration can be
posed as solving a nonlinear optimization problem. There
are a large number of different approaches to solve these
continuous nonlinear optimization problems based on first
and second order methods, such as gradient descent [1] for
dimensionality reduction, Gauss-Newton for image align-
ment [22, 5, 14] or Levenberg-Marquardt for structure from
motion [8].
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Figure 1: a) Using Newton’s method to minimize f(x). b) SDM
learns from training data a set of generic descent directions {Rk}.
Each parameter update (∆xi) is the product of Rk and an image-
specific component (yi), illustrated by the 3 great Mathematicians.
Observe that no Jacobian or Hessian approximation is needed at
test time. We dedicate this figure to I. Newton, C. F. Gauss, and J.
L. Lagrange for their everlasting impact on today’s sciences.

Despite its many centuries of history, the Newton’s
method (and its variants) is regarded as a major optimiza-
tion tool for smooth functions when second derivatives are
available. Newton’s method makes the assumption that
a smooth function f(x) can be well approximated by a
quadratic function in a neighborhood of the minimum. If
the Hessian is positive definite, the minimum can be found
by solving a system of linear equations. Given an initial es-
timate x0 ∈ <p×1, Newton’s method creates a sequence of
updates as

xk+1 = xk −H−1(xk)Jf (xk), (1)

where H(xk) ∈ <p×p and Jf (xk) ∈ <p×1 are the Hessian
matrix and Jacobian matrix evaluated at xk. Newton-type
methods have two main advantages over competitors. First,
when it converges, the convergence rate is quadratic. Sec-
ond, it is guaranteed to converge provided that the initial
estimate is sufficiently close to the minimum.
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However, when applying Newton’s method to computer
vision problems, three main problems arise: (1) The Hes-
sian is positive definite at the local minimum, but it might
not be positive definite elsewhere; therefore, the Newton
steps might not be taken in the descent direction. (2) New-
ton’s method requires the function to be twice differen-
tiable. This is a strong requirement in many computer vi-
sion applications. For instance, consider the case of image
alignment using SIFT [21] features, where the SIFT can be
seen as a non-differentiable image operator. In these cases,
we can estimate the gradient or the Hessian numerically, but
this is typically computationally expensive. (3) The dimen-
sion of the Hessian matrix can be large; inverting the Hes-
sian requires O(p3) operations and O(p2) in space, where
p is the dimension of the parameter to estimate. Although
explicit inversion of the Hessian is not needed using Quasi-
Netwon methods such as L-BFGS [9], it can still be com-
putationally expensive to use these methods in computer vi-
sion problems. In order to address previous limitations, this
paper proposes a Supervised Descent Method (SDM) that
learns the descent directions in a supervised manner.

Fig. 1 illustrates the main idea of our method. The top
image shows the application of Newton’s method to a Non-
linear Least Squares (NLS) problem, where f(x) is a non-
linear function and y is a known vector. In this case, f(x)
is a non-linear function of image features (e.g., SIFT) and
y is a known vector (i.e., template). x represents the vector
of motion parameters (i.e., rotation, scale, non-rigid mo-
tion). The traditional Newton update has to compute the
Hessian and the Jacobian. Fig. 1b illustrates the main idea
behind SDM. The training data consists of a set of func-
tions {f(x,yi)} sampled at different locations yi (i.e., dif-
ferent people) where the minima {xi

∗} are known. Using
this training data, SDM learns a series of parameter updates,
which incrementally, minimizes the mean of all NLS func-
tions in training. In the case of NLS, such updates can be
decomposed into two parts: a sample specific component
(e.g., yi) and a generic descent directions Rk. SDM learns
average descent directions Rk during training. In testing,
given an unseen y, an update is generated by projecting y-
specific components onto the learned generic directions Rk.

We illustrate the benefits of SDM on analytic func-
tions, and in the problem of facial feature detection and
tracking. We show how SDM improves state-of-the-art
performance for facial feature detection in two “face in
the wild” databases [26, 4] and demonstrate extremely
good performance tracking faces in the YouTube celebrity
database [20].

2. Previous work
This section reviews previous work on face alignment.
Parameterized Appearance Models (PAMs), such as

Active Appearance Models [11, 14, 2], Morphable Mod-

els [6, 19], Eigentracking [5], and template tracking [22, 30]
build an object appearance and shape representation by
computing Principal Component Analysis (PCA) on a set of
manually labeled data. Fig. 2a illustrates an image labeled
with p landmarks (p = 66 in this case). After the images are
aligned with Procrustes, the shape model is learned by com-
puting PCA on the registered shapes. A linear combination
of ks shape basis, Us ∈ <2p×ks can reconstruct (approxi-
mately) any aligned shape in the training set. Similarly, an
appearance model, Ua ∈ <m×ka , is built by performing
PCA on the texture. Alignment is achieved by finding the
motion parameter p and appearance coefficients ca that best
aligns the image w.r.t. the subspace Ua, i.e.,

min.
ca,p

||d(f(x,p))−Uaca||22, (2)

x = [x1, y1, ...xl, yl]
> is the vector containing the coor-

dinates of the pixels to detect/track. f(x,p) represents a
geometric transformation; the value of f(x,p) is a vec-
tor denoted by [u1, v1, ..., ul, vl]

>. d(f(x,p)) is the ap-
pearance vector of which the ith entry is the intensity
of image d at pixel (ui, vi). For affine and non-rigid

transformations, (ui, vi) relates to (xi, yi) by
[

ui

vi

]
=[
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a4 a5

] [
xs
i

ysi

]
+

[
a3
a6

]
. Here [xs

1, y
s
1, ...x

s
l , y

s
l ]> =

x + Uscs, where x is the mean shape face. a, cs are
affine and non-rigid motion parameters respectively and
p = [a; cs].

Given an image d, PAMs alignment algorithms opti-
mize Eq. 2. Due to the high dimensionality of the mo-
tion space, a standard approach to efficiently search over
the parameter space is to use the Gauss-Newton method [5,
2, 11, 14] by doing a Taylor series expansion to approxi-
mate d(f(x,p + ∆p)) ≈ d(f(x,p)) + Jd(p)∆p, where
Jd(p) = ∂d(f(x,p))

∂p is the Jacobian of the image d w.r.t. to
the motion parameter p [22].

Discriminative approaches learn a mapping from im-
age features to motion parameters or landmarks. Cootes
et al. [11] proposed to fit AAMs by learning a linear re-
gression between the increment of motion parameters ∆p
and the appearance differences ∆d. The linear regressor
is a numerical approximation of the Jacobian [11]. Fol-
lowing this idea, several discriminative methods that learn
a mapping from d to ∆p have been proposed. Gradient
Boosting, first introduced by Friedman [16], has become
one of the most popular regressors in face alignment be-
cause of its efficiency and the ability to model nonlinear-
ities. Saragih and Göcke [27] and Tresadern et al. [29]
showed that using boosted regression for AAM discrimi-
native fitting significantly improved over the original lin-
ear formulation. Dollár et al. [15] incorporated “pose in-
dexed features” to the boosting framework, where not only
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Figure 2: a) Manually labeled image with 66 landmarks. Blue
outline indicates face detector. b) Mean landmarks, x0, initialized
using the face detector.

a new weak regressor is learned at each iteration but also
the features are re-computed at the latest estimate of the
landmark location. Beyond the gradient boosting, Rivera
and Martinez [24] explored kernel regression to map from
image features directly to landmark location achieving sur-
prising results for low-resolution images. Recently, Cootes
et al. [12] investigated Random Forest regressors in the con-
text of face alignment. At the same time, Sánchez et al. [25]
proposed to learn a regression model in the continuous do-
main to efficiently and uniformly sample the motion space.
In the context of tracking, Zimmermann et al. [32] learned a
set of independent linear predictor for different local motion
and then a subset of them is chosen during tracking.

