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Abstract

Most midlife women have hot flashes. The conventional criterion (� 2 mmho rise/30 s) for classifying hot flashes

physiologically has shown poor performance. We improved this performance in the laboratory with Support Vector

Machines (SVMs), a pattern classificationmethod.We aimed to compare conventional to SVMmethods to classify hot

flashes in the ambulatory setting. Thirty-one women with hot flashes underwent 24 h of ambulatory sternal skin

conductance monitoring. Hot flashes were quantified with conventional (� 2 mmho/30 s) and SVM methods.

Conventional methods had low sensitivity (sensitivity5 .57, specificity5 .98, positive predictive value (PPV)5 .91,

negative predictive value (NPV)5 .90, F15 .60), with performance lower with higher body mass index (BMI). SVMs

improved this performance (sensitivity5 .87, specificity5 .97, PPV5 .90, NPV5 .96, F15 .88) and reduced BMI

variation. SVMs can improve ambulatory physiologic hot flash measures.

Descriptors: Hot flashes, Vasomotor symptoms. Support vector machines, Physiologic measurement

Approximately 70% of midlife women experience hot flashes at

some point during the menopausal transition (Gold et al., 2006).

Previously thought to persist only during the several years

around the menopausal transition, it is now clear that a signifi-

cant minority of women experience hot flashes well into their 60s

and 70s (Barnabei et al., 2002, 2005). Hot flashes are associated

with pronounced decrements in quality of life, including physical,

social, and emotional functioning (Avis et al., 2003, 2009). They

are a consistent predictor of depressed mood during the meno-

pausal transition (Bromberger et al., 2007). More recently, hot

flashes have been linked to cardiovascular risk (Thurston,

Sutton-Tyrrell, Everson-Rose, Hess, & Matthews, 2008) and

bone loss (Crandall et al., 2009). Given findings of potential

health risk associated with hormone therapy (Rossouw et al.,

2002), the leading treatment for hot flashes, developing an

improved understanding of the physiology of hot flashes and

new treatments for hot flashes have been of increased scientific

interest.

One factor that has limited research on hot flashes has

been issues with the physiologic measurement of hot flashes.

Physiologic measures of hot flashes in addition to self-report

measures are desirable for research on hot flashes given the many

factors that influence the reporting of hot flashes (Miller & Li,

2004). These factors include subject adherence, distraction, sleep,

andpsychological factors such as anxiety, whichmay increase the

likelihood of reporting hot flashes in the absence of a physiologic

change (Thurston, Blumenthal, Babyak, & Sherwood, 2005;

Thurston, Matthews, Hernandez, & De La Torre, 2009). Phys-

iologic measures address these limitations, allowing quantifica-

tion of the occurrence of hot flashes without reliance on subject

reporting. They have the potential to precisely quantify hot

flashes, including their frequency and the exact timing of their

occurrence during sleep and wake, not possible when relying

solely upon subject reporting.

The most widely used physiologic measure of hot flashes is

sternal skin conductance. The standard criterion for the phys-

iologic occurrence of a hot flash is a 2 mmho rise in skin con-

ductance in a 30-s period (Freedman, 1989). However, we

previously demonstrated that, although sternal skin conductance

reliably changes with hot flashes, this 2-mmho criterion had low

sensitivity in the laboratory setting (Thurston et al., 2009).

Further, the performance of this criterion varied by subject

characteristics, showing particularly poor performance among

overweight/obese women. Others have similarly shown issues

with the performance of this measure (de Bakker & Everaerd,

1996; Hanisch, Palmer, Donahue, & Coyne, 2007; Sievert et al.,

2002).We improved upon this criterion by using the classification

approach of Support Vector Machines (SVMs) (Thurston et al.,

2009). SVMs are state-of-the-art classification methods
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particularly useful for complicated pattern recognition problems

(Guyon, Weston, Barnhill, & Vapnik, 2002; Joachims, 1998;

Michel & Kaliouby, 2003). As opposed to applying a single

magnitude-based threshold to classify hot flashes, SVMs can

characterize the distinct skin conductance patterns associated

with hot flashes.

Our prior work considered laboratory-measured hot flashes

only. We now extend our prior work to the ambulatory setting,

the setting in which much of clinical research on hot flashes

occurs. However, measuring hot flashes in the ambulatory

setting is more challenging than in the laboratory. The ambu-

latory setting is characterized by a range of factors increasing

error in skin conductance signals, such as baseline drift; artifact

producing factors such as physical activity, seat belts, and purses;

and a changing electrode-subject interface over longer monitor-

ing periods. Further, hot flash reportingmay become less reliable

in the ambulatory setting, with increased distractions and greater

subject adherence demands for reporting over 24 h or more.

