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Abstract. Facial Action Transfer (FAT) has recently attracted much attention in
computer vision due to its diverse applications in the movie industry, computer
games, and privacy protection. The goal of FAT is to “clone” the facial actions
from the videos of one person (source) to another person (target). In this paper, we
will assume that we have a video of the source person but only one frontal image
of the target person. Most successful methods for FAT require a training set with
annotated correspondence between expressions of different subjects, sometimes
including many images of the target subject. However, labeling expressions is
time consuming and error prone (i.e., it is difficult to capture the same intensity
of the expression across people). Moreover, in many applications it is not realistic
to have many labeled images of the target. This paper proposes a method to learn a
personalized facial model, that can produce photo-realistic person-specific facial
actions (e.g., synthesize wrinkles for smiling), from only a neutral image of the
target person. More importantly, our learning method does not need an explicit
correspondence of expressions across subjects. Experiments on the Cohn-Kanade
and the RU-FACS databases show the effectiveness of our approach to generate
video-realistic images of the target person driven by spontaneous facial actions of
the source. Moreover, we illustrate applications of FAT to face de-identification.
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1 Introduction

Facial Action Transfer (FAT) from a source person to a target person (from which we
only have one image) has attracted much attention in computer vision and computer
graphics due to its increasing number of applications. Beyond the film making industry,
such technology is also applicable to preserve privacy of subjects in video (i.e., face de-
identification) [1, 2], online image and video collections [3], and virtual avatars [4]. A
major challenge of FAT is to transfer subtle facial actions from the source to the target to
create video-realistic outputs. Throughout the paper we will refer to this problem as FAT
instead of facial expression transfer to emphasize that our method is able to deal with
subtle and spontaneous facial movement, rather than only imitating some predefined
expressions (e.g., happy, sad, disgust) [5, 6].

There are four major challenges on FAT: (1) Typically, the facial structure (shape)
and texture (appearance) of the source and target subjects are quite different, as well
as the dynamics of the facial actions. There are person-specific facial features in the
source images (e.g., glasses, freckles, wrinkles, eyelashes) that the target person might
not have. Directly copying the shape and appearance changes from the source to the
target (e.g., [7]) can result in artifacts in the rendered target person. (2) Although shape
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Fig. 1. Overview of our personalized FAT method. The facial action of the source person (a smile)
is transferred to both subjects (A) and (B) in two steps: (i) Shape deformation transfer, where
the shape change of the source w.r.t. his neutral face is transferred to the targets; (ii) Generate
the appearance changes using personalized bilinear regression. Observe how the wrinkles of the
smile are adapted (i.e. personalized) to subject (A) and (B).

deformation transfer has been successfully applied to computer graphics problems [8–
11], transferring the appearance/texture remains an unsolved problem due to the high
dimensionality of the image data and potential nonlinearity of the facial actions. (3)
An ideal algorithm should be able to factorize identity, expression and pose changes.
However, this factorization is very difficult in practice, because the facial motions are
combinations of the movement of facial muscles, head motion and person-specific fea-
tures. Moreover, existing methods that decouple identity from expression (e.g., tensor
and regression based methods [12–14, 5, 6]) require correspondences across predefined
expressions (e.g., happy, sad, disgust) for different subjects. Labeling the correspon-
dence of facial expressions across subjects is time-consuming and error prone. Even if
all subjects are instructed to pose with the same expression, they cannot perform the
facial action with exactly the same style and intensity. (4) In real world scenarios (e.g.,
interviews, movies), facial behaviors are spontaneous and usually combined with pose
changes. The complexity of these facial actions are beyond the representation ability
of predefined expressions (e.g., happy, sad, disgust) that could be posed and labeled in
controlled environments.

To solve these problems, this paper proposes a two-step approach for FAT (see
Fig. 1). In the first step, our method transfers the shape of the source person to the target
subject (A) and (B) using the triangle-based deformation transfer method [10]. In the
second step, our method generates the appearance of the target person using a personal-
ized mapping from shape changes to appearance changes. Our main hypothesis is that
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the physical structure of the face (e.g., bones, muscles and skin) defines a consistent and
measurable pattern that relates the movements (shape changes) of facial components to
the appearance changes [15] for a particular person. Based on this intuition, our method
learns a bilinear regression between the shape and appearance changes from training
images. A major contribution of this work is to personalize the shape-to-appearance re-
gression with only one sample of the target subject. More importantly, unlike previous
methods [12–14, 4–6], our learning method does not require the correspondence of
expressions across training subjects. Fig. 1 illustrates the main idea of our method.

