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Abstract

Parameterized Appearance Models (PAMs) (e.g. eigen-

tracking, active appearance models, morphable models) use

Principal Component Analysis (PCA) to model the shape

and appearance of objects in images. Given a new image

with an unknown appearance/shape configuration, PAMs

can detect and track the object by optimizing the model’s

parameters that best match the image. While PAMs have

numerous advantages for image registration relative to al-

ternative approaches, they suffer from two major limita-

tions: First, PCA cannot model non-linear structure in the

data. Second, learning PAMs requires precise manually la-

beled training data. This paper proposes Parameterized

Kernel Principal Component Analysis (PKPCA), an exten-

sion of PAMs that uses Kernel PCA (KPCA) for learning

a non-linear appearance model invariant to rigid and/or

non-rigid deformations. We demonstrate improved perfor-

mance in supervised and unsupervised image registration,

and present a novel application to improve the quality of

manual landmarks in faces. In addition, we suggest a clean

and effective matrix formulation for PKPCA.

1. Introduction

Since the early work of Sirovich and Kirby [33] param-

eterizing the human face using Principal Component Anal-

ysis (PCA) and the successful eigenfaces of Turk and Pent-

land [34], many computer vision researchers have used

PCA techniques to construct linear models of optical flow,

shape or graylevel [5, 6, 8, 26, 21, 7, 16]. The modeling

power of PCA techniques is especially useful when applied

to visual data, because there is a need for dimensionality

reduction given the increase in the number of features.

Parameterized Appearance Models (PAMs) (e.g. eigen-

tracking [6], active appearance models [8, 12, 24, 16], mor-

phable models [7, 21, 35]) have proven to be a good statis-

tical tool to build models of shape and appearance variation

of objects. In particular, PAMs have been extensively ap-

Figure 1. Unsupervised learning of a non-linear generative model

of frontal face images. Red dots denote initial manual labeling.

Yellow crosses represent the automatic re-labeling using PKPCA.

Images are better seen in color.

plied to the detection, tracking and synthesis of faces dur-

ing the last decade. PAMs utilize PCA to model shape and

appearance variations across pose, expression, illumination

and identity. However, the linear assumption of PCA does

not always hold true. For instance, modeling pose changes

with 2D models is a very rough approximation (e.g. points

disappear with occlusion) and non-linear models are pre-

ferred. Similarly, the space of frontal faces is likely to be

better described by a non-linear model to account for differ-

ent expressions, illumination, beards or glasses. In fact, nu-

merous papers have shown the advantages of Kernel PCA

(KPCA) over PCA in face recognition or image modeling

tasks (e.g. [38, 28, 37, 25, 30]). This suggests that KPCA

is a more powerful model for image analysis, provided that

the correct kernel and kernel parameters are known. This

paper describes an extension of PAMs, Parameterized Ker-
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nel PCA (PKPCA), a framework for learning a non-linear

generative model of objects’ appearance and shape in a su-

pervised and unsupervised manner.

Fig. 1 illustrates an application of PKPCA. The red dots

represents the manual labeling done by experienced label-

ers to build AAMs [8]. The yellow crosses are the result

of re-labeling using PKPCA. PKPCA learns, in an unsu-

pervised manner, a non-linear model of frontal faces from

600 images (starting from the red dots). As it can be ob-

served (see blue circles), PKPCA is able to learn a more

consistent labeling among subject’s faces (e.g. nose, cor-

ners of the mouth, eyes). Moreover, PKPCA builds a more

compact model (less eigenvectors), which is less prone to

over-fitting and more computationally efficient.

The rest of this paper is organized as follows. Sec. 2 re-

views previous works on image alignment with appearance

models. Sec. 3 proposes an energy-based framework for

learning KPCA. Sec. 4 derives PKPCA by incorporating

rigid and non-rigid transformations into the KPCA formu-

lation. Sec. 5 illustrates the benefits of our approach for

rigid/non-rigid supervised and unsupervised image align-

ment.

2. Previous work

Over the last decade, appearance models have become

increasingly important in computer graphics and vision. In

particular, parameterized appearance models (PAMs) have

proven useful in the detection, tracking, and synthesis of hu-

man faces from video [7, 6, 5, 14, 8, 24, 11, 26, 21, 16, 35].

One of the main benefits of PAMs is its use of gradient de-

scent methods to align images with high dimensional defor-

mation models.

Although widely used, one of the main limitations of

PAMs is its use of a linear model. Several attempts have

been made to extend appearance models in order to cope

with non-linearities. Cootes et al. [10] build view-based Ac-

tive Appearance Models (AAMs) capable of tracking non-

linear pose changes from profile to profile by continuously

switching several discrete linear appearance models. How-

ever, it remains unclear how to impose consistency of the

identity parameters across multiple views. Romdhani et

al. [28] use KPCA with point distribution models to model

the shape out-of-plane motion. However, the KPCA is only

applied to the shape, and it is not embedded into the appear-

ance model that drives the AAM fitting. Moreover, finding

the pre-image shape is an iterative procedure prone to en-

countering local minima. More importantly, the model is

learned in a supervised manner (i.e. manual labeling). In the

context of discriminative models, Avidan [1] has proposed

a gradient-based method to make support vector machines

invariant to translations.

Supervised image alignment [7, 6, 8, 24, 11] is well un-

derstood in the literature. By supervised alignment, we re-

fer to an image that is registered w.r.t. a previously learned

model (off-line). Learning the model in an unsupervised

manner has been less explored. Frey and Jojic [14] pro-

pose a method for learning a factor analysis model invari-

antly to geometric transformations. The proposed method

grows polynomially with the number of possible spatial

transformations, and it can be computationally intensive

when working with high dimensional motion models. To

improve upon this problem, De la Torre and Black [11] pro-

pose parameterized component analysis, a gradient-based

method that learns a PCA model invariantly to affine trans-

formations. More recently, Miller et al. have proposed

the Congealing method [23, 19] that uses an entropy mea-

sure to align images with respect to the distribution of

the data. Baker et al. [2] learned an AAM invariantly to

rigid and non-rigid motion. Kookinos and Yuille [22] pro-

posed a probabilistic framework and extended previous ap-

proaches [2, 23, 11] to deal with articulated objects using a

Markov Random Field (MRF) on top of the AAM.

Unlike previous works, we integrate the kernel methods

in the core of the AAM framework. In particular, we de-

velop a gradient descent algorithm for the efficiently fitting

of kernel appearance models into new images. Moreover,

we show how to learn the kernel appearance model in an un-

supervised fashion invariantly to rigid and non-rigid trans-

formations. Furthermore, we suggest a clean and effective

matrix formulation.

3. Energy-based PCA methods

Component Analysis (CA) methods (e.g. PCA, LDA,

Tensor Factorization) have been successfully applied in nu-

merous classification, clustering and dimensionality reduc-

tion tasks in the last two decades. Many CA techniques

are especially appealing because they can be formulated as

eigen-problems, offering great potential for efficient learn-

ing of linear and non-linear data representations without

local minima. However, the eigen-formulation often ob-

scures important aspects of the learning process such as un-

derstanding normalization factors, reducing effect of noise,

dealing with missing data, and learning the kernel. In this

section, we review previous work on energy-based func-

tions for PCA using a unified matrix formulation.

3.1. Principal component analysis

PCA is a statistical technique useful for dimensionality

reduction, see [13, 20] for a review of applications and ex-

tensions. Let D = [d1 d2 ... dn] be a matrix D ∈ ℜd×n,

see notation1, where each column di is a data sample,

1Bold capital letters denote a matrix D, bold lower-case letters a col-

umn vector d. dj represents the jth column of the matrix D. dij denotes

the scalar in the row i and column j of the matrix D and the scalar i-th
element of a column vector dj . All non-bold letters represent scalar vari-



n is the number of training samples, and d is the num-

ber of features (pixels). The principal components maxi-

mize
∑n

i=1 ||B
T di||

2
2 = ||BT ΣB||F , with the constraint

BT B = I, and where Σ = DDT =
∑

i did
T
i is the

covariance matrix (assuming zero mean). The columns of

B ∈ ℜd×k (principal components) form an orthonormal

basis that spans the principal subspace of the data D. If the

effective rank of D is much less than d, we can approxi-

mate the column space of D with k ≪ d principal compo-

nents. The data di can be approximated as a linear com-

bination of the principal components as drec
i = BBT di

where ci = BT di are the linear coefficients obtained by

projecting the training data onto the principal subspace; that

is, C = BT D ∈ ℜk×n.

The optimal B can be computed as the leading eigen-
vectors of DDT [20]. In cases where d ≫ n, it will be
more convenient to compute the eigenvectors of DT D that
are related to the eigenvectors of DDT . However, for large
data sets of high dimensional data, formulating PCA as an
error function [27] and applying numerical optimization al-
gorithms is a more efficient procedure (in both space and
time) to compute B. Moreover, error functions provide an
easier interpretation and generalization. Several error func-
tions exist of which stationary points are solutions of PCA
(i.e. the subspace is the same as PCA). Among them, the
most appealing one is formulated as [3, 32]:

E1(B,C) =

n
∑

i=1

||di − Bci||
2
2 = ||D − BC||F (1)

A common approach to optimize eq. 1 alternates between

solving for B while C is fixed and vice versa. This tech-

nique is commonly known as Alternated Least Squares

(ALS) or Criss-Cross Regression.

3.2. Kernel PCA

KPCA [29, 31] is a popular generalization of PCA that

allows non-linear feature extraction. KPCA maps the data

to a (usually) higher dimensional space, where the data

can be linearly modeled (assuming the correct mapping is

found). There is no need to explicitly define the mapping

using the ”kernel trick”. KPCA uses a kernel function that

implicitly defines the non-linear mapping.

Consider a lifting of the original points to a higher di-
mensional space Γ = [ φ(d1) φ(d2) · · · φ(dn) ] where φ
defines the mapping. The kernelized version of eq. 1 can be
written as:

E2(B,C) = ||Γ − BC||F (2)

ables. diag is an operator that transforms a vector to a diagonal matrix or

takes the diagonal of the matrix into a vector. 1k ∈ ℜk×1 is a vector of

ones. Ik ∈ ℜk×k is the identity matrix. tr(A) =
∑

i aii is the trace of

the matrix A and |A| denotes the determinant. ||A||F = tr(AT A) =
tr(AAT ) designates the Frobenius norm of matrix A.

Computing the optimal B = ΓCT (CCT )−1 and substitut-
ing this value into eq. 2, it can be shown that:

E2(C) ∝ −tr(CKC
T (CC

T )−1) (3)

where K = ΓT Γ ∈ ℜn×n is the standard kernel matrix.

Each element kij of K represents the similarity between

two samples by means of a kernel function (e.g. Gaussian

Radial Basis Function, polynomial). Optimizing E2 w.r.t.

C can be achieved by computing the leading eigenvectors

of K (C is the transpose of the eigenvector matrix). After

the diagonalization, CKCT = Λ and CCT = Ik. The

computational cost of the eigen-decomposition is O(n3)
(no sparsity is assumed), where n is the number of sam-

ples. In KPCA, it is (usually) not convenient to compute

the eigenvectors of ΓΓT since the dimension of the matrix

can be very high dimensional (including infinity).
For large amounts of data (large n), an iterative approach

to computing KPCA is computationally more efficient. Re-
call that B can be expressed as linear combination of the
mapped original data Γ. That is, B = Γα. Substituting this
expression into eq. 2 results in:

E3(α,C) = ||Γ(In − αC)||F (4)

Assuming that K is invertible, similarly to iterative PCA,
we can alternate between computing α and C as:

α = C
T (CC

T )−1 & C = (αT
Kα)−1

α
T
K (5)

The computational cost of each iteration is O(n2k).

4. Parameterized KPCA

Previous section has related the KPCA learning problem

to an alternate optimization and made use of the “kernel

trick” for effective optimization. This section demonstrates

how to parameterize KPCA to compensate for rigid and

non-rigid motion. In particular, we show how to register

a new image w.r.t. a previously learned KPCA model (su-

pervised), and how to learn the KPCA model invariantly to

non-rigid geometric transformations (unsupervised).

4.1. Supervised registration with PKPCA

This section extends previous work on Eigentracking [6],

AAMs [8] and morphable models [7, 21]) by incorporating

KPCA into the formulation.

4.1.1 Rigid motion

We parameterize the image d(f(x,a)) ∈ ℜd×1 with a
rigid geometric transformation f(x,a) [6, 8, 21]. In the

case of an affine transformation, f(x, a) =

(

a1

a2

)

+
(

a3 a4

a5 a6

) (

x

y

)

where a = (a1, a2, a3, a4, a5, a6) are



the affine parameters and x = (x1, y1, · · · , xn, yn) is a vec-
tor containing the coordinates of the pixels of a given image
region. Once the image has been parameterized, the super-
vised alignment problem can be defined as recovering the
motion parameters a that align the image w.r.t the kernel
subspace, that is, minimizing:

E4(cn,a) = ||φ
(

d(f(x,a))
)

− Bcn||
2
2 (6)

Using the fact that BT B = Λ, and defining k(x,y) as the
kernel function, E4 can be rewritten as:

E4(a) =k(d(f(x, a),d(f(x, a))−

d(f(x,a))T
ΓCΛ

−1
C

T
Γ

T
d(f(x, a)) (7)

In eq. 7, we have marginalized the parameter cn from
the optimization process. However, the minimization prob-
lem remains highly non-linear. Recall that C is the matrix
containing the eigenvectors of the kernel matrix, K, learned
in the training process. To optimize over the motion pa-
rameters, a, we use a Gauss-Newton [4, 6] descent scheme
with closed-form increments as in [11]. Following previous
work in optical flow and appearance tracking [4, 6, 8, 11],
we expand the image changes using Taylor series. a0 is the
initial motion estimation of rigid parameters and ∆a is the
motion increment.

d
(

f(x,a
0 + ∆a)

)

= d(f(x, a
0)) + Ja(a

0)∆a + h.o.t. (8)

h.o.t. denotes higher order terms of the expansion.

Ja(a
0) = [∂d(f(x,a0))

∂a1

. . .
∂d(f(x,a0))

∂a6

] is the Jacobian

matrix evaluated at a0. To optimize over a in the case of the
RBF Gauassian kernel, we use a fixed-point updating. E4

can be rewritten as:

E4(a) ∝ −r
T
M r (9)

with M = CΛ
−1

C
T & ri = e

−γ||pi+J∆a||2
2 ∀i

After differentiating E4 w.r.t. ∆a and setting it to zero,
eq. 7 can be updated as:

∂E4

∂∆a
=

∑

ij

wij(4J
T
J∆a + 2JT

pi + 2JT
pj) = 0

pi = d(f(x,a
0)) − di, wij ≈ mije

−γ||pi||
2

2
−γ||pj ||

2

2

∆a = −(
∑

ij

2wijJ
T
J)−1

J
T

∑

ij

wij(pi + pj)

= −
1

1T
nW1n

(JT
J)−1

J
T
PW1n (10)

4.1.2 Non-rigid motion

In the previous section, we have parameterized the data with

a rigid transformation. In many situations, however, it is in-

teresting to recover non-rigid motion (e.g. modeling facial

expression). In this section, we propose an extension of sec-

tion 4.1.1 that takes into account non-rigid motion.

A simple way to incorporate non-rigid motion is to
change the definition of f . Consider f(Bscs,a) =

f(
∑k

i=1 cs
ib

S
i ,a), where Bs is a non-rigid shape model

learned by computing PCA on a set of registered shapes [9].
cs represent the non-rigid parameters, and a denote the rigid
parameters. In this case, f(Bscs,a) will model rigid and
non-rigid motion. Aligning a new image w.r.t. the non-rigid
model is done minimizing:

E5(a, cn, cs) = ||φ
(

d(f(Bs
cs,a))

)

− Bcn||
2
2

= k(d(f(Bs
cs, a),d(f(Bs

cs,a))− (11)

d(f(Bs
cs,a))T

ΓCΛ
−1

C
T
Γ

T
d(f(Bs

cs,a)))

Similar to the rigid case, we make a first order approxima-

tion of: d
(

f(Bs(cs+∆cs),a+∆a)
)

= d(f(Bsc0
s,a

0))+
Js(c

0
s,a

0)∆s + h.o.t., where s = [a cs]. The updates are

equivalent to the rigid motion case of eq. (10); the differ-

ence is the use of a different Jacobian Js =
∂d

(

f(Bs
c
0

s,a0)
)

∂s
.

We omit the expressions in the interest of space.

4.2. Unsupervised registration with KPCA

In Sec 3.2, the KPCA has been learned off-line from a

set of manually labeled or segmented images. The KPCA

was used in section 4.1 for supervised alignment. However,

manually labeling images is often time consuming and error

prone. This section extends previous expressions (Eq. 7 and

Eq. 6) to learn the KPCA model in an unsupervised manner.
Learning KPCA invariantly to rigid and non-rigid geo-

metric transformations requires learning B and Bs. The
unsupervised alignment problem minimizes:

E6(A,C
a
,C

s
,B,B

s) =

n
∑

i=1

||φ
(

di(f(B
s
c

s
i ,ai))

)

− Bc
a
i ||

2
2

subject to B
T
B = Λ, & B

sT
B

s = Is (12)

w.r.t. to the rigid motion parameters A = [a1 · · · an],
the appearance coefficients Ca = [ca

1 · · · ca
n], the shape

coefficients Cs, the shape bases Bs, and appearance bases

B. The algorithm alternates between two steps: the first

step, registers each of the images w.r.t. to an initial model

by computing A and Cs, while Ca is marginalized. The

second step recomputes the matrix Ca (eigenvectors of K)

and Bs using the new aligned landmarks. The Bs matrix

contains the modes of shape variation that preserve x% of

shape energy (typically 90%), after performing procrustes

in the shape landmarks. After the first iteration, we add

additional modes in Bs to allow translational movement of

some of the landmarks, otherwise Bs would be the same at

each iteration.

5. Experiments

In this section, we report experimental results for super-

vised and unsupervised image registration, and compare the



results to previous methods for rigid appearance registration

(Eigentracking [6]) , non-rigid registration (AAMs [8]), and

unsupervised registration (Congealing [23]).

5.1. Supervised alignment

This section highlights the benefits of registering with

KPCA rather than linear PCA for rigid (i.e. [6]) and

rigid/non-rigid (i.e. [8]) motion models.

5.1.1 Rigid appearance registration

Many recognition algorithms operate on the basis that the

object to be recognized is seen in a canonical pose. In this

experiment, we show how to register an object with respect

to a generic model that contains all possible classes. Since

the classes are very diverse, it is unlikely that a linear as-

sumption will hold.

We selected 48 objects from the Amsterdam Library of

Object Images database [15]. Each object is recorded un-

der 8 different illumination conditions and the image size is

72×96. Some examples of objects are given in fig. 2.

Figure 2. Some images from the ALOI database

For each object, seven images were selected for train-

ing and the last one was used for testing. We shifted the

test image five pixels horizontally and five pixels vertically.

Using an affine transformation as rigid motion, we tried to

recover the translation using Eigentracking (PCA) [6] and

supervised PKPCA (rigid). We retained 70% of the energy

for both methods, which was the best setting for both. Fig. 3

plots the errors for each of the 48 images. The error is the

difference between the recovered translation and the initial

perturbation, i.e. |tx − 5| + |ty − 5|. As shown in fig. 3,

PKPCA allows for more accurate registration starting from

the same initial configuration. At first, this result seems to

be counter intuitive because images of the same object at

different illuminations often form a linear subspace (assum-

ing Lambertian surfaces). However two noteworthy fac-

tors exist: First, the linearity assumption breaks down when

combining images of different objects. Second, the object

surfaces are not Lambertian and there are shadow effects.

In this experiment, we have used the RBF Gaussian kernel

for KPCA. Fig. 3 shows the reconstruction error, PKPCA

achieves better reconstruction and alignment.

Figure 3. Top: error versus testing images. Bottom: left) original

image, center) PCA reconstruction, right) KPCA reconstruction

5.1.2 Registering faces with PKPCA

Accurate alignment of faces is a very important step in ap-

plications such as facial expression analysis or face recogni-

tion. AAMs and MMs [8, 12, 16, 24, 35] are state-of-the-art

algorithms for face alignment. In this section, we compare

PKPCA and AAMs for non-rigid alignment on the CMU

Multi-PIE database [18].

We randomly select 700 face images (120×160) con-

taining 5 different expressions: smile, disgust, surprise,

scream and squint (roughly 140 images each). All images

are frontal and are taken under the same illumination condi-

tions. Each face is manually labeled with 68 landmarks as

shown in fig. 4a. A PCA model of shape is built retaining

80% of the energy [8, 12, 24]. The total number of param-

eters to recover is 12, six for affine transformation and an-

other six for shape variation. For appearance modeling, we

extract the intensity values of pixels inside the rectangular

patches around the landmarks as in [12]. Figure 4b shows

an example of patches for landmarks around the mouth area.

Both PKPCA and linear PCA alignment systems are trained

by retaining 80% of the energy. We use 100 testing images

Figure 4. (a) example of landmarks associated with each face, (b)

patches for appearance modeling, (c) example of shape distortion

and randomly perturb the affine and non-rigid transforma-

tion with increasing power. Figure 4.c shows an example

of such perturbation. The correct landmarks are marked in

cyan (circles), while the transformed shape is shown in yel-



low (stars). Note that none of the subjects in the testing

images are in the training set. For each testing image, we

record the sum of absolute differences between the ground

truth landmarks and the recovered ones. Fig. 5 shows the

average and standard deviation of the alignment error as a

function of the amount of perturbation. As can be observed,

PKPCA provides better alignment in comparison with lin-

ear PCA, for the same percentage of energy preserved in

the models. The difference is especially significant for large

amounts of perturbation.

Figure 5. Aligment error versus amount of perturbation.

5.2. Unsupervised alignment

This section shows the benefits of unsupervised align-

ment in two data sets, the USPS dataset and Multi-PIE [18].

5.2.1 USPS data set

Fig. 6 shows the results of jointly registering and learning

the model for the USPS data set. We randomly select a set S

of 100 images (16×16) of ten hand-written digits from the

USPS dataset (fig. 6.a). Figure 6.b shows S after 5 itera-

tions. The energy amounts preserved by KPCA at iterations

1, 2, 3, 4 and 5 are 70%, 72.5%, 75%, 77.5%, and 80%
respectively. The initial set S requires 33 principal compo-

nents to preserve 80% of the energy. After jointly align-

ing the data and computing PKPCA, only 6 eigen-bases are

needed to preserve 80% of the energy. This indicates that

after convergence, we obtain a more compact model, likely

to have better generalization properties.

For comparison purposes, we also perform unsupervised

alignment using the Congealing method [23]. To avoid

warping outside image boundaries, we pad the images with

15-pixel white borders on each side. The experiment is done

using the code provided by the author 2 for affine transfor-

mation with 80 iterations. The result is given in Fig. 6c.

As can be seen, our method produces better visual results.

Moreover, the number of bases to encode data after align-

ment (using PCA with 80% energy) is 14, twice as many as

2http : //www.cs.umass.edu/ ∼ elm/congealing/

our method (6). In the experiments reported by [23], the au-

thors jointly aligned samples of the same number, achieving

better alignment results than the ones in fig. 6.c. Further-

more, our method is more computationally efficient. Em-

ploying a Pentium 4 3Ghz running Windows XP our method

takes 25s, while the Congealing method takes 305s.

5.3. Improving face labeling

This section shows an application of PKPCA to improve

upon manual labeling of landmarks in faces. Previous work

of Walker et al. [36] has addressed this important problem

by finding correspondences among salient points in images.

Recently [19] proposed an extension of Congealing meth-

ods to align faces with rigid transformations. In this sec-

tion, we demonstrate how to extend previous work in order

to align facial features of people’s faces using PKPCA.

We selected 920 frontal face images with neutral expres-

sion and direct illumination (see fig. 1) from the CMU

Multi-PIE database [18]. We use 600 face images to learn

a KPCA model of appearance, C (eq. 3), around 66 land-

marks and a linear model of shape, Bs. We perform PCA

on the shape, since it has been previously shown that a

linear model provides good generalization across identities

and expressions; whereas, a linear model does not gener-

alize well for appearance [17]. The algorithm starts with

the manually labeled landmarks red dots in fig.(7). Differ-

ent images have been labeled by different people. Bs is

obtained by computing PCA on the landmarks and preserv-

ing 95% of the energy. An a additional translational basis

(x and y directions) is added for the landmarks in the eyes,

brows and corners of the mouth. These extra basis will al-

low compensation for more accurate positioning of the land-

marks outside the shape model. The KPCA model (C) is

computed by performing KPCA on patches of 22× 22 pix-

els around the landmark locations [12], and preserving 90%
of the energy. Once the initial model is built, the algorithm

alternates between two steps until convergence: (i) align all

images w.r.t. the KPCA model, (ii) Recompute the KPCA

model so it minimizes Eq. 12.

We let the algorithm run for 10 iterations. At each

iteration the number of eigenvectors decreases, since the

data is better aligned, and hence more compactly encoded.

The amount of eigenvectors for those ten iterations is:

139, 106, 97, 93, 91, 89, 88, 87, 86, 85, 85. As we can see

at the end of the convergence, the KPCA is more com-

pact (41% less eigenvectors that the initial configuration).

Furthermore, the landmarks are placed more consistently

across people’s features. Fig. 7 shows some examples of

landmarks before and after learning KPCA. The yellow

crosses correspond to the placement of the landmarks af-

ter learning the model invariantly to non-rigid deformations.

The red dots represent the initial manual labeling. As we

can see, PKPCA is able to achieve a more consistent label-
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Figure 6. Joint alignment of handwritten digits, (a) original digits from USPS dataset, (b) result of PKPCA, (c) result of Congealing method.

ing across subjects’ features (e.g. nose, eyes).

Since the PKPCA model has fewer parameters, it is

likely to be less prone to over-fitting in new testing data.

To test the fitting capabilities of the new model, we took

320 testing subjects from the CMU Multi-pie database [18].

We start from the mean shape and let the PKPCA algorithm

converge. The error and standard deviation for the initial

model is 3.73 ± 3.8 pixels and PKPCA 3.42 ± 3.1. The

difference is not statistically significant in this dataset, but

recall that the PKPCA model uses 41% fewer number of

eigenvectors.

6. Conclusion

In this paper, we have extended KPCA by incorporating

geometric transformations into the formulation, and a gradi-

ent descent algorithm has been proposed for fast alignment.

Furthermore, we show how to learn this model in an unsu-

pervised manner. Preliminary experiments show the ben-

efits of our approach in comparison with traditional linear

PCA models to register both rigid and non-rigid motion.
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