In this investigation, we evaluate the conventional criterion

(2 mmho rise in 30-s period) for quantifying hot flashes from

sternal skin conductance in the ambulatory setting.We also apply

SVMs to sternal skin conductance signals to improve the per-

formance of this measure. For both conventionally quantified

and SVM-quantified hot flashes, we evaluate any variation in the

algorithms by subject characteristics such as body mass index

(BMI), race/ethnicity, and anxiety, factors that have been pre-

viously linked to variations in the physiologic detection and/or

reporting of hot flashes (Sievert, 2007; Thurston et al., 2009).

Methods

Subjects

Thirty-four African American and Caucasian women between

the ages of 40 and 60 were recruited from the surrounding com-

munity via newspaper advertisements, fliers in local businesses,

and online message board postings. Inclusion criteria included

late perimenopausal (amenorrhea last 3–12 months) or post-

menopausal (amenorrhea � 12 months) status, reporting � 4

hot flashes a day, and having a uterus and both ovaries. Women

were excluded if having taken hormone therapy (oral or trans-

dermal estrogen and/or progesterone), oral contraceptives,

selective serotonin reuptake inhibitors or serotonin nor-

epinepherine reuptake inhibitors, clonidine, methyldopa, beller-

gal, gabapentin, aromatase inhibitors, selective estrogen receptor

modulators in the past 3 months, having taken isoflavone sup-

plements or black cohosh in the past month, currently under-

going acupuncture for the treatment of hot flashes, having

reported medical or psychiatric conditions associated with hot

flash sensations (panic disorder, pheochromocytoma, leukemia,

pancreatic tumor), or having inability to provide informed con-

sent and follow study procedures. Of these 34 women, two

women were excluded due to equipment failure during the ses-

sion, and one woman withdrew from the study for a final sample

of 31 women.

Procedures

Participants underwent measurement of height, weight, and waist

circumference, and completed a battery of questionnaires for as-

sessment of medical, demographic, and psychological character-

istics. Participants were equipped with an ambulatory sternal skin

conductance monitor and an electronic diary, and instructed to

wear the monitor over 24 h. They were instructed to avoid heavy

physical activity, swimming, and showering while wearing the

monitor. At each experience of a hot flash, participants were

instructed to press two event mark buttons on the monitor and

complete the electronic diary entry, both of which provide

date- and time-stamped subjective hot flash reports. For five

subjects, problems with electrode adhesion compromised data

quality; these subjects conducted a make-up monitoring session

with all usable monitoring data reported here. All study proce-

dures were approved by the University of Pittsburgh Institutional

Review Board, and all participants provided written informed

consent.

Measures

Sternal skin conductance was recorded via the Biolog ambula-

tory monitor (model 3991/2-SCL; UFI, Morro Bay, CA), a

portable device worn in a pouch around the waist. The Biolog

measures sternal skin conductance during daily life, sampled at 1

Hz from the sternum via a 0.5-volt constant voltage circuit

passed between two Ag/AgCl electrodes (Vermed, Bellows Falls,

VT) filled with 0.05M KCL Velvachol/glycol paste (Dormire &

Carpenter, 2002). The Biolog has two event mark buttons pro-

viding a date/time-stamped subjective event report. During wak-

ing monitoring hours, participants completed a portable

electronic diary (Palm Zire, Palm, Inc., Sunnyvale, CA) when

experiencing a hot flash, with questions about the experience of

the hot flash programmed with Palm-compatible software (Sat-

ellite Forms; Thacker Network Technologies, Lacombe, AB,

Canada). Height and weight were measured via a fixed stadio-

meter and a calibrated balance beam scale, respectively. Mens-

trual history, parity, education, marital status, alcohol use, and

smoking status were assessed by standard demographic and

medical history questionnaires. Depressive symptoms were

assessed via the Center for Epidemiologic Studies Depression

Survey (Radloff, 1977) and state and trait anxiety via the State-

Trait Anxiety Inventory (Spielberger, 1983).

Data Reduction

Physiologic hot flashes were classified with two methods: (1) 2

mmho rise in 30 s (conventional criterion), and (2) SVM-defined

hot flashes.

Conventional criterion. For the conventional criterion, skin

conductance increases of 2 mmho in 30 s (Freedman, 1989) were

flagged automatically by custom software and edited for artifact

using standard methods (Carpenter, Andrykowski, Freedman,

& Munn, 1999). A 20-m lockout period was implemented after

the start of the flash, after which no hot flashes were coded.