2 Previous Works
Existing approaches to FAT can be broadly grouped into two categories: direct transfer
methods and learning-based transfer methods.

Direct transfer methods copy the shape and/or appearance changes of the source
person to the target face image. [8, 9] represents the face by a densely partitioned trian-
gle mesh, usually containing 104 triangles. The shape changes under a given expression
are transferred to the target face as a set of local affine transformations while preserv-
ing the connectivity of the target triangles. These methods do not transfer appearance
changes. Liu et al. [7] proposed a geometric warping algorithm in conjunction with the
Expression Ratio Image (ratio between the appearance of the neutral image and the im-
age of a given expression) to copy subtle appearance details such as wrinkles and cast
shadows to the target. This method tends to produce artifacts on the target face image
since the appearance details to be transferred are not adapted to the target subject.

Learning-based FAT methods learn a transformation from a training set of face im-
ages that have been labeled across expressions. The correspondence is determined man-
ually or semi-automatically [5, 6, 4, 16]. Existing learning-based FAT can be broadly
classified into two major approaches: the regression-based and tensor-based methods.

Regression-based methods include two modalities: (1) Regression between expres-
sions [5, 6] that learns a mapping from a reference expression (e.g., neutral) to the ex-
pressions to be transferred (e.g., smile). Given a reference face of a target person, the
smile face of the target person can be predicted with the regression specifically learned
for the smile expression. A major limitation of this method is its inability to represent
untrained expressions. (2) Regression between subjects [4, 16]. This method learns a
mapping between multiple pairs of corresponding expressions performed by both the
source and target subjects, and then uses the learned regression to transfer new ex-
pressions. In the case, that there are no corresponding images between expressions of
different people, [4] generates the correspondent images by learning a regression from
the neutral face to the pre-defined expression, similar to [5, 6], and apply this mapping
to the neutral of the target subject. In addition, [4] learns a generic regressor from the
shape to the appearance. In our work, we extend this approach by personalizing the
regressor using only one training sample, achieving a highly photo-realistic result. [16]
learns two Active Appearance Models (AAMs), one for the source and one for the tar-
get. It performs FAT by learning a mapping between AMMs’ coefficients. This method
also requires solving for the correspondence between the expressions of the target and
source, which is not possible in many realistic applications.

Tensor-based approaches [12–14] perform Higher-Order Singular Value Decompo-
sition (HOSVD) to factorize the facial appearance into identity, expression, pose and



4 Dong Huang and Fernando De La Torre

illumination. Given the factorization, expression transfer [17–19] is done by first com-
puting the identity coefficients of the new testing person, and then reassembling the
identity factor with expression factors learned by the HOSVD. A major drawback of
tensor-based approaches is the need of carefully labeled correspondences across ex-
pression, pose and illumination. [20, 21] generalize the tensor-based approaches to build
non-linear manifolds of human body actions and facial expressions. Similar to the stan-
dard tensor-based approaches, these methods require to solve for the correspondence of
states on the manifold (content) across different subjects (style).

The existing learning-based FAT methods rely on the the availability and label-
ing accuracy of the similar expression in faces of different subjects. However, labeling
expression is time consuming and error prone (i.e., it is hard to capture and solve corre-
spondence for expressions under different intensities). In addition, in many applications
it is not possible to have labeled training samples for the target. This paper proposes a
more practical approach to FAT that does not require expression correspondence across
subjects. Moreover, we are able to generate photo-realistic rendering using a personal-
ized bilinear regression that only requires one frontal image of the target.

3 Personalized FAT
This section describes how to transfer the shape and appearance changes to achieve a
personalized FAT method.

3.1 Transferring shape changes

Let xneu
i ∈ ℜv×1 (see notation 1) be a vector containing the two-dimensional coordi-

nates of 66 landmarks (v = 2 × 66 = 132) for the ith subject under the neutral ex-
pression (i = 1, · · · , p) (see Fig. 1). By performing Delaunay triangulation using these
landmarks, the face region is partitioned into 106 triangles. Xe

i = {xe1
i , · · · ,xeni

i } ∈
ℜv×ni is a matrix that contains the landmark coordinates of the ni face images for the
ith subject performing different facial actions (i.e., subscript ”e”).

The first step to transfer shape changes is to compute the shape deformation from the
neutral to the facial expression of the source subject. We used an affine transformation
between triangles [10] (See Fig. 2). In the second step, we will transfer the triangle-wise
shape transformation to the target subject.

The mapping between the neutral and a given facial expression of the source person
(first step) is done as follows. Let the vectors {v(1)

sj ,v
(2)
sj ,v

(3)
sj } ∈ ℜ2×3 contain the

two dimensional coordinates of the three vertices for the jth triangle of the source
person (j = 1, · · · , 106). The matrix Vsj = [v

(2)
sj − v

(1)
sj ,v

(3)
sj − v

(1)
sj ] ∈ ℜ2×2

is the translation-free representation of this triangle. We compute the affine transfor-
mation Qj ∈ ℜ2×2 for the triangle from neutral to an expression by minimizing:

1 Bold capital letters denote matrices X, bold lower-case letters a column vector x. xj represents
the jth column of the matrix X. All non-bold letters represent scalar variables. diag is an
operator that transforms a vector to a diagonal matrix or takes the diagonal of the matrix into
a vector. vec(·) vectorizes a matrix into a vector. Ik ∈ ℜk×k denotes the identity matrix.
1n ∈ ℜn is a vector of all 1s. vec(A) rearrange the elements of A in a vector. ∥x∥2 denotes
the L2-norm of the vector x. ∥A∥2F designates the Frobenious norm of matrix A.
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Fig. 2. Transfer shape changes for the jth triangle of the source person (with ver-
tex {v(1)

sj ,v
(2)
sj ,v

(3)
sj }) to the corresponding triangle of the target person (with vertex

{v(1)
tj

,v
(2)
tj

,v
(3)
tj

}). The dash and thick edged triangles represent the neutral expression and other
expression, respectively. Qj is the affine transformation matrix to be transferred.

minQj

∥∥∥Vexp
sj −QjV

neu
sj

∥∥∥2
F

, where Vexp
sj and Vneu

sj represent the jth triangle contain-
ing the landmarks of source facial expression to be transferred and the source neutral
face, respectively.

After computing all triangle-wise shape changes between the neutral and a different
expression of the source person, the next step is to transfer the shape changes to the
target person. Let X̃e

t ∈ ℜ2×66 be a rearranged version of the target shape vector xe
t =

vec(X̃e
t ) ∈ ℜ132×1. Applying Qj’s individually to the target neutral shape might result

in disconnected vertexes. To solve this problem, we jointly transfer the transformations
by minimizing:

min
xe
t

106∑
j=1

wj

∥∥∥Vexp
tj −QjV

neu
tj

∥∥∥2
F
, (1)

where Vexp
tj = X̃e

tSj ∈ ℜ2×2, Sj ∈ ℜ66×2 is a matrix of elements {−1, 0, 1} that

transforms X̃e
t to a translation-free representation Vexp

tj for the jth triangle, and wj is
the weighting coefficient proportional to the number of pixels within the jth triangle.
Eq. (1) is a least-square problem and has a closed-form solution as:

xe
t = vec

 106∑
j=1

wjQjV
neu
tj ST

j

(
106∑
l=1

wlSlS
T
l

)−1
 . (2)

3.2 Estimating appearance changes from shape changes

Once we have transferred the shape changes, our next step is to transfer appearance
changes. We normalized the pixel intensity (appearance) of a face image by warp-
ing the pixels within each triangle to their corresponding pixels on a common tem-
plate. yneu

i ∈ ℜd×1 is the normalized appearance vector (d pixels) for the ith subject.
Ye

i = {ye1
i , · · · ,yeni

i } ∈ ℜd×ni contains the appearance vectors for the ni face im-
ages. Directly transferring appearance changes is extremely difficult due to the high
dimensionality of the image data and potentially nonlinearity of the facial actions. This
process typically produces unwanted artifacts (see Fig 5 “Copy”). A key observation is
that there is a strong correlation between the shape changes and the appearance changes
performed by the same person. Fig. 3 shows the projection onto the first three princi-
pal components of the shape and appearance for 4 sequences of the same person. The
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shape and appearance are projected independently, and then an affine transformation is
computed to align shape to appearance. As we can observe (also numerically validated
in Sec.4.1.), there is a strong correlation between shape and appearance, that allows us
to predict the appearance from the shape. See caption of Fig. 3 for more details.

Fig. 3. Low dimensional embedding that shows the correlation between shape (“•”) and appear-
ance changes (“◦”) for four image sequences (82 face images in total) of subject “S014” in the
Cohn-Kanade (CK) database [22]. The circles (“◦”) are the projections of appearance changes of
each face image with respect to the neutral face (ye−yneu) along the first three principal compo-
nents (denoted by axis Pc1-Pc3). The dots (“•”) represent shape changes (xe − xneu) projected
in the three principal components after linear regression (alignment) to (ye − yneu).

After transferring the shape changes to the target, and assuming that we have train-
ing samples of the target person, we could build a person-specific model by explicitly
learning a mapping T between shape (x) and appearance (y) that minimizes:

min
T

∑
e∈Ωi

∥(ye
i − yneu

i )−T (xe
i − xneu

i )∥22 , (3)

where Ωi is the index set of available instances of the ith subject performing different
facial actions, T ∈ ℜd×v is the regression matrix that maps the displacement of facial
landmarks to the change of pixel intensity. Solving Eq. (3) leads to a person-specific
regression matrix T. The column space of T correlates with the appearance changes
and its row space with the shape changes of the ith subject.

In realistic scenarios, we will not have training samples of the target subject. An
alternative is to learn a generic regression using images from the training subjects but
ignoring images from the target subjects. However, as we will show in the experimental
part, the learned generic regression can only predict the averaged appearance changes
for all training subjects but it fails to model specific facial features from the target image.
In addition, training instances would need to be well-sampled in order to generalize to
all facial actions to be transferred. In the following section, we propose to personalize
the mapping T given only a neutral face image of the target.

3.3 Personalizing the regression

For the ith person (i = 1, · · · , p), the person-specific mapping Ti ∈ ℜd×v minimizes

E(Ti) = ∥Y∆i −TiX∆i∥2F =
∥∥Y∆i −BiA

T
i X∆i

∥∥2
F
, (4)
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where Y∆i = Yi − yneu
i 1T

ni
∈ ℜd×ni and X∆i = Xi − xneu

i 1T
ni

∈ ℜv×ni contain
the appearance and shape changes w.r.t. the neutral face, for all images belonging to the
ith person. To avoid the curse of dimensionality and reduce the amount of parameters
to estimate, the row and column subspaces of Ti are explicitly modeled by the outer
product of two matrices Ti = BiA

T
i [5], so that the column space of Bi ∈ ℜd×k and

Ai ∈ ℜv×k are respectively correlated with the shape and appearance subspace of this
person (k = rank(Ti)). A necessary condition for the existence of a minimum of E
(in Eq. (4)) w.r.t. Bi and Ai has to satisfy ∂E

∂Bi
= 0 and ∂E

∂Ai
= 0, which leads to

Bi = Y∆iX
T
∆iAi(A

T
i X∆iX

T
∆iAi)

−1, (5)
Ai = (X∆iX

T
∆i)

−1X∆iY
T
∆iBi(B

T
i Bi)

−1. (6)

Eq. (5) and (6) imply that the columns of Bi and Ai are in the subspaces spanned by the
appearance changes Y∆i and the shape changes X∆i respectively. If we solve Eq. (4)
over all facial actions performed by the ith subject, the column spaces of Bi and Ai

are optimized to capture the specific shape and appearance changes for this subject,
respectively. However, as mentioned before the person-specific model is not available
in many applications, and the generic model is not accurate enough. Our goal in this
section is to personalize Bi and Ai using only one neutral face.

A key aspect to build a personalized model from one sample, is to realize that
from a neutral image, we can predict many different facial expressions [5, 6, 4, 16].
Observe that the neutral image has enough information to generate an approxima-
tion of the texture of a particular face under several expressions. That is, Y∆i ≈
[R1y

neu
i · · · Rny

neu
i ], where Ri is a regressor for a particular expression (i = 1, · · · , n).

However, learning this expression-specific regressions requires carefully posed expres-
sions and labeling expression across all subjects [5, 6, 4, 16].

In this paper, we overcome this limitation by explicitly learning the mapping from
the appearance and shape of a neutral face to the person-specific matrices Bi and Ai for
all training subjects (i = 1, · · · , p). Following recent work on subspace regression [23],
we learn a mapping between a neutral face and a subspace of shape and appearance.
That is, the person-specific subspace is parameterized as: Bi ≈ [W1y

neu
i · · ·Wky

neu
i ],

where Wk ∈ ℜd×d. In practice the number of parameters for each Wk is large and
some rank constraints have to be imposed to avoid overfitting. Alternatively, to solve
this problem we kernealize the previous expression as: vec(Bi) ≈ Bφy(y

neu
i ), where

B ∈ ℜdk×wy is a transformation matrix, and φy(·) ∈ ℜwy is a kernel mapping of the
neutral appearance from the d spaces to a wy (possible infinite) dimensional space. Ob-
serve that, the columns of matrix B span the dk dimensional space of person-specific
matrices Bi’s that model possible appearance changes for all subjects (i = 1, · · · , p).
Similarly, vec(Ai) ≈ Aφx(x

neu
i ) where A ∈ ℜvk×wx spans the vk dimensional

spaces of person-specific matrices Ai’s that model possible shape changes for all sub-
jects (i = 1, · · · , p), and φx(·) ∈ ℜwx is kernel mapping of the neutral shape.

As in traditional kernel methods, we will assume that the rows of the matrix B
can be expanded as the combination of φy(Y

neu), i.e., B = RBφy(Y
neu)T , where

RB ∈ ℜdk×p is a coefficient matrix and Yneu contains all neutral appearances for
i = 1, .., p. Similarly, the row vectors of A can be spanned by φx(X

neu), i.e., A =
RAφx(X

neu)T , where Xneu contains all neutral shapes. Using the kernel trick, we can
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re-write Bi and Ai in a more compact form as:

Bi ≈ TB(kyneu
i

⊗ Ik), Ai ≈ TA(kxneu
i

⊗ Ik), (7)

where TB ∈ ℜd×kp contains re-organized elements of RB , TA ∈ ℜv×kp contains
re-organized elements of RA. kyneu

i
= φ(Yneu)Tφ(yneu

i ) ∈ ℜp is the kernel vector
measuring the similarity between the ith person with other subjects for the neutral ap-
pearance. Similarly, kxneu

i
= φ(Xneu)Tφ(xneu

i ) ∈ ℜp is the kernel vector measuring
the similarity between the ith person with other subjects for neutral shapes.

Now we can rewrite the error in Eq. (4) by combining it with Eq. (7) as:

min
TB ,TA

E(TB ,TA) =

p∑
i=1

∥∥Y∆i −TBMiT
T
AX∆i

∥∥2
F
, (8)

where Mi = (kyneu
i

⊗ Ik)(kxneu
i

⊗ Ik)
T ∈ ℜkp×kp. To estimate TB and TA, we

use an alternated least square (ALS) method to monotonically reduce the error of E.
ALS alternates between optimizing for TA while TB is fixed, and vice versa. This is
guaranteed to converge to a critical point of E. The update equations for ALS are:

TB =

(
p∑

i=1

Y∆iX
T
∆iTAM

T
i

)(
p∑

i=1

MiT
T
AX∆iX

T
∆iTAM

T
i

)−1

, (9)

vec(TA) =

(
p∑

i=1

Hi ⊗Gi

)−1

vec

(
p∑

i=1

X∆iY
T
∆iTBMi

)
, (10)

where Hi = MT
i T

T
BTBMi and Gi = X∆iX

T
∆i. Given an initial guess of TB and

TA, Eq. (9) and (10) are alternated until convergence.
For a new target person t, we represent the neutral face by the shape xneu

t and ap-
pearance yneu

t , and compute the personalized regression matrices as Bt = TB(kyneu
t

⊗
Ik) and At = TA(kxneu

t
⊗ Ik). Given the target shape change transferred from the

source (Section 3.1), the target appearance change ye
∆t is predicted using the personal-

ized bilinear regression as ye
∆t = BtA

T
t (x

e
t − xneu

t ). Finally, the appearance vector of
the target person under expression “e” is computed as ye

t = yneu
t + ye

∆t.

4 Experiments
This section provides quantitative and qualitative evaluation of our method on two
challenging databases: (1) Cohn-Kanade (CK) database [22]: This database contains
posed facial action sequences for 100 adults. There are small changes in pose and il-
lumination in the sequences. Each person has several sequences performing different
expressions for about 20 frames, beginning at neutral and ending in the peak of the ex-
pression. We used 442 sequences posed by 98 persons for which the 66 landmarks per
frame were available. The total number of images used in our experiments is 8036. (2)
RU-FACS database [24]: This database consists of videos of 34 young adults recorded
during an interview of approximately 2 minutes, duration in which they lied or told
the truth in response to an interviewer’s questions. Head pose was mostly frontal with
small to moderate out-of-plane head motion. Image data from five subjects could not be
analyzed due to image artifacts. Thus, image data from 29 subjects was used.
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Fig. 4. Comparison of appearance reconstruction error over a random testing set from the CK
database. RAE is computed for 4 methods: “Per-Spec”, “Direct warp”, “Generic” and our method
“Personal”. Note “Personal” uses only one neutral image per target subject.

4.1 Reconstruction ability of the shape-to-appearance mapping

In the first experiment, we evaluated how well several shape-to-appearance mapping
methods (Section 3.2 and 3.3) can reconstruct the facial appearance of subjects in the
CK database. We compared the performance of four approaches: (1) “Generic” map-
ping, computed for all subjects similar to [4] as explained in Section 3.2; (2) Person-
specific mapping (“Per-Spec”), where we learn a different regressor Ti for each subject
(Eq. (4)); (3) Our personalized bilinear mapping (“Personal”) estimated given only a
neutral face of each person (Eq. (8)); (4) “Direct warp”, which is the baseline method
where we directly warped the pixels of neutral appearances yneu to a common template.
We computed the Relative Absolute Error (RAE) between the estimated and the ground
truth appearances on the common template as: RAE = |yexp−ỹexp|

|yexp−yneu| , where ỹexp is the
estimated appearance and yexp is the ground truth appearances. Observe that the base-
line method (“Direct warp”) produces the same appearance as the neutral face on the
common template (i.e. ỹexp = yneu) and its RAE is 1 for all images.

For each subject, we consider the neutral face as the average of the first frame over
all the sequences (between 2 and 6) for each subject. We randomly selected half of
the subjects (49) for training and cross-validation, and the other 49 subjects are used
for testing. We used Gaussian kernels in Eq. (7) to respectively measure the similarity
among neutral shapes and appearances. The bandwidth parameters for the neutral shape
and appearance Gaussian kernel were chosen by cross-validation. We repeated the ex-
periments 20 times. The average and standard deviation are summarized in Table 1.
Fig. 4 shows an instance of the RAE on a randomly selected test set.

As shown in Fig. 4 and Table 1, the “Generic” mapping produces the largest error
because it computes the averaged appearance changes which, in many cases, are not the
appearances the target (test) subject can produce. As expected from Fig. 3, the “Per-
Spec” method achieves the least error because it learns the person-specific regression

Table 1. Comparison of averaged RAE of appearances for four methods on CK database over
20 repetitions. Note “Per-Spec” reproduces the appearances of training images for each target
subject while “Personal” predicts the appearances using only one neutral face per subject.

Per-Spec Direct warp Generic Personal (Our method)
RAE 0.11± 0.07% 1± 0% 0.93± 0.29% 0.74± 0.15%
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using the data of this particular subject. This further validates the strong correlation
between shape-appearance used in Sec.3.2. Note this is the ideal scenario, where we
have images of the subject to train and test. Unfortunately, the “Per-Spec” mapping is
typically not available in practice because of the lack of training samples for the target
person (only one frontal image is available). Finally, our method (“Personal”) produces
lower RAE than the generic mapping using only a neutral face of each person.

4.2 Facial action transfer

This section presents qualitative (visual) evaluation for FAT on the CK database. Note
that this is a different experiment from the one in the previous section. Now our goal is
to transfer the expression to a different subject, and not to reconstruct the appearance
from the shape of the same subject.

We used 49 subjects to learn the regressors as explained in the previous section.
The other 49 subjects are used as target subjects. The source for these 49 targets are
randomly selected from the other 49 training subjects. We transfer the facial actions
of the source (Fig. 5 the “Source” column) to the target subjects. Fig. 5 shows the
results for four methods: (1) Copying directly the shape and appearance changes from
the source to the target similar to [7], the “Copy” column; (2) Person-specific mapping
learned from available instances of each target person (for evaluation only, instances
usually are not available in practice), the “Per-Spec” column; (3) The generic mapping
computed for all training subjects [4], the “Generic” column; and (4) our personalized
regression, estimated from a neutral face of the target, the last column: “Personal”. Here
we do not compare with “Direct warp” as in the previous subsection because it produces
no appearance changes. The pixels within the mouth (e.g., teeth) in Fig. 5-7 are directly
warped from the images of the source subject.

As shown in Fig. 5, the direct coping method (“Copy”) does not adapt the expression
changes of the source subjects to the specific facial features of the targets. It produced
strong artifacts around eye brows, cheeks and jaws on the target faces. The person-
specific method (the “Per-Spec” column) performed very well in reconstructing the
appearance in the last experiment; however, it behaved poorly in the experiment of
transferring the expression. In this case, we learn the regression from shape to appear-
ance using the video of the target person, but there is no guarantee that the expression
performed by the source will be represented in the available data of the target person.
This is the reason why the person-specific method performs poorly. In fact, it is usu-
ally difficult to get well-sampled instances of the target subject. The generic mapping
(“Generic”) generates averaged appearance changes, which in many cases does not fit
the specific facial features of the target subjects. Our method (“Personal”) estimates the
personalized regression from only a neutral face of the target person, and it produces
video-realistic personalized facial actions. Although the ground truth for the transferred
expressions are not available, the result of our personal mapping is the one that is visu-
ally more video-realistic 2.

4.3 Face de-identification

Advances in camera and computing equipment hardware in recent years have made it
increasingly easy to capture and store extensive amounts of video data. This, among

2 See more results at http://www.andrew.cmu.edu/user/dghuang/fat.htm
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Fig. 5. Facial action transfer from the source persons (the “Source” column) to the target persons
(the neutral faces in the “Target” column) using the direct copying (“Copy”), personal specific
mapping (“Per-Spec”), the generic mapping (“Generic”) and our method (“Personal”).

other things, creates many opportunities for the sharing of video sequences. In order to
protect the privacy of subjects visible in the scene, automated methods to de-identify
the images, particularly the face region, are necessary [1]. So far the majority of pri-
vacy protection schemes currently used in practice rely on ad-hoc methods such as
pixelation or blurring of the face. This section explores the use of our method for face
de-identification in real interviews when there is subtle, spontaneous facial expressions
combined with pose changes using the RU-FACS database.

As shown in Fig. 6-7, we transferred the facial actions of the source person (the
“Source” column) to the target person (the “Target” column), and then warped the
transferred target facial image patch back to the image of the source person. In this
way, we replaced the identity of the source person with the target person performing
the same facial actions. Three methods compared are: Direct copying (“Copy”), the
generic mapping (“Generic”) and our method (“Personal”). For each pair of source and
target persons in Fig. 6-7, we show three instances of de-identification including various
head poses and subtle facial actions. In all the instances, both “Copy” and “Generic”
generate exceptional bright or dark texture in cheeks, eyelids, jaw and eyebrows. This is
because the shape and appearance changes imposed in those regions are not suitable for
the target facial features. Using the personalized regression estimated from one target
neutral face, our method (“Personal”) produces the realistic personalized facial actions
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Fig. 6. Application of FAT to de-identification: replacing the identity of the source persons (the
“Source” column) with that of the target person (the “Target” column) performing the same facial
actions. Three methods compared: Direct copying (“Copy”), the generic mapping (“Generic”)
and our method (“Personal”). The “Copy” and “Generic” columns produce artifacts on the cheek,
eyelids and around the mouth. To clearly illustrate the de-identified/replaced face region on the
source images, we do not adapt the target skin to the source skin.

compatible with the target facial features such as eyes, nose, lips and the skin. We ex-
plicitly use a person of different color skin as target to illustrate the de-identification
process.

5 Conclusion
This paper presents a personalized supervised bilinear regression method for FAT. We
have illustrated how our algorithm can outperform state-of-the-art methods for gener-
ating video-realistic face images of a target subject from a source video. Moreover, we
illustrated how our method can also be used for face de-identification in the challenging
RU-FACS database. The main reason for the superior performance of our method is that
is able to personalize the relation between the shape and appearance changes using only
one target neutral face. This brings two main advantages: (1) Our learning method does
not rely on expression correspondences which are difficult to obtain; (2) To transfer the
facial actions to a new person, our method only requires the neutral face of the person,
which is a realistic assumption in many scenarios. Further improvements of our method
can be achieved by using local models for different face regions and better regression
methods to model the relations between the bilinear regression matrices and the neutral
face. Finally, although we have illustrated the benefits of our approach on the problem
of FAT, our method is more general and can be applied to other appearence/texture
synthesis problems.
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Fig. 7. Application of FAT to face de-identification (continued with Fig. 6). The “Copy” and
“Generic” columns produce artifacts on the cheek, eyebrows and the jaw.