Part-based deformable models perform alignment by
maximizing the posterior likelihood of part locations given
an image. The objective function is composed of the local
likelihood of each part times a global shape prior. Differ-
ent methods typically vary the optimization methods or the
shape prior. Constrained Local Models (CLM) [13] model
this prior similarly as AAMs assuming all faces lie in a lin-
ear subspace expanded by PCA bases. Saragih et al. [28]
proposed a non-parametric representation to model the pos-
terior likelihood and the resulting optimization method is
reminiscent of mean-shift. In [4], the shape prior was
modeled non-parametrically from training data. Recently,
Saragih [26] derived a sample specific prior to constrain
the output space that significantly improves over the orig-
inal PCA prior. Instead of using a global model, Huang
et al. [18] proposed to build separate Gaussian models for
each part (e.g., mouth, eyes) to preserve more detailed local
shape deformations. Zhu and Ramanan [31] assumed that
the face shape is a tree structure (for fast inference), and
used a part-based model for face detection, pose estimation,
and facial feature detection.

3. Supervised Descent Method (SDM)

This section describes the SDM in the context of face
alignment, and unifies discriminative methods with PAMs.

3.1. Derivation of SDM
Given an image d ∈ <m×1 of m pixels, d(x) ∈ <p×1

indexes p landmarks in the image. h is a non-linear feature
extraction function (e.g., SIFT) and h(d(x)) ∈ <128p×1

in the case of extracting SIFT features. During training, we
will assume that the correct p landmarks (in our case 66) are
known, and we will refer to them as x∗ (see Fig. 2a). Also,
to reproduce the testing scenario, we ran the face detector
on the training images to provide an initial configuration of
the landmarks (x0), which corresponds to an average shape
(see Fig. 2b). In this setting, face alignment can be framed
as minimizing the following function over ∆x

f(x0 + ∆x) = ‖h(d(x0 + ∆x))− φ∗‖22, (3)

where φ∗ = h(d(x∗)) represents the SIFT values in the
manually labeled landmarks. In the training images, φ∗ and
∆x are known.

Eq. 3 has several fundamental differences with previous
work on PAMs in Eq. 2. First, in Eq. 3 we do not learn
any model of shape or appearance beforehand from train-
ing data. We align the image w.r.t. a template φ∗. For the
shape, our model will be a non-parametric one, and we will
optimize the landmark locations x ∈ <2p×1 directly. Recall
that in traditional PAMs, the non-rigid motion is modeled as
a linear combination of shape bases learned by computing
PCA on a training set. Our non-parametric shape model is
able to generalize better to untrained situations (e.g., asym-
metric facial gestures). Second, we use SIFT features ex-
tracted from patches around the landmarks to achieve a ro-
bust representation against illumination. Observe that the
SIFT operator is not differentiable and minimizing Eq. 3
using first or second order methods requires numerical ap-
proximations (e.g., finite differences) of the Jacobian and
the Hessian. However, numerical approximations are very
computationally expensive. The goal of SDM is to learn
a series of descent directions and re-scaling factors (done
by the Hessian in the case of Newton’s method) such that
it produces a sequence of updates (xk+1 = xk + ∆xk )
starting from x0 that converges to x∗ in the training data.

Now, only for derivation purposes, we will assume that
h is twice differentiable. Such assumption will be dropped
at a later part of the section. Similar to Newton’s method,
we apply a second order Taylor expansion to Eq. 3 as,

f(x0 + ∆x) ≈ f(x0) + Jf (x0)>∆x +
1

2
∆x>H(x0)∆x, (4)

where Jf (x0) and H(x0) are the Jacobian and Hessian ma-
trices of f evaluated at x0. In the following, we will omit
x0 to simplify the notation. Differentiating (4) with respect
to ∆x and setting it to zero gives us the first update for x,

∆x1 = −H−1Jf = −2H−1J>h (φ0 − φ∗), (5)



where we made use of the chain rule to show that Jf =
2J>h (φ0 − φ∗), where φ0 = h(d(x0)).

The first Newton step can be seen as projecting ∆φ0 =
φ0 − φ∗ onto the row vectors of matrix R0 = −2H−1J>h .
In the rest of the paper, we will refer to R0 as a descent
direction. The computation of this descent direction re-
quires the function h to be twice differentiable or expen-
sive numerical approximations for the Jacobian and Hes-
sian. In our supervised setting, we will directly estimate R0

from training data by learning a linear regression between
∆x∗ = x∗ − x0 and ∆φ0. Therefore, our method is not
limited to functions that are twice differentiable. However,
note that during testing (i.e., inference) φ∗ is unknown but
fixed during the optimization process. To use the descent
direction during testing, we will not use the information
of φ∗ for training. Instead, we rewrite Eq. 5 as a generic
linear combination of feature vector φ0 plus a bias term b0

that can be learned during training,

∆x1 = R0φ0 + b0. (6)

Using training examples, our SDM will learn R0,b0 used
in the first step of optimization procedure. In the next sec-
tion, we will provide details of the learning method.

It is unlikely that the algorithm can converge in a single
update step unless f is quadratic under x. To deal with
non-quadratic functions, the SDM will generate a sequence
of descent directions. For a particular image, the Newton
method generates a sequence of updates along the image-
specific gradient directions,

xk = xk−1 − 2H−1J>h (φk−1 − φ∗). (7)

φk−1 = h(d(xk−1)) is the feature vector extracted at pre-
vious landmark locations, xk−1. In contrast, SDM will
learn a sequence of generic descent directions {Rk} and
bias terms {bk},

xk = xk−1 + Rk−1φk−1 + bk−1, (8)

such that the succession of xk converges to x∗ for all images
in the training set.

3.2. Learning for SDM

This section illustrates how to learn Rk,bk from training
data. Assume that we are given a set of face images {di}
and their corresponding hand-labeled landmarks {xi

∗}. For
each image starting from an initial estimate of the land-
marks xi

0, R0 and b0 are obtained by minimizing the ex-
pected loss between the predicted and the optimal land-
mark displacement under many possible initializations. We
choose the L2-loss for its simplicity and solve for the R0

and b0 that minimizes

arg min
R0,b0

∑
di

∫
p(xi

0)‖∆xi −R0φ
i
0 − b0‖2dxi

0, (9)

where ∆xi = xi
∗ − xi

0 and φi
0 = h(di(xi

0)). We assume
that xi

0 is sampled from a Normal distribution whose pa-
rameters capture the variance of a face detector. We ap-
proximate the integration with Monte Carlo sampling, and
instead minimize

arg min
R0,b0

∑
di

∑
xi
0

‖∆xi
∗ −R0φ

i
0 − b0‖2. (10)

Minimizing Eq. 10 is the well-known linear least squares
problem, which can be solved in closed-form.

The subsequent Rk,bk can be learned as follows. At
each step, a new dataset {∆xi

∗,φ
i
k} can be created by re-

cursively applying the update rule in Eq. 8 with previously
learned Rk−1,bk−1. More explicitly, after Rk−1,bk−1 is
learned, we update the current landmarks estimate xi

k using
Eq. 8. We generate a new set of training data by computing
the new optimal parameter update ∆xki

∗ = xi
∗−xi

k and the
new feature vector, φi

k = h(di(xi
k)). Rk and bk can be

learned from a new linear regressor in the new training set
by minimizing

arg min
Rk,bk

∑
di

∑
xi
k

‖∆xki
∗ −Rkφ

i
k − bk‖2. (11)

The error monotonically decreases as a function of the num-
ber of regressors added. In all our experiments, the algo-
rithm converged in 4 or 5 steps.

3.3. Comparison with existing approaches

A major difference between SDM and discriminative
method to fit AAMs [11], is that [11] only uses one
step regression, which as shown in our experiments leads
to lower performance. Recent work on boosted regres-
sion [27, 29, 15, 10] learns a set of weak regressors to
model the relation between φ and ∆x. SDM is developed
to solve a general NLS problems while boosted regression
is a greedy method to approximate the function mapping
from φ to ∆x. In the original gradient boosting formula-
tion [16], feature vectors are fixed throughout the optimiza-
tion, while [15, 10] re-sample the features at the updated
landmarks for training different weak regressors. Although
they have shown improvements using those re-sampled fea-
tures, feature re-generation in regression is not well under-
stood and invalidates some properties of gradient boosting.
In SDM, the linear regressor and feature re-generation come
up naturally in our derivation from Newton method. Eq. 7
illustrates that a Newton update can be expressed as a lin-
ear combination of the feature differences between the one
extracted at current landmark locations and the template.
In previous work, it was unclear what the alignment error
function is for discriminative methods. This work proposes
Eq. 3, which is the error function minimized by discrimina-
tive methods, and connect it with PAMs.



Function Training Set Test Set
h(x) y x = h−1(y) y∗

sin(x) [-1:0.2:1] arcsin(y) [-1:0.05:1]
x3 [-27:3:27] y

1
3 [-27:0.5:27]

erf(x) [-0.99:0.11:0.99] erf−1(y) [-0.99:0.03:0.99]
ex [1:3:28] log(y) [1:0.5:28]

Table 1: Experimental setup for the SDM on analytic functions.
erf(x) is the error function, erf(x) = 2√

π

∫ x
0
e−t

2

dt.

4. Experiments
This section reports experimental results on both syn-

thetic and real data. The first experiment compares the SDM
with the Newton method in four analytic functions. In the
second experiment, we tested the performance of the SDM
in the problem of facial feature detection in two standard
databases. Finally, in the third experiment we illustrate how
the method can be applied to facial feature tracking.

4.1. SDM on analytic scalar functions

This experiment compares the performance in speed and
accuracy of the SDM against the Newton’s method on four
analytic functions. The NLS problem that we optimize is:

min
x

f(x) = (h(x)− y∗)2,

where h(x) is a scalar function (see Table 1) and y∗ is a
given constant. Observe that the 1st and 2nd derivatives of
those functions can be derived analytically. Assume that we
have a fixed initialization x0 = c and we are given a set of
training data x = {xi}ni=1 and y = {h(xi)}ni=1. Unlike the
SDM for face alignment, in this case no bias term is learned
since y∗ is known at testing time. We trained the SDM as
explained in Sec. 3.2.

The training and testing setup for each function are
shown in Table 1 in Matlab notation. We have chosen only
invertible functions. Otherwise, for a given y∗ multiple so-
lutions may be obtained. In the training data, the output
variables y are sampled uniformly in a local region of h(x),
and their corresponding inputs x are computed by evaluat-
ing y at the inverse function of h(x). The test data y∗ is
generated at a finer resolution than in training.

To measure the accuracy of both methods, we computed
the normalized least square residuals ‖xk−x∗‖

‖x∗‖ at the first
10 steps. Fig. 3 shows the convergence comparison be-
tween SDM and Newton method. Surprisingly, SDM con-
verges with the same number of iteration as Newton method
but each iteration is faster. Moreover, SDM is more robust
against bad initializations and ill-conditions (f ′′ < 0). For
example, when h(x) = x3 the Newton method starts from a
saddle point and stays there in the following iterations (ob-
serve that in the Fig. 3 the Newton method stays at 1). In
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Figure 3: Normalized error versus iterations on four analytic (see
Table 1) functions using the Newton method and SDM.

the case of h(x) = ex, the Newton method diverges be-
cause it is ill-conditioned. Not surprisingly, when the New-
ton method converges it provides more accurate estimation
than SDM, because SDM uses a generic descent direction.
If f is quadratic (e.g., h is linear function of x), SDM will
converge in one iteration, because the average gradient eval-
uated at different locations will be the same for linear func-
tions. This coincides with a well-known fact that Newton
method converges in one iteration for quadratic functions.