Support Vector Machines. Building an SVM model, or algo-

rithm, consists of both a training phase, in which the model is

developed, and a testing phase, in which model performance is

tested. Data were first preprocessed to normalize skin conduc-

tance signals and to remove noise. Since we have previously

found dramatic differences in the magnitude of skin conductance

rises associated with hot flashes (Thurston et al., 2009), signals

were scaled between zero and one within subjects. Momentary

voltage drops and baseline drift were removed, and expo-

nential smoothing (a5 0.08) (Holt, 2004) was applied to reduce

signal noise.

Next, a dataset is created in which all hot flash events are

labeled. Given the presence of reported hot flashes accompanied
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by no skin conductance changes and the known psychological

influences on hot flash reporting limiting the validity of reports

(Thurston, Blumenthal, Babyak, & Sherwood, 2005), and con-

sistent with our prior work (Thurston et al., 2009), all data were

labeled via expert-defined physiologic hot flashes. Skin conduc-

tance changes associated with hot flashes show a sharp and rapid

rise following by a sloping return to baseline, or ‘‘swishy tail,’’

that can be distinguished from the ‘‘sawtooth’’ pattern charac-

teristic of activity or other sweating-related artifact (Carpenter et

al., 1999). Thus, all data were visually reviewed and hot flash and

non-hot flash intervals labeled, based upon the characteristic skin

conductance shape of the hot flash rather than solely on the

magnitude of the rise. The reliability of thismanual labeling from

two separate coders was k5 .86. All available skin conductance

training data is then divided into smaller segments belonging to

one of two classes (hot flash or non-hot flash).

The SVM model is then trained, learning the characteristics

associated with hot flash and non-hot flash segments. Key fea-

tures of the hot flash-associated skin conductance rises versus the

non-hot flash-associated skin conductance are extracted, and a

non linear decision boundary is used to separate hot flash and

non-hot flash events (see online Appendix). Once the SVM

model has been trained, the performance of this model is eval-

uated on a new set of testing sequences. The same preprocessing

steps, data segmentation, and feature extraction techniques are

used for the testing set. We implemented a leave-one-subject-out

strategy, useful when limited quantities of data are available for

training and testing (Witten & Frank, 2005). The leave-one-sub-

ject-out cross-validation approach uses a single subject’s session

from the original sample as testing, and the remaining sessions

(other subjects) as the training data from which the SVM is

learned. This is repeated with a retraining of the SVM in each

round, such that each session is used only once as testing, and the

remainder as training data. The SVM model classifies each

new segment of skin conductance data in this testing set as a hot

flash or non-hot flash, and the performance of the algorithm is

calculated.

LIBSVM, a publicly available MATLAB library, was used to

implement the core of SVM training and testing (C.-C. Chang and

C.-J. Lin, LIBSVM: a library for support vector machines, 2001,

http://www.csie.ntu.edu.tw/�cjlin/libsvm/). Although special-

ized expertise is required to build an SVM, this publicly available

library provides SVM tutorials, sample programming code, and

program code libraries that form the core of training and testing of

the SVM algorithm. See the on-line Appendix for more technical

details of preprocessing, segmentation, features extracting, train-

ing, and testing of the SVM.

Calculation of performance indices. True positive (TP), false

positive (FP), false negative (FN), and true negative (TN) hot

flashes were scored relative to self-reported hot flashes and ex-

pert-defined hot flashes. Expert label was the primary referent,

given the knownpsychological and related influences onhot flash

reporting (Thurston et al., 2005, 2009), although the referent of

self-report was also calculated. For models using self-reported

hot flashes as the referent, only waking hours of data were used,

given the low reliability of hot flash reporting during sleep

(Thurston et al., 2006). Given the tendency for participants to

report hot flashes multiple times via multiple methods, hot flash

reports within 15 min were grouped as one report. Physiologic

hot flashes were defined both by the conventional criterion as

well as SVM. A physiologic hot flash was considered concordant

with a report/expert label if it was met by a report/label within

5 min before and 20 min after the physiologic hot flash. The

5-min pre-flash interval is consistent with the published literature

(Carpenter et al., 1999); the 20-min post-flash interval was se-

lected for consistency with the traditional inter-flash lockout

period and to account for the duration over which skin conduc-

tance changes associatedwith a single hot flash occur. ATPwas a

physiologic hot flash prediction met by an expert-labeled/self-

reported hot flash. A FP was a physiologic hot flash prediction

not met by an expert-labeled/self-reported hot flash. A FN was

an expert label/self-report not followed by a physiologic hot flash

prediction. A TN was all 20-min intervals lacking both an expert

label/self-report and a physiologic hot flash. For each physio-

logic hot flash detectionmethod (conventional, SVM), sensitivity

(TP/TP1FN), specificity (TN/FP1TN), positive predictive

value (PPV; TP/TP1FP), negative predictive value (NPV; TN/

TN1FN), and F1 (2 TN/(2 TN1FP1FN)) were calculated.

Sensitivity corresponds to the percentage of labeled/reported hot

flashes accompanied by a hot flash prediction, specificity to the

percentage of 20-min segments without a labeled/reported hot

flash also lacking a hot flash prediction, PPVto the percentage of

hot flash predictions also accompanied by a labeled/reported hot

flash, NPV to the percentage of 20-min segments without a hot

flash prediction that also lack a labeled/reported hot flash. F1

provides an overall index of performance, a summary index un-

biased by the large number of true negatives in the sample (Jar-

dine & van Rijsbergen, 2002).

Data Analysis

Comparisons of performance indices by subject characteristics

were performed using Spearman’s rho, Pearson correlation

coefficients, and linear and logistic regression, with transforma-

tion of rates as necessary. Comparisons between SVM and

conventional criterion performance were conducted using paired

t-tests. Due to skew, transformations were applied tomeet model

assumptions of normality: all SVM performance indices were

exponentiated for models with the referent of expert label, spec-

ificity was exponentiated for SVM models using the referent of

self-report, specificity was exponentiated for conventional crite-

rion for both referents, and NPVand PPVexponentiated for the

conventional criterion with the referent of expert label. Statistical

comparisons for PPV were limited by a zero denominator for

multiple PPVvalues; these observations were set to missing, and

sample sizes noted when deviating from the full sample. Varia-

tions in performance by the subject characteristics of race/eth-

nicity, BMI, and state and trait anxiety were evaluated in linear

regression models, with each performance index considered sep-

arately. Since state and trait anxiety were highly correlated (0.67,

po.0001), and findings for trait anxiety were stronger than those

for state anxiety, only trait anxiety findings are reported here.

Analyses were performed using SAS v.9.2 (SAS Institute, Cary,

NC) andMATLAB v.7.0 (MathWorks, Natick,MA). Tests were

2-sided with a5 .05.

Results

Participants were on average 53 years old, postmenopausal, and

overweight (Table 1). Women reported on average 10 hot flashes

during the waking hours of the ambulatory monitoring. An

average of 24.62 (SD5 2.86) monitoring hours were conducted

per woman.
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Conventional Criterion

The conventional 2-mmho criterion showed low sensitivity rel-

ative to both expert-labeled and subject-reported hot flashes

(Table 2). Further, the performance of the conventional criterion

significantly varied by BMI. Consistent with prior findings in the

laboratory (Thurston et al., 2009), when compared to expert

labeled hot flashes, the conventional criterion showed lower sen-

sitivity (b(SE)5 � 2.44 (1.13), p5 .04) and a lower F1 score

(b(SE)5 � 2.45 (1.09), p5 .03) as BMI, considered as a con-

tinuous variable, increased (Table 3). Using the referent of sub-

ject reports, with higher BMI, sensitivity of the conventional

criterion was lower (b(SE)5 � 2.80 (1.14), p5 .02), specific-

ityexp higher (b(SE)5 511.59 (210.20), p5 .02), and NPVexp

lower (b(SE)5 � 510.31 (192.44), p5 .01). Thus, the conven-

tional criterion differentially missed both the expert-labeled and

subject-reported hot flashes among heavier women. Compari-

sons by obesity status category are presented in Table 3. There

were no differences in the performance of the conventional cri-

terion for either referent by anxiety or race/ethnicity.

Similar to laboratory findings (Thurston et al., 2009), the

magnitude of the 30-s skin conductance rises associated with hot

flashes significantly and inversely varied by BMI (r5 � .36,

p5 .045). Particularly low rises were observed among the obese

women (M(SD)5 1.62 (1.28)) in contrast to normal weight

(M(SD)5 2.93 (1.05)) and overweight women (M(SD)5 2.68

(1.41); F(2,28)5 3.73, p5 .04). Thus, the attenuated skin con-

ductance rises associated with obesity were likely misclassified

using the conventional single threshold criterion.

SVM

Application of SVMs improved the performance of sternal skin

conductance-assessed hot flashes when compared to both expert-

labeled hot flashes and self-reported hot flashes (Table 4). These

improvements were statistically significant when compared to

the conventional criterion in the case of sensitivity (t(30)5 4.47,

po.0001), NPV (t(30)5 3.92, p5 .0005) and F1 score

(t(30)5 4.40, p5 .0001) for the referent of expert labeled hot

flashes, and the F1 score (t(30)5 3.12, p5 .004) and to a lesser

extent sensitivity (t(30)5 1.88, p5 .07) for the referent of sub-

ject-reported hot flashes.

No differences were observed in the performance of SVM

models by BMI for the expert label referent. The one condition in

which SVM performance varied by BMI was for NPV when

using the referent of subject report (b(SE)5 � 0.34 (0.16),

p5 .04). Thus, more of the 20-min intervals containing a hot

flash report among higher BMIwomenwere not accompanied by

an SVM hot flash. Comparisons by obesity status category are

presented in Table 5.
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Table 1. Subject Characteristics

N 31
Age, M (SD) 53.0 (4.8)
Race, n (%)
White 17 (54.8)
Black 14 (45.2)

Education, n (%)
High school or less 9 (29.0)
Vocational/some college 13 (41.9)
College or higher 9 (29.0)

Menopausal status, n (%)
Postmenopausal 19 (61.29)
Late perimenopausal 12 (38.71)

BMI, M (SD) 28.7 (6.0)
Marital Status, n (%)
Never married 7 (22.6)
Married 17 (54.8)
Divorced/widowed 7 (22.6)

Current smoker, n (%) 8 (25.81)
Parous, n (%) 24 (77.4)
State anxiety, M (SD) 29.4 (7.2)
Trait anxiety, M (SD) 32.5 (6.8)
CESD, M (SD) 5.0 (3.6)
Reported hot flashes (waking), Median (IQR)w 10 (7)
Conventionally defined hot flashes, Median (IQR)z 10 (18)
SVM-defined hot flashes, Median (IQR)z 14 (10)

wWaking hours only.
zWaking and sleeping hours.

Table 2. Performance of Sternal Skin Conductance 2 mmho/30 s

Criterion to Classify Hot Flashes

Referent: expert-defined
hot flashes

Referent: subject-reported
hot flashes

Sensitivity .57 .52
Specificity .98 .92
PPV .91 .59
NPV .90 .92
F1 .60 .44

Note: N5 31 for all models except PPV for expert-defined hot flashes
referent (N5 24), and PPV for subject-reported hot flash referent
(N5 23).

Table 3. Performance of Conventional Criterion (2 mmho/30 s) to

Classify Hot Flashes from Sternal Skin Conductance by Obesity

Status

Referent: expert-defined
hot flashes

Referent: subject-reported
hot flashes

Normal Overweight Obese Normal Overweight Obese
(N5 10) (N5 7) (N5 14) (N5 10) (N5 7) (N5 14)

Sensitivity .75 .63 .41 .69 .68 .32n

Specificity .98 .99 .99 .86 .91 .96n

PPV .94 .93 .86 .51 .64 .63
NPV .93 .90 .88 .96 .93 .88n

F1 .77 .68 .44 .53 .60 .30

Note: Normal weight BMIo25 (referent), Overweight BMI 25–29.9,
Obese BMI � 30; Low state anxiety � 27.5 (referent), high state anx-
iety427.5; Ns are as noted except PPV for expert-defined hot flashes
referent (normal weightN5 9, overweight N5 6, obese N5 9) and PPV
for subject-reported hot flashes referent (normal weight N5 9, over-
weight N5 6, obese N5 8).
npo.05, obesity status comparison.

Table 4. Performance of Sternal Skin Conductance Using SVM

Methods to Classify Hot Flashes

Referent: expert-defined
hot flashes

Referent: subject-reported
hot flashes

Sensitivity .87 .61
Specificity .97 .91
PPV .90 .61
NPV .96 .92
F1 .88 .56

Note: N5 31 for all models except PPV for subject-reported hot flash as
referent (N5 28).



Similar to prior work (Thurston et al., 2005, 2009), for the

referent of self-reported hot flashes only, women higher in trait

anxiety had a somewhat lower F1 score for SVM models

(b(SE)5 � 1.36(0.68), p5 .05). There were no differences in the

performance of SVM models by anxiety for the expert label ref-

erent, nor by race/ethnicity for either referent.

Additional Analyses

We compared the two referents, self-report and expert label, to

understand how differently these two referents characterized the

data. Relative to expert labels, self-report had a sensitivity of

.57, a specificity of .96, a PPV of .80, a NPV of .87, and an F1

score of .63. This pattern can be interpreted as a tendency to

under-report hot flashes, similar to prior work (Carpenter,

Monahan, & Azzouz, 2004). Further, given our prior work

showing associations between anxiety and the reporting of hot

flashes (Thurston et al., 2005, 2009), we evaluated the association

between anxiety and reporting of hot flashes by comparing re-

ported hot flashes to our referent of expert labeled hot flashes.

These models indicated that higher trait anxiety was associated

with lower specificityexp (b(SE)5 445.83 (130.00), p5 .003),

lower PPV (b(SE)5 � 1.76 (0.72), p5 .02), and a lower F1 score

(b(SE)5 � 1.49 (0.63), p5 .03) of subject reporting of hot

flashes when compared to expert labeled hot flashes. Further,

higher trait anxiety was associated with the tendency to report

hot flashes accompanied by no discernable change in skin con-

ductance (OR (95% CI)5 1.22 (1.03–1.45), p5 .02). Thus,

when subject reports were compared to our primary referent of

expert labels, trait anxiety was associated with elevated hot flash

reporting, even in the absence of any skin conductance change.

Discussion

The present investigation showed that the conventional criterion

had low sensitivity. Moreover, the performance of this conven-

tional criterion varied by BMI, showing particularly low sensi-

tivity among women with higher BMI. Applying SVMs

improved the performance of sternal skin conductance in de-

tecting hot flashes. Further, variations by obesity status were

reduced with use of SVMs.

This investigation extends our prior work in the laboratory

(Thurston et al., 2009) to the ambulatory setting. While the

ambulatory setting is the primary setting in which clinical

research on hot flashes is carried out, particularly clinical trials,

the ambulatory setting is a more difficult setting for physiologic

hot flash measurement, characterized by greater baseline shifts,

variations in signal quality, and artifact from factors such as

activity, which can produce skin conductance elevations that

meet the conventional threshold. SVMs are a class of machine

learning models that are particularly well suited to these types

of complex pattern recognition problems (Guyon et al., 2002;

Joachims, 1998; Michel & Kaliouby, 2003). They present several

advantages over the conventional criterion. In contrast to the

conventional criterion’s application of a single threshold, SVMs

characterize the shape of the skin conductance changes associ-

ated with the hot flashes versus artifact. This approach not only

more carefully quantifies the hot flash, but can reduce systematic

variation by subject characteristics such as BMI, which may re-

duce the magnitude of hot flash-associated skin conductance

rises. Further attenuating systematic variation by subject char-

acteristics is SVMs’ ability to be developed to vary by key subject

characteristics, or ultimately, by woman. Multiple sources of in-

formation, such as subject characteristics or dynamic physio-

logic or subjective information, can also be used in training SVM

models (Bundele & Banerjee, 2009; Sommer, Golz, Trutschel, &

Edwards, 2008). Finally, SVMs will ultimately classify hot

flashes in a largely automated fashion, reducing the extensive

visual editing characteristic of the conventional criterion ap-

proach. A valid, automated coding approach for physiologic hot

flashmeasures is essential to the use of thesemeasures with larger

samples and by a wider range of researchers (Miller & Li, 2004).

Similar to our prior findings in the laboratory (Thurston

et al., 2009) variations in the performance of the conventional

criterion were observed by BMI. Lower performance of the con-

ventional criterion, particularly low sensitivity, was observed

with higher BMI, with strikingly poor performance among obese

women. Skin conductance recordings among higher BMIwomen

are often characterized by greater artifact (ambient sweating).

However, similar to our findings in the laboratory, the magni-

tude of hot flash-associated skin conductance rises were also

attenuated among higher BMI women. The conventional thresh-

old’s single magnitude-based threshold frequently misclassified

these smaller magnitude hot flashes among higher BMI women

as nonevents. Thus, with use of the conventional criterion, bias

by BMI is introduced. This phenomenon is particularly worri-

some as obesity is a leading risk factor for hot flashes (Gold et al.,

2006; Thurston, Sowers, Chang, Chang, Gold, Johnston, &

Matthews, 2008), and the majority of women in the U.S. are

overweight or obese (Flegal, Carroll, Ogden, & Curtin, 2010).

These BMI differences in performance were reduced with appli-

cation of SVMs. Notably, SVMs characterize the pattern, as

opposed to only the amplitude of the rise, of sternal skin con-

ductance changes associated with hot flashes.

In our previous work, we showed that elevated anxiety

assessed at the time of the laboratory testing was associated with

poorer performance of conventional and SVM models when

compared to self-report, largely due to elevated reporting of hot

flashes lacking any physiologic change among more anxious

women (Thurston et al., 2009). In this ambulatory investigation,

anxiety showed less pronounced and consistent associations with

hot flash reporting than in the laboratory setting. However, trait

anxiety was associated with elevated hot flash reporting when

self-reports were compared to expert labels, the leading referent.

Trait anxiety was also associated with the tendency to report hot

flashes in the absence of any discernible skin conductance

SVMs to improve hot flash measures 5

Table 5. Performance of SVM to Classify Hot Flashes from

Sternal Skin Conductance by Obesity Status

Referent: expert-defined
hot flashes

Referent: subject-reported
hot flashes

Normal Overweight Obese Normal Overweight Obese
(N5 10) (N5 7) (N5 14) (N5 10) (N5 7) (N5 14)

Sensitivity .92 .89 .84 .71 .72 .48
Specificity .98 .95 .98 .88 .90 .94
PPV .95 .88 .88 .55 .66 .63
NPV .97 .97 .96 .95 .92 .90
F1 .93 .88 .85 .60 .62 .50

Note: Normal weight BMIo25 (referent), Overweight BMI 25–29.9,
Obese BMI � 30; Ns are as noted except PPV for subject-reported hot
flashes as referent (normal weight N5 10, overweight N5 6, obese
N5 12).



changes. Finally, higher trait anxious women had somewhat

lower F1 scores for SVM models when compared to self-report.

Notably, anxiety has been shown to be a leading predictor of hot

flash reporting in epidemiologic investigations (Freeman et al.,

2005; Gold et al., 2006) as well as elevated ambulatory hot flash

reporting when compared to physiologically assessed hot flashes

(Thurston et al., 2005). These findings are consistent with a large

body of literature linking anxiety to elevated symptom reporting

(Cohen et al., 1995; Pennebaker, 1982).

Two referents were considered here: expert labeled hot flashes

and self-reported hot flashes. While self-reported hot flashes are

traditionally considered as a referent, the many reporting biases

make this a less ideal referent, including subject non-adherence,

inability to reliably report hot flashes during sleep, as well as the

psychological factors discussed above. Reporting may be par-

ticularly unreliable in the ambulatory setting, characterized by

multiple distractions, attentional demands, and settings in which

hot flash reporting may be impossible (e.g., driving). Thus, key

performance indices may be somewhat lower with the referent of

self-report in the ambulatory versus laboratory setting (Thurston

et al., 2009). No other gold standard measures of hot flashes

exist. Coders can be trained to visually distinguish hot flashes

from skin conductance signals with high reliability as demon-

strated here. Therefore, consistent with our prior work (Thurs-

ton et al., 2009), we present findings considering both self-report

and expert-labeled hot flashes as a referent. However, due to its

demand for rigorous training and extensive personnel coding

time, this approach is not feasible for larger investigations or for

longer monitoring durations, underscoring the need for devel-

opment of a more automated approach.

Several limitations deserve mention. First, the study sample

was relatively small. While the SVM models were stable as the

number of hot flashes across women was high, certain secondary

comparisons by subject characteristics involved fairly small

numbers, limiting power. In calculating PPV, particularly for the

conventional criterion, zero denominator problems (no physio-

logic hot flashes) further limited sample size PPV. Further, while

SVM libraries and documentation are publicly available, build-

ing SVM models from raw data requires specialized experience.

Finally, this SVM model was a preliminary model for the

ambulatory setting requiring further elaboration, refinement,

and further testing in independent samples. With further test-

ing, a final model can be made available to the wider scientific

community.

This study has several strengths. This study was a detailed

analysis of subjectively reported and physiologically recorded

hot flashes over 24 h, allowing a careful comparison of these

indices. It included two racial/ethnic groups, allowing validation

of these ambulatory measurement approaches across these

groups. The assessment of multiple physiologic and psycholog-

ical characteristics, allowed comparison of the performance of

these measurement approaches by these subject characteristics.

Most importantly, this study is the first to apply SVMs to quan-

tifying hot flashes physiologically in the ambulatory setting. This

approach improved the detection of hot flashes, further advanc-

ing the physiologic measurement of hot flashes.

The present research showed that the standard single thresh-

old criterion to quantify hot flashes physiologically had poor

performance, particularly among higher BMI women, which

may have attenuated skin conductance rises with hot flashes.

This research indicates the importance of using more sophisti-

cated pattern recognition models, SVMs, to characterize hot

flashes from physiologic signals. These models improved the

overall performance of this index and reduced variation by BMI.

This improvedmethod to quantify hot flashes has the potential to

further advance research on hot flashes, supporting research

aimed at better understanding the physiology of hot flashes as

well as the development of new treatments for hot flashes.
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Appendix 

This section provides further details about procedures implemented for hot flash 

detection using SVMs.  

Preprocessing. Signal processing techniques were used to normalize skin conductance 

signals across subjects and to remove noise. Since we have previously found dramatic 

differences in the magnitude of skin conductance rises associated with hot flashes (Thurston, 

Matthews, Hernandez, & De La Torre, 2009), signals were scaled between zero and one within 

subject to attenuate between-subject variability. In addition, momentary voltage drops were 

removed, and baseline drift was removed with a sliding window based approach. Finally, 

exponential smoothing (α=0.08) was applied to reduce signal noise.  

Segmentation. A segmentation algorithm was applied to automatically select segments of 

skin conductance potentially including a hot flash. A segment was defined as an interval that 

contained the highest intensity (apex) over a 10-minute period, and its beginning (onset) and end 

(offset) intensities were lower than 5% of the maximum subject’s intensity. While several such 

onset and offset boundaries are possible, we choose those that are closest to the apex position, 

and at most 20-minutes and 30- minutes from the apex for the onset and offset, respectively. 

Short segments (< 4 minutes) and segments with low apex values (< 25% of the average 

subject’s apex values) were automatically flagged as non-hot flashes and discarded. All other 

segments were associated to one of the two classes based on the proximity to a labeled hot flash. 

Feature extraction. The following features were extracted from each segment to 

characterize the shape and intensity of physiologic changes associated with hot flashes: (1) apex 

value, (2) relative apex position to the segment duration, (3) number of high intensity peaks that 

are separated by at least one thirtieth (1/30) of the segment duration, (4) 2 µmho based features, 



(5) intensities of 10 equally separated points normalized by the onset intensity, and (6) sorted 

intensities of 10 equally separated points. The 2 µmho-based features were characterized by: (a) 

maximum intensity increase in 30 seconds, and (b) binary predicates answering the question (1-

yes, 0-no): “Is the maximum intensity increase in 30 seconds larger than a certain set of 

thresholds?”  (where the set of thresholds ranged from the minimum intensity to the maximum 

intensity in increments of 0.01). Figure 1 illustrates these features for a hot-flash segment. 

Features were extracted for all of the segments and standardized to have a mean of 0 and a 

standard deviation of 1.  

Training phase. We used a Radial Basis Function (RBF) kernel to allow non-linear 

decision boundaries between classes. The weights of the SVM were set as the class priors (i.e. 

percentage of training samples for each class) to give the same relevance to both classes, 

independently of which class contains more samples in the training set. The penalization factor 

(c) and the kernel width (g) were learned by choosing the best pair of c and g that minimize the 

empirical error. That is, for each combination of the parameters (c є log2([-5:2:9]) and (g є 

log2([-15:1:3])), we  chose the pair that minimized the empirical error. In our case, we used the 

following estimation of the detection error: 

Error = K+ * FP+ K- * FN 

where FP (false positives) and FN (false negatives) are the misclassifications of our model; K+ is 

the class prior of the positive class; and K- is the class prior of the negative class. Critical to the 

success of SVM is the selection of the parameters that avoid overfitting to the training set. When 

overfitting occurs, the learned model fits the training set very well but shows poor generalization 

to unobserved data. To address this problem, the detection error was computed using 5-subject 

cross validation. The 5-subject cross validation  technique divides the training data in N (in our 



experiments N = 6) groups of 5 subjects, trains N SVM models excluding one of the groups 

when learning each of the N models, and it computes the empirical error for each excluded 

group. The final detection error is then estimated by averaging the N computed errors, and the 

pair of parameters c and g that have less average error are selected 

Testing phase. During the testing phase, the same pre-processing steps, data segmentation 

and feature extraction techniques were used to generate the testing set. We implemented a leave-

one-subject-out strategy, useful when limited quantities of data are available for training and 

testing (Witten & Frank, 2005). The leave-one-subject-out cross-validation approach uses a 

single subject’s session from the original sample as validation data to be tested, and the 

remaining sessions as the training data from which the SVM is trained. This is repeated with a 

re-training of the SVM in each round, such that each session is used only once as validation data, 

and the remainder as training data.  
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Figure 1:  Illustration of the features extracted from each segment of skin conductance to 

characterize hot flashes. 

A  (1) Apex value, (2) Relative apex position, and (3) Number of intensity peaks 

B  (5) Normalized intensities and, (6) Sorted intensities of 10 equally separated points 

C   2 µmho-based features: (a) maximum intensity increase in 30 seconds and (b) binary 

predicates 
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