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Abstract. Discriminative methods (e.g., kernel regression, SVM) have
been extensively used to solve problems such as object recognition, image
alignment and pose estimation from images. Regression methods typi-
cally map image features (X) to continuous (e.g., pose) or discrete (e.g.,
object category) values. A major drawback of existing regression meth-
ods is that samples are directly projected onto a subspace and hence
fail to account for outliers which are common in realistic training sets
due to occlusion, specular reflections or noise. It is important to notice
that in existing regression methods, and discriminative methods in gen-
eral, the regressor variables X are assumed to be noise free. Due to this
assumption, discriminative methods experience significant degrades in
performance when gross outliers are present.

Despite its obvious importance, the problem of robust discriminative
learning has been relatively unexplored in computer vision. This paper
develops the theory of Robust Regression (RR) and presents an effective
convex approach that uses recent advances on rank minimization. The
framework applies to a variety of problems in computer vision including
robust linear discriminant analysis, multi-label classification and head
pose estimation from images. Several synthetic and real world examples
are used to illustrate the benefits of RR.
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1 Introduction

Discriminative methods (e.g., kernel regression, SVM) have been successfully
applied to many computer vision problems. Unlike generative approaches that
produce a probability density over all variables, discriminative approaches pro-
vide a direct attempt to compute the input to output mappings for classification
or regression. Typically, discriminative models achieve better performance in
classification tasks, especially when large amounts of training data is available.

Linear and non-linear regression have been applied to solve a number of
computer vision problems (e.g., classification [1], pose estimation [2]). Although
widely used, a major drawback of existing regression approaches is their lack of
robustness to outliers and noise, that are common in realistic training sets due to
occlusion, specular reflections or image noise. To better understand the lack of
robustness, let us consider the problem of learning a linear regressor from image
features X to pose angles Y (see Fig. 1) by minimizing (See notation 1)

min
T
‖Y −TX‖2F . (1)

1 Bold uppercase letters denote matrices (D), bold lowercase letters denote column
vectors (e.g., d). dj represents the jth column of the matrix D. Non-bold letters
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Fig. 1: The goal is to predict the yaw angle of the monkey head from image fea-
tures. Note the image features (image) contains outliers (hands of the monkey).
(Left) Standard regression: projects the partially occluded frontal face images
directly onto the head pose subspace and fails to estimate the correct pose;
(Right) Robust regression removes the intra-sample outliers and projects only
the cleaned input images without biasing the pose estimation.

In the training stage, we learn the mapping T, and in testing we estimate the
pose by projecting the image features of the test image, Txtest. It is important
to notice that in training and testing, we assume X to be noise free. A single
outlier can bias the projection because we project the data directly onto the
subspace of T. For instance, Txtest, the dot product of xtest with each row of T,
can be largely biased by only one outlier. For this reason, existing discriminative
methods lack robustness to outliers.

Standard regression, Eq. (1), is optimal under the assumption that the error,
E = Y − TX, is normally distributed. However, it is well known that a small
number of gross outliers can arbitrarily bias the estimation of the model’s pa-
rameters. This is a thoroughly studied problem in statistics, and the last decades
have witnessed the fast paced development of the so-called robust methods [3–
5]. However, all these traditional robust approaches for regression are different
from the problem addressed in this paper. There are two main differences: (1)
these approaches do not model the error in X but in Y −TX, (2) they mostly
consider sample-outliers (the whole image is an outlier). This work proposes an
intra-sample RR method that explicitly accounts for outliers in X. Our work is
related to errors in variables (EIV) models (e.g., [6–8]). However, unlike existing
EIV models, RR does not need to have a prior estimate of the noise and all pa-
rameters are automatically estimated. We illustrate the power of RR in several
computer vision tasks including head pose estimation from images and robust
lda for multi-label image classification.

represent scalar variables. ‖A‖2F designates the Frobenius norm of matrix A. ‖A‖∗
is the Nuclear Norm (sum of singular values) of A. `0 of A, ‖A‖0, denotes the number
of non-zero coefficients in A. Ik ∈ <k×k denotes the identity matrix. 1n ∈ <n is a
vector of all 1s. 0k×n ∈ <k×n is a matrix of zeros. 〈A,B〉 denotes the inner product
between two matrices A and B. Sb(a) = sgn(a) max(|a|− b, 0) denotes the shrinkage
operator. Dα(A) is the Singular Value Thresholding (SVT) operator.
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2 Related Work

There exist extensive literature on robust methods for regression. Huber [3]
introduced M-estimation for regression, providing robustness to sample outliers.
Rousseeuw and Leroy proposed Least Trimmed Squares [4], which explicitly finds
a data subset that minimizes the squared residual sum. Parallel to developments
in the statistics community, the idea of subset selection has also flourished in
many computer vision applications. Consensus approaches such as RANSAC
[9] (and its ML and M-estimator variants [10, 11]) randomly subsample input
data to construct a tentative model. Model parameters are updated when a new
configuration produces smaller inlier error than its predecessors. However, these
methods rely on the assumption that the computation of the model parameters
of a subset is inexpensive and can only remove sample outliers.

To deal with noise in the variables, Error-In-Variable (EIV) approaches [7]
were proposed. However, existing EIV approaches rely on strong parametric as-
sumptions for the errors. For instance, orthogonal regression assumes that the
variance of errors in the input and response variables are identical [12] or their
ratio is known [13]. Under these assumptions, orthogonal regression can minimize
the gaussian error orthogonal to the learned regression vectors. Grouping-based
methods [14] assume that errors are respectively i.i.d. among the input and re-
spond variables, so that one can split the data into groups and suppress the
errors by computing difference of the group sum, geometric means or instru-
ment variables. Moment-based methods [15] learn the regression by estimating
the high-order statistics, i.e., moments, from the data of i.i.d. likelihood-based
methods [8] learn a reliable regression when the input and respond variables fol-
low a joint, normal and identical distribution. Total Least Square (TLS) [7] and
its nonlinear generalization [16], solve for additive/multiple terms that enforce
the correlation between the input and respond variables. TLS-based methods
relax the assumption in previous methods to allow correlated and non-identical
distributed errors. Nevertheless, they still rely on parametric assumptions on the
error. Unfortunately, in typical computer vision applications, errors caused by
occlusion, shadow and edges seldom fit such distributions.

Independent of the work on EIV for regression, several authors have ad-
dressed the issue of robust classification. On one hand, several authors have
proposed robust extensions of LDA, where the empirical estimation of the class
mean vectors and covariance matrices are replaced by their robust counterparts
(e.g., [17]). In machine learning, several authors [18, 19] have proposed a worst-
case FDA/LDA by minimizing the upper bound of the LDA cost function to
increase the separation ability between classes under unbalanced sampling. How-
ever, these methods are only robust to sample-outliers.

Our work is more related to recent work in computer vision. Fidler and
Leonardis [20] robustify LDA for intra-sample outliers. In the training stage,
[20] computed PCA on the training data, replaced the minor PCA components
by a robustly estimated basis, and combined the two basis into a new one. Then
the data is projected into the combined basis and LDA is computed. During
testing, [20] first estimates the coefficients of a test data on the recombined
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basis by sub-sampling the data elements using [21]. Finally, the class label of the
test data is determined by applying learned LDA on the estimated coefficients.
Although outliers outside of the PCA subspace can be suppressed, [20] do not
address the problem of learning LDA with outliers in the PCA subspace of the
training data. Zhu and Martinez [22] proposed learning a SVM with missing data
and robust to outliers. However, [22] requires that the location of the outliers to
be known. In contrast to previous works, our RR enjoys several advantages: (1)
it is a convex approach; (2) no assumptions, aside from sparsity, are imposed on
the outliers, which makes our method general; (3) it automatically cleans the
intra-sample outliers in the training data while learning a classifier.

Our work is inspired by existing work in robust PCA [23] and its recent
advances due to rank minimization procedures [24, 25]. These methods model
data as the sum of a low-rank clean data component with an arbitrary large
and sparse outlier matrix. De La Torre and Black [23] increased PCA robustness
by replacing the least-square metric with a robust function, and re-weighted
the influences of each component in each sample based on a given influence
function (derivative of the robust function). [24, 25] separated a low-rank data
matrix from a sparse corruption, despite its arbitrarily large magnitude and un-
known pattern. A major theoretical advantage of this approach is the convex
formulation. This approach has been extended to other problems such as back-
ground modeling and shadow removal [25], image tagging and segmentation [26],
texture unwrapping [27] or segmentation [28]. These algorithms, however, were
originally devised with tasks such as dimensionality reduction or matrix com-
pletion in mind, which are unsupervised in nature. In this paper, we will further
extend the approach to detect intra-sample outliers in robust regression, and
illustrate several applications in computer vision.

3 Robust Regression (RR)

Let X ∈ <d×n be a matrix containing n d-dimensional samples possibly cor-
rupted by outliers. Formally, X = D + E, where D is the underlying noise-free
component and E contains the outliers. In regression problems, one learns a
mapping T from X to an output Y ∈ <dy×n. The outliers or the noise-free
component D are unknown, so existing methods use X in the estimation of T.
In presence of outliers, this results in a biased estimation of T. Our RR solves
this problem by explicitly factorizing X into D plus E, and only computing T
using the clean free data D. RR solves the following optimization problem

min
T,D,E

η

2
‖W(Y −TDH)‖2F + rank(D) + λ‖E‖0 s.t. X = D + E, (2)

where W ∈ <dy×dy weights the output dimensions, T is the regression matrix
and H =

(
In − 11T /n

)
is a centering matrix. RR explicitly avoids projecting the

outlier matrix E to the output space by learning the regression T only from the
centered noise-free data DH. The second and third terms of (2) are similar to
RPCA [25] in that they respectively constrain D to a low dimensional subspace
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and encourages E to be sparse. RR is different from RPCA plus regression since
it decomposes the input data X = D + E in a supervised manner; that is, the
clean data D will preserve the subspace of X that correlates with Y. For this
reason, the outlier component E computed by RR is able to correct outliers both
inside and outside the subspace spanned by D (see Section 4.1).

The original form of RR, Eq. (2), is cumbersome to solve as the rank and
cardinality operators are neither convex nor differentiable. Following the tech-
niques in [25], these operators are respectively relaxed to their convex envelopes:
the nuclear norm and the `1-norm. The cost function (2) is rewritten as

min
T,D,E

η

2
‖W(Y −TDH)‖2F + ‖D‖∗ + λ‖E‖1 s.t. X = D + E,

which can be efficiently optimized using an Augmented Lagrange Muliplier
(ALM) technique. Let D̂ = DH, we rewrite (3) as

min
T,D,D̂,E

η

2

∥∥∥W(Y −TD̂)
∥∥∥2
F

+ ‖D‖∗ + λ‖E‖1 + 〈Γ1,X−D−E〉

+
µ1

2
‖X−D−E‖2F + 〈Γ2, D̂−DH〉+

µ2

2
‖D̂−DH‖2F , (3)

where Γ1 ∈ <d×n and Γ2 ∈ <d×n are Lagrange multiplier matrices, and µ1 and
µ2 are the penalty parameters. The resulting algorithm is summarized in Alg .1.

Algorithm 1 ALM algorithm for solving RR (3)
Input: X, Y, parameters η, λ, ρ, γ

Initialization: T(0) = YXT (XXT + γIdx
),D̂(0) = T(0)+Y, E(0) = X −D(0),

Lagrange Multiplier Initialization:Γ
(0)
1 = X

‖X‖2
,Γ

(0)
2 = D(0)

‖D(0)‖2
,µ

(0)
1 = dn

4
‖X‖1 , µ

(0)
2 = dn

4
‖D(0)‖1.

while

∥∥∥X−D(k)−E(k)
∥∥∥
F

‖X‖F
> 10−8,

∥∥∥D̂(k)−D(k)H
∥∥∥
F∥∥∥D̂(k)

∥∥∥
F

> 10−8 do

• Update T (assuming W = diag{wii}) :

T(k+1) = [t1, t2, · · · , tc], where t>i = w2
iiyiD̂

T (w2
iiD̂

(k+1)(D̂(k+1))T + γId)
−1

and γ regularizes the scale of ti.

• Update D̂: D̂(k+1) =

[
η(T(k))TWTWT(k) + µ

(k)
2 Id

]−1 [
η(T(k))TWY − Γ (k)

2 + µ
(k)
2 D(k)H

]
;

• Update D: D(k+1) = D1/β(Z(k+1)), Z(k+1) = D(k+1) − 1
β
− Γ

(k)
1 + µ

(k)
1

[
D(k) − (X − E(k))

]
−

Γ
(k)
2 HT + µ

(k)
2

[
D(k)H(k) − D̂(k)

]
HT, and β ≥ ‖µ(k)1 I + µ

(k)
2 HHT ‖F ;

• Update E: E(k+1) = S
λ/µ

(k)
1

(
X −D(k) + Γ

(k)
1 /µ

(k)
1

)
;

• Update Γ
(k+1)
1 = Γ

(k)
1 +µ

(k+1)
1 (X−D(k+1)−E(k+1)), Γ

(k+1)
2 = Γ

(k)
2 +µ

(k+1)
2 (D̂(k+1)−D(k+1)H),

µ
(k+1)
1 = ρµ

(k)
1 , µ

(k+1)
2 = ρµ

(k)
2 ;

end while
Output: T, D, E

3.1 Robust LDA: an extension of RR for classification

Classification problems can be cast as a particular case of binary regression,
where each sample in X belongs to one of c classes. The goal is then to learn a
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mapping from X to labels indicating the class membership of the data points.
LDA learns a linear transformation that maximizes inter-class separation while
minimizing intra-class variance, and typical solutions are based on solving a
generalized eigenvalue problem. However, when learning from high-dimensional
data such as images (n < d), LDA typically suffers from the small sample size
problem. One possible solution for this is formulating LDA as a least-squares
(LS) problem [29]. LS-LDA [29] directly maps X to the class labels represented
by an indicator matrix. LS-LDA minimizes

min
T

∥∥∥(YYT )−1/2(Y −TX)
∥∥∥2
F
, (4)

where Y ∈ <c×n is a binary indicator matrix, such that yij = 1 if xi belongs
to class j and yij = 0 otherwise. The normalization factor W = (YYT )−1/2

compensates for different number of samples per class. T ∈ <c×d is a reduced
rank regression matrix (which has rank c− 1 if the data is centered). After T is
learned, a test data xtest ∈ <d×1 is projected by T onto the c dimensional output
space spanned by TX, then the class label of the test data xtest is assigned using
k-NN.

When X is corrupted by outliers, Eq. (4) suffers from the same bias problem
as standard regression. RR, Eq. (3), can be directly applied to Eq. (4), yielding

min
T,D,E

η

2

∥∥∥(YYT )−1/2(Y −TDH)
∥∥∥2
F

+ ‖D‖∗ + λ‖E‖1 s.t. X = D + E,

a Robust LDA formulation which can be easily solved as a special case of RR.

3.2 Testing for new data points

To remove outliers in a new testing sample Xt, we minimize

min
Qt,Et

η‖WT‖2F
2

∥∥Xt − (D11T /n+ UQt)−Et

∥∥2
F

+ λ‖Et‖1, (5)

where U contains the principal components of the clean data D (preserving
99.99% energy), Qt are the coefficients such that a linear combination of U can
reconstruct the clean part of the data Xt. η and λ are the same parameters
used during training. After solving (5), the regression or classification for Xt is
computed as Yt = TUQt.

4 Experimental Results
This section compares our RR methods against state-of-the-art approaches on
regression and classification. The first experiment uses synthetic data to illus-
trate the ability of RR to remove in-subspace outliers that existing methods
can not detect. The second experiment illustrates the application of RR to the
problem of head pose estimation from corrupted images. The final experiments
report comparisons of our RR against state-of-the-art multi-label classification
algorithms on the MSRC, Mediamill and TRECVID2011 databases.
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4.1 Synthetic Data
This section illustrates the benefits of RR in a synthetic example. We have
generated 200 three dimensional samples, where the first two components are
generated from a uniform distribution between [0, 6], and the third dimension
is 0. In Matlab notation, D = [6 ∗ rand(2, 200); 0T ], X = D + E, Y = T∗D,
where D ∈ <3×200 is the clean data. The error term, E ∈ <3×200, is generated
as follows: for 20 random samples, we added random Gaussian noise (∼ N (0, 1))
in the second dimension, this simulates in-subspace noise. Similarly, for another
20 random samples, we added random Gaussian noise (∼ N (0, 1)) in the third
dimension, this simulates noise outside the subspace. T∗ ∈ <3×3 is randomly
generated (each element is uniformly sampled in [0, 1]), and is used as the true
regression matrix. The output data matrix is generated as Y = T∗D ∈ <3×200.
Fig. 2 (a) shows the clean data D with blue “o”s, and the corrupted data X
with black “×”s. For easiness of visualization, we have only shown 100 randomly
selected samples. The black line segments connect the same samples before (D)
and after corruption (X). The line segments along the vertical direction are the
out-of-subspace component of E = X − D, while the horizontal line segments
represent the in-subspace component of E = X−D.

We compared our RR with five state-of-the-art methods: (1) Standard least-
squares regression (LSR), (2) GroupLasso (GLasso) [30], (3) RANSAC [9], (4)
Total Least Square (TLS) [31] that assumes the error in the data is additive and
follow a gaussian distribution, (5) RPCA+LSR, which consist on first performing
RPCA [24] on the input data, and then learn the regression on the cleaned data
using standard LSR. The LSR learns directly the regression matrix T using the
data X. The other methods (2)-(5) re-weight the data or select a subset of the
samples input data X before learning the regression. We randomly select 100
samples for training and the remaining 100 data points for testing. Both the
training and testing sets contain half of the corrupted samples.

Fig. 2(b-f) visualizes the results of the regression for the different methods.
Fig. 2(b) shows the results of TX, once T is learned with GLasso. GLasso learns
a sparse regression matrix that re-weights the input data along dimensions, but
it is unable to handle within sample outliers. Observe how the samples are far
away from the original clean samples. Fig. 2(c) shows the subset of X selected by
RANSAC. Although we selected RANSAC parameters to obtain the best testing
error, many of the corrupted data points are still identified as inliers. Fig. 2(d)
shows results obtained by TLS, where TLS only partially cleaned the corrupted
data because the synthesized error cannot be modeled by a Gaussian distribution
of equal error. Fig. 2(e) shows results obtained by the method RPCA+LSR,
that first computes RPCA to clean the data and then LSR. The data cleaned by
RPCA [24], DRPCA, is displayed with red “o”s. Because DRPCA is computed
in an unsupervised manner, only the out-of-subspace error (the vertical lines)
can be discarded, while the in-subspace outliers can not be corrected. Finally,
Fig. 2 (f) shows the result of RR. The clean data DRR is denoted by red“o”s.
Observe that our approach is able to clean both the in-subspace outliers (the
horizontal lines) and out-of-subspace (the vertical lines). This is because our
method computes jointly the regression and the subspace estimation.
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(f) Robust Regression (RR)

Fig. 2: (a) Original and corrupted 3D synthetic dataset. Black lines connect data
points before (D) and after corruption (X). (b)-(e) show the input data processed
by several baselines, and (f) shows that RR removes the in-subspace outliers.

We also computed the error for the regression matrix T∗ (the first two
columns) and the testing error for Yt on the 100 test samples. Table 1 com-
pares the mean regression error measured by the Relative Absolute Error (RAE)

between the true labels Yt ∈ <3×100 and the estimated labels Ỹt. RAET =
‖T̃(:,1:2)−T∗(:,1:2)‖F

‖T∗(:,1:2)‖F and RAEY = ‖Ỹt−Yt‖F
‖Yt‖F . The information in the third col-

umn of T∗ is excluded in generating Y = TD. Therefore, we dismiss this col-
umn when evaluating RAET. As shown in Table 1, RR produces the smallest
estimation error for both T∗ and Yt among the five compared methods, while
GroupLasso, RANSAC and RPCA+LSR produce small improvements over stan-
dard LSR due to their limitation to deal with both the in-subspace and out-of-
subspace corruptions.
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Table 1: RAE error for Y and T for different methods.
LSR GLasso RANSAC TLS RPCA+LSR RR

RAET 0.078 0.078 0.070 0.052 0.074 0.005

RAEY 0.0272 0.0274 0.0263 0.0261 0.0262 0.011

4.2 Pose estimation from images

This section illustrates the benefit of RR in the problem of head pose estimation
from corrupted images. We used a subset of CMU Multi-PIE database [32] that
contains 3707 face images of all 337 subjects from all 4 sessions. For each subject,
we used images taken under 11 head poses with yaw angle [−90◦, −75◦, −60◦,
−45◦, −15◦, 0◦, 15◦, 45◦, 60◦, 75◦, 90◦]. Each image is cropped around the face
region and resized to 50 × 60. We vectorized the images into a vector of 3000
dimensions in the matrix X ∈ <3000×3707 and the yaw angles of the images are
gathered as the output data Y ∈ <1×3707. To evaluate the robustness of the
compared methods, we simulate structured occlusions by adding white blocks
(0.1 times the image width) at 5 random locations (see Fig. 3a for examples of
corrupted images).

Table 2: Yaw angle error for different methods and corruption percentages.
% of corruption 0% 20% 40% 80%

LSR 12.3◦ 14.5◦ 15.1◦ 17.3◦

GLasso 16.0◦ 17.8◦ 20.2◦ 21.1◦

RANSAC 12.2◦ 14.1◦ 14.9◦ 17.8◦

RPCA+LSR 13, 3◦ 15.4◦ 18.3◦ 20.4◦

RR 12.1◦ 13.0◦ 13.7◦ 15.2◦

Similar to the previous section, we have compared RR with four methods to
learn a regression from the image X to the yaw angle Y: (1) LSR, (2) GLasso [30],
(3) RANSAC [9], (4) RPCA+LSR. For a fair comparison, we randomly divided
the 3707 images into 10 folds and performed 10-fold cross-validation in methods
(2)-(4) to compute parameters of interest. The performance of the compared
methods is measured with the mean deviations of angle error on all test folders.

Table 2 summarizes the results of methods (1)-(4) and RR when 0%, 20%,
40%, 80% of the images are corrupted in both the training and testing folders.
As expected, the LSR method produced larger angle error with the increasing
percentage of outliers. RANSAC produced comparable error as standard LSR
indicating that RANSAC is unable to select a subset of “inliers” to robustly
estimate the regression matrix. RPCA+LSR produced relatively larger yaw angle
error. This is because RPCA is unsupervised and lack the ability to preserve the
discriminative information in X that correlates with the angles Y. RR got the
smallest error and it is stable w.r.t. the percentage of corruption.

To further illustrate how RR differs from RPCA+LSR, Fig. 3 visualizes the
decomposition done by RR, i.e., X = DRR + ERR an by RPCA, i.e., X =
DRPCA + ERPCA, for the same input images. Images under all pose angles
(except −60◦ and 90◦) are corrupted with white blocks (see Fig. 3(a)). Fig. 3(b)-
(c) show that both RPCA and RR are able to remove most of the white blocks.
However RR preserves much less personal facial details in DRR than RPCA in
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DRPCA (especially images under pose −60◦ and 90◦). With less facial details
and more dominant profiles, the regression trained on DRR (as in RR) is able to
model higher correlation with the pose angles than using DRPCA. This is why
RR tends to be more robust than the RPCA in estimating the pose angles.

(a) Examples of partially corrupted input images X

(b) Decomposition of images in (a) as X = DRPCA+ERPCA by RPCA

(c) Decomposition of images in (a) as X = DRR + ERR by RR.

Fig. 3: Decomposition of input images in (a) by RPCA (b) and RR (c).

4.3 Robust LDA

This section evaluates our Robust LDA (RLDA) method on two multi-label and
one multi-class classification tasks: object categorization on the MSRC dataset,
action recognition in the MediaMill dataset and event video indexing on the
TRECVID 2011 dataset. Each dataset corpus and features is described below:

MSRC Dataset (Multi-label)2 has 591 photographs (see Fig. 4(a)) dis-
tributed among 21 classes, with an average of 3 classes per image. We mimic [1]
and divide each image into an 8×8 grid and calculate the first and second order
moments for each color channel on each grid in the RGB space. This results in
a 384 dimensional vector, which we use to describe each image.

Mediamill Dataset (Multi-label) [33] consists of 43907 sub-shots divided
in 101 classes. We follow [1] and eliminate classes containing less than 1000 sam-

2 http://research.microsoft.com/en-us/projects/ObjectClassRecognition/
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ples, leaving 27 classes. Then, we randomly select 2609 sub-shots such that each
class has at least 100 labeled data points. Each image is therefore characterized
by a 120-dimensional feature vector, as described in [33].

TRECVID 2011 Dataset (Multi-class)3 consists of video data in MED
2010 and the development data of MED 2011, totaling 9822 video clips belonging
exclusively to one of 18 classes. We first detect 100 shots for each video and
then use their center frames as keyframes. We describe each keyframe using
dense SIFT descriptors. From these, we learn a 4096 dimension Bag-of-Words
dictionary. Each video is represented by a normalized histogram of all of its
feature points. We used a 300 core cluster to extract the SIFT features, which
took about 2687 CPU hours in total. In the experiment, we randomly split the
dataset into two subsets, with 3122 entries for training and 6678 for testing.

(a) (b)

Fig. 4: Multi-label datasets for object recognition and action classification. Ex-
ample images in MSRC (a) and example keyframes in Mediamill (b).

We compared RLDA to the state of the art approach for Multi-Label LDA
(MLDA) [1], and to Robust PCA [24] followed by traditional LDA (RPCA+LDA).
For control, we also compare to LDA, PCA+LDA (preserving 99.9% of energy)
and a linear one-vs.-all SVM.

For the classic LDA-based testing procedure, one first projects the test points
using the learned T from training; then for each projected test sample, find k-
nearest-neighbor (kNN) from the training samples projected by T; finally select
the class label from the class labels of k-neighbors by majority voting. How-
ever, this procedure is not appropriate in our evaluation for two reasons (1)
it’s not fair to use a fixed k for classes with different number of samples, e.g.,
samples per class are in [19, 200] for MSRC, [100, 2013] for Mediamill; (2) kNN
introduces nonlinearity to the LDA-based classifiers, which is unfair to linear
SVM. For these reasons, we use the Area Under Receiver Operating Character-
istic (AUROC) as our evaluation metric. AUROC summarizes the cost/benifit
ratio over all possible classification thresholds. We report the average AUROC
(over 5-fold Cross Validation) for each method under their best parameters in
Table 3. In the MSRC dataset results in Table 3, LDA performs the worst since
it’s most sensitive to the noise in data. SVM performs better than PCA+LDA
and RPCA+LDA. Our method (RLDA) leads to significant improvements over
the others due to its joint classification and data cleaning (for both Gaussian

3 http://www-nlpir.nist.gov/projects/tv2011/
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and sparse noise in the input). For Mediamill, LDA is just slightly worse than
PCA+LDA and RPCA+LDA due to the low noise level in the data. In this case,
RLDA does not “over-clean” the data, and performs similar to PCA+LDA and
RPCA+LDA.

Table 3: AUROC for Multi-label Object (MSRC) and Action (Mediamill) clas-
sification. Higher value indicates better performance. Best results are in bold.

Database LDA SVM PCA+LDA MLDA RPCA+LDA RLDA

MSRC 0.6463 0.7863 0.7585 0.6313 0.7480 0.8170

Mediamill 0.7667 0.6230 0.7702 0.6658 0.7704 0.7710

To test our method in a large scale dataset, we run experiments on the
TREC2011 dataset. We used the Minimum Normalized Detection Cost (Min-
NDC), the evaluation criteria for MED 2010 and MED 2011 challenges sug-
gested by NIST. Fig. 5 shows that RLDA achieved the best class-wise MinNDC
for 8 out of 18 classes over other linear methods, i.e., LDA/MLDA, SVM and
RPCA+LDA. Note for the class-wise cases LDA and MLDA are identical. SVM is
heavily affected by outliers for the “Wedding Ceremony”, “Getting a vehicle un-
stuck” and “Making a sandwich” cases. For some classes, LDA and RPCA+LDA
are similar or better than RLDA. Nevertheless, among all linear algorithms, our
method (RLDA) obtains the best average MinNDC. In addition, to show how
nonlinearity affects the performances, we compared the kernelized version of the
LDA, RPCA+LDA and RLDA. Here we apply the homogeneous kernel maps
technique [34] to obtain a three order approximation of the χ2 kernel. Other
approximations are possible [35]. Fig. 5 shows that KRLDA still obtains better
results, 13 out of 18 best class-wise MinNDC and best average MinNDC over all
classes.

5 Conclusion

This paper addressed the problem of robust discriminative learning, and presents
a convex formulation for RR. Our robust approach jointly learns a regression,
while removing the outliers that are not correlated with labels or regression
outputs. We illustrated the benefits of RR in several computer vision problems
ranging from RR for pose estimation, robust LDA to multi-labeled image classi-
fication. Experiments show that by removing outliers, our methods consistently
learn better representations and outperform state-of-the-art methods, in both
the linear and kernel spaces (using homogeneous kernel maps). Finally, our ap-
proach is general and can be easily applied to robustify other subspace methods
such as partial least square or canonical correlation analysis.
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