4.2. Facial feature detection

This section reports experiments on facial feature detec-
tion in two “face in the wild” datasets, and compares SDM
with state-of-the-art methods. The two face databases are
the LFPW dataset1 [4] and the LFW-A&C dataset [26].

The experimental setup is as follows. First the face is de-
tected using the OpenCV face detector [7]. The evaluation
is performed on the images in which a face can be detected.
The face detection rates are 96.7% on LFPW and 98.7% on
LFW-A&C, respectively. The initial shape estimate is given
by centering the mean face at the normalized square. The
translational and scaling differences between the initial and
true landmark locations are also computed, and their means
and variances are used for generating Monte Carlo samples
in Eq. 9. We generated 10 perturbed samples for each train-
ing image. SIFT descriptors are computed on 32× 32 local
patches. To reduce the dimensionality of the data, we per-
formed PCA preserving 98% of the energy on the image
features.

LFPW dataset contains images downloaded from the
web that exhibit large variations in pose, illumination, and
facial expression. Unfortunately, only image URLs are
given and some are no longer valid. We downloaded 884

1http://www.kbvt.com/LFPW/



of the 1132 training images and 245 of the 300 test images.
We follow the evaluation metric used in [4], where the er-
ror is measured as the average Euclidean distance between
the 29 labeled and predicted landmarks. Such error is then
normalized by the inter-ocular distance.

We compared our approach with two recently proposed
methods [4, 10]. Fig. 4 shows the Cumulative Error Distri-
bution (CED) curves of SDM, Belhumeur et al. [4], and our
method trained with only one linear regression. Note that
SDM is different from the AAM trained in a discriminative
manner with linear regression [11], because we do not learn
any shape or appearance model (it is non-parametric). Note
that such curves are computed from 17 of the 29 points de-
fined in [13], following the convention used in [4]. Clearly,
SDM outperforms [4] and linear regression. It is also im-
portant to notice that a completely fair comparison is not
possible since [4] was trained and tested with more images
that were no longer available. However, the average is on
favor of our method. The recently proposed method in [10]
is based on boosted regression with pose-indexed features.
To our knowledge this paper reported the state-of-the-art re-
sults on LFPW dataset. In [10], no CED curve is given and
they reported a mean error (×10−2) of 3.43. SDM shows
comparable performance with a average of 3.47.

The first two rows of Fig. 6 show our results on the faces
with large variations in poses and illumination as well as the
ones that are partially occluded. The last row displays the
worst 10 results measured by the normalized mean error.
Most errors are caused by gradient feature’s incapability to
distinguish between similar facial parts and occluding ob-
jects (e.g., glasses frame and eye brows).

LFW-A&C is a subset of LFW dataset2, consisting of
1116 images of people whose names begin with an ‘A’ or
‘C’. Each image is annotated with the same 66 landmarks
shown in Fig. 2. We compared our method with the Princi-
ple Regression Analysis (PRA) method [26] that proposes
a sample-specific prior to constraint the regression output.
This method maintains the state-of-the-art results on this
dataset. Following [26], those whose name started with ‘A’
were used for training giving us a total of 604 images. The
remaining images were used for testing. Root mean squared
error (RMSE) is used to measure the alignment accuracy.
Each image has a fixed size of 250 × 250 and the error is
not normalized. PRA reported a median alignment error of
2.8 on test set while ours averages 2.7. The comparison of
CED curves can be found in Fig. 4b and our method outper-
forms PRA and Linear Regression. Qualitative results from
SDM on the more challenging samples are plotted in Fig. 7.

4.3. Facial feature tracking

This section tested the use of SDM for facial feature
tracking. The main idea is to use SDM for detection in each

2http://vis-www.cs.umass.edu/lfw/
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Figure 4: CED curves from LFPW and LFW-A&C datasets.
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Figure 5: a) Average RMS errors and standard deviations on 29
video sequences in RU-FACS dataset. b) RMS error between the
SDM detection (green) and ground truth (red) is 5.03.

frame but initializing the frame with the landmark estimate
of the previous frame.

We trained our model with 66 landmarks on MPIE [17]
and LFW-A&C datasets. The standard deviations of the
scaling and translational perturbation were set to 0.05 and
10, respectively. It indicates that in two consecutive frames
the probability of a tracked face shifting more than 20 pix-
els or scaling more than 10% is less than 5%. We evaluated
SDM’s tracking performance on two datasets, RU-FACS [3]
and Youtube Celebrities [20].

RU-FACS dataset consists of 29 sequences of different
subjects recorded in a constrained environment. Each se-
quence has an average of 6300 frames. The dataset is la-
beled with the same 66 landmarks of our trained model ex-
cept the 17 jaw points that are defined slightly different (See
Fig. 5b). We use the remaining 49 landmarks for evaluation.
The ground truth is given by a person-specific AAMs [23].
For each of the 29 sequences the average RMS error and
standard deviation are plotted in Fig. 5. To make sense
of the numerical results, in the same figure we also show
one tracking result overlayed with ground truth and in this
example it gives us a RMS error of 5.03. We cannot ob-
serve obvious differences between the two labelings. Also,
the person-specific AAM gives unreliable results when the
subject’s face is partially occluded while SDM still provides
a robust estimation (See Fig. 8). In the 170, 787 frames of
the RU-FACAS videos, the SDM tracker never lost track
even in cases of partial occlusion.



Youtube Celebrities is a public “in the wild” dataset3

that is composed of videos of celebrities during an interview
or on a TV show. It contains 1910 sequences of 47 subjects
but most of them are less than 3 seconds. It was released
as a dataset for face tracking and recognition so no labeled
facial landmarks are given. See Fig. 9 for example tracking
results from this dataset and tracked video sequences can be
found below4. From the videos, we can observe that SDM
can reliably track facial landmarks with large pose (±45◦

yaw,±90◦ roll and,±30◦ pitch), occlusion and illumination
changes. All results are generated without re-initialization.
The algorithm is implemented in Matlab/C and tested on an
Intel i5-2400 CPU at over 30fps.

5. Conclusions

This paper presents SDM, a method for solving NLS
problems. SDM learns in a supervised manner generic
descent directions, and is able to overcome many draw-
backs of second order optimization schemes, such as non-
differentiability and expensive computation of the Jaco-
bians and Hessians. Moreover, it is extremely fast and ac-
curate. We have illustrated the benefits of our approach in
the minimization of analytic functions, and in the problem
of facial feature detection and tracking. We have shown
how SDM outperforms state-of-the-art approaches in facial
feature detection and tracking in challenging databases.

Beyond the SDM, an important contribution of this work
in the context of algorithms for image alignment is to pro-
pose the error function of Eq. 3. Existing discriminative
methods for facial alignment pose the problem as a regres-
sion one, but lack a well-defined alignment error function.
Eq. 3 allows to establish a direct connection with existing
PAMs for face alignment, and apply existing algorithms for
minimizing it such as Gauss-Newton (or the supervised ver-
sion proposed in this paper).

In future work, we plan to apply the SDM to other NLS
in computer vision such as camera calibration and structure
from motion. Moreover, we plan to have a deeper analysis
of the theoretical convergence properties of SDM.
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Figure 6: Example results from our method on LFPW dataset. The first two rows show faces with strong changes in pose and illumination,
and faces partially occluded. The last row shows the 10 worst images measured by normalized mean error.

Figure 7: Example results on LFW-A&C dataset.

Figure 8: Comparison between the tracking results from SDM (top row) and person-specific tracker (bottom row).

Figure 9: Example results on the Youtube Celebrity dataset.


