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Abstract— Recent advancements in the portability and af-
fordability of optical motion capture systems have opened
the doors to various clinical applications. In this paper, we
look into the potential use of motion capture data for the
quantitative analysis of motor symptoms in Parkinson’s Disease
(PD). The standard of care, human observer-based assessments
of the motor symptoms, can be very subjective and are
often inadequate for tracking mild symptoms. Motion capture
systems, on the other hand, can potentially provide more
objective and quantitative assessments. In this pilot study, we
perform full-body motion capture of Parkinson’s patients with
deep brain stimulator off-drugs and with stimulators on and
off. Our experimental results indicate that the quantitative
measure on spatio-temporal statistics learnt from the motion
capture data reveal distinctive differences between mild and
severe symptoms. We used a Support Vector Machine (SVM)
classifier for discriminating mild vs. severe symptoms with an
average accuracy of approximately 90%. Finally, we conclude
that motion capture technology could potentially be an accurate,
reliable and effective tool for statistical data mining on motor
symptoms related to PD. This would enable us to devise more
effective ways to track the progression of neurodegenerative
movement disorders.

Index Terms— Parkinson’s Disease (PD), movement disorder,
motion capture (mocap), Support Vector Machine (SVM), deep
brain stimulation (DBS), biomechanics and robotics

I. INTRODUCTION

Parkinson’s Disease (PD) is a progressive neurodegenera-
tive movement disorder effecting about 3% of the population
over 65 years [1]. In advanced stages, it severely effects
the normal lives of the patients with predominant symp-
toms such as motor disability, tremors, dyskinesia, freezing
and postural instability [1], [2]. Several drug therapies and
surgical interventions (e.g. deep drain stimulation or DBS)
have been developed to treat the disease. One of the major
problems with PD is the progressive nature of the disease.
Unfortunately, in many of the patients, the progressive dete-
rioration continues in spite of drug therapy or even surgical
interventions. Therefore it is very important to keep track
of the progression of the disease over time and change the
course of treatment if necessary. The Unified Parkinson’s
Disease Rating Scale (UPDRS) was developed as a compre-
hensive scale to incorporate multiple elements that can help
assess and monitor various aspects of PD including motor
disability and motor impairments. The inherent problem with
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the current UPDRS is the reliance on a human observer for
the severity assessments. Understandably, this judgement can
be subjective and inadequate for tracking the progression of
mild symptoms. More objective and quantitative measures
[6] of the PD motor symptoms might improve clinical
decision making. In recent years, several researchers have
addressed the problem of quantitative assessment of motor
symptoms using wearable sensors like accelerometers [1],
[2], [3]. Some other works developed quantitative measures
for a few standard motor tests e.g. finger tapping [4], [5] and
gait [7]. Quantitative measures on the test-retest reliability of
PD motor tests were given in [8], [9]. In [8], the reliability
score of the UPDRS motor component was found to be
about 0.90. These approaches, however, were not designed
to be adapted for precise quantitative analysis of individual
symptoms over a wide range of motor tasks.

Accelerometers have limitations when used for computing
precise motion because they measure the proper acceleration
w.r.t the local reference frame of the accelerometer itself (not
necessarily the same as the coordinate acceleration). Optical
motion capture systems can provide highly accurate data for
full body movements. Motion capture systems have not been
widely used in PD research due to their high cost and lack of
portability. However, recent advancements in portability and
affordability have made various clinical applications possible
[10]. With that goal in mind, in this pilot study, we perform
full-body motion capture of Parkinson’s patients with deep
brain stimulators (DBS). To the best of our knowledge, there
have been very few studies with high fidelity motion capture
systems for PD related motor assessments [11], [12], [13].

In the current study, we have designed and computed
various features that provide quantitative measures on the
severity of PD symptoms. We have also trained and tested
Support Vector Machine (SVM) classifiers for discriminating
across mild vs. severe symptoms as well as on vs. off states
of the DBS. These analysis techniques could potentially be
applied to the motion data history of PD patients to quantify
the progression of disease symptoms.

II. METHODS

In this section, we first discuss the motion capture data
acquisition methods for various motor tasks. This discussion
is followed by a brief overview of the feature computation
techniques. Then we describe the design and implementation
of the support vector machine classifier for discriminating
mild vs. severe symptoms.



a) Action tremor b) Gait c) Leg agility d) Postural stability
Fig. 1. In this figure, four frames of the motion capture session are shown. The subjects went through various motor tests: a) action
tremor, b) gait, c) leg agility and d) postural stability. All the patients wore a body leotard with 60 reflective markers attached to it and
performed various motor tasks. A trained clinician was monitoring them and assigning the scores for various motor components.

A. Data Collection for Various Motor Tasks

For full body motion capture, we used a commercially
available system from Vicon [14]. The system consisted of 16
infrared cameras, each capable of recording at 120 Hz with
images of 1000×1000 pixels resolution. A set of 60 14mm
retro-reflective markers were used to capture the motion of
the full body excluding the fingers and face. The subjects
were asked to perform various motor tasks as described
below and their motion data was recorded as 3D trajectories
of the 60 marker points.

The motion capture protocol was designed to adapt and
replicate the UPDRS motor impairment tests. Each subject
went through a six stage motion capture session perform-
ing different motor tasks. The UPDRS motor components
included in our experiments were action tremor, tremor at
rest, hand pronate and supinate, leg agility, gait and postural
stability. A few video frames from the capture session are
shown in Fig. 1. Each motor task was assigned a UPDRS
score by a trained professional depending on the severity
of the symptoms. The scores ranged from 0 (minimal) to 4
(severe). In our experiments, we consider the scores from 0
to 2 as mild and 3 to 4 as severe.

B. Feature Extraction

Feature extraction is the most important step in the quan-
titative analysis of PD motor symptoms. Essentially, we
would like to single out computational measures that reflect
the differences between a mild and a severe symptom. In
other words, the feature extraction should be performed in
such a way that the UPDRS scores are discriminable in the
corresponding feature space.

For each motor task, we analyze a relevant set of 3D
marker trajectories for computing the features. First, let us
define some generic features. They are aimed at quantify-
ing tremor-related symptoms and can be quite useful for
analyzing motor tasks affected by tremor. The frequency
of PD related tremors tend to be of the order of 4 Hz or
higher. Hence, the temporal data on 3D marker trajectories
was high-pass filtered (4 Hz cut-off) as a preprocessing
step for this feature. We define, Vhp(x) as the maximum
amplitude variations in the signal x after high-pass filtering.
It can be given as : Vhp(x) = max(h�x)−min(h�x), where
h is the impulse response of the high-pass filter and �

denotes convolution. PD symptoms are also associated with
random involuntary movements of the body parts and those
movements occur at a range of frequencies. The frequency
domain entropy can reveal the extent of randomness in the
involuntary movements. The frequency domain entropy of a
signal x is given as

HF(x) = ∑
f

−p(Xf ) log p(Xf ) where, p(Xf ) =
||Xf ||2

∑ f ||Xf ||2

where Xf is the Fourier transform of x computed at frequency
f and ||.|| denotes the �2 norm. The effects of PD symptoms
(particularly, tremor related) are also reflected in the high fre-
quency energy content of the features associated with various
body joints. Note that the feature Vhp(x) gives the severity of
tremors even if they are not persistent throughout the task and
only occur in short time intervals. For measuring the extent
of persistent PD tremor, we define the feature Er(x), the high
frequency energy content of the signal x. It is the percentage
of residual energy of x beyond a certain cut-off frequency
(here, 4 Hz). It is given as, Er(x)� 100∑i x̃

2
i
/∑i x

2
i
, where,

x̃ is the high-pass filtered version of the signal x.
The motor task associated with the action tremor (AT)

test involves successive taping of the nose with the finger.
In this case, the severity of PD symptoms correlates with
the amplitude and frequency of the tremor associated with
the hand and elbow movements. Hence, we chose to use the
following feature vector for action tremor:

FAT � [Vp(θx),Vp(θy),Vp(θz),Er(θEL),HF(θx),HF(θy),HF(θz)]
T

where θx, θy and θz are the angles made by the normal
n (shown in Fig. 2) with the axes and θEL is the elbow
angle. For tremor at rest, we use all the above features other
than frequency domain entropy. This is because the hand/leg
movements are quite restricted in this particular test.

For hand pronate-supinate tasks, the high frequency shak-
ing of the axis of hand rotation leads to difficulty in per-
forming the task when severe symptoms are present. The
axis of rotation was roughly aligned to the y-axis and corre-
spondingly, Er(θy) gave a quantitative measure of the high
frequency wobbling of the axis of rotation. This particular
feature was found to correlate with the level of difficulty
in performing the task. The motor task associated with leg
agility involved tapping the ground with the left/right heel
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a) Tremor effects on θx b) Front facing markers
Fig. 2. Fig. 2a demonstrates the effect of severe tremor symptoms
on θx i.e. the angle made by the normal n with the x-axis (shown
in Fig. 2b).

in rapid succession. The severity of the symptoms correlate
with the maximum amplitude associated with heel tapping.
Also, the level of difficulty increases as the high frequency
energy content at the knee position increases. Thus the
descriptive features for the leg agility task was given as :
FLA � [max(zhl),Er(zkn)]T where zhl and zkn are the signals
associated with the heel and knee heights from the ground.

The gait sequences showed that as the severity of the
symptoms increase, the walking speed seemed to decrease
and the subjects tended to take slow but wider steps (often
with smaller step lengths). Hence, we used mean speed and
mean step width as the features corresponding to the gait
component of the motor tests.

As the severity of PD related symptoms increase, pos-
tural stability is likely to decrease. During the postural
stability test, the subject was gently pushed backwards
and the process of pose recovery was observed. We used
maximum heel deviation w.r.t the initial position and the
body angle variance as two of the basic features to reflect
the time and effort required in the recovery process. Two
other features that we also looked at were the trajectories
of the center of mass (COM) and center of pressure (COP)
of the body during the trials. As we will see in the results
section, reduced postural stability leads to larger variations
in both trajectories during severe symptoms. The COP and
COM were computed by fitting musculoskeletal models to
the motion capture data. Further details can be found in [15].

C. SVM : Mild vs. Severe Symptom Classifier

The features computed for various motor tasks can be used
in a binary classification framework for discriminating mild
vs. severe symptoms. We train a support vector machine
(SVM) for each motor task as follows. Let n different trials of
a particular motor task are associated with the feature vectors
{xi}1≤i≤n. The corresponding class labels are assigned as :
yi =−1 if xi corresponds to the UPDRS scores from 0 to 2
(mild symptoms) and yi = +1 otherwise (severe symptoms
with scores from 3 to 4). While training, we solve the
following standard linear SVM optimization problem,

min
w,b

||w||2 +C

n

∑
i=1

ζi such that yi(w.xi +b)≥ 1−ζi, ζi ≥ 0

where w is the SVM weight vector, b is the offset to the
classifying hyperplane and C is the weighting parameter for

the slack variables ζi’s of the soft margin classifier. A test
feature vector xtest could be assigned as mild or severe as
follows. If w.xtest +b ≤ 0 assign as mild or else assign as
severe. We also implemented some other nonlinear variants
of the support vector machine such as SVM with polynomial
and Gaussian kernels.

III. EXPERIMENTS AND RESULTS

We performed full body motion capture of six subjects.
Four of them (three male and one female) were diagnosed
with PD and two (male) were healthy with no PD symptoms.
The study was reviewed by an institutional review board
and all the subjects provided their informed consent. All of
the four PD patients had undergone sub-thalamic deep brain
stimulator (DBS) implantation by the same surgeon. Their
age range was 51 to 67 years with a mean age of 58 years.
Average disease duration was 11 years with a range of 8
to 16 years. The patients received their last dose of anti-PD
medications 12 hours prior to the motion capture session.

For each PD patient, there were two phases of motion
capture. Each phase had six different stages corresponding
to the six motor tasks mentioned earlier. For each motor task,
we recorded the motion capture data and the corresponding
UPDRS score assigned by the trained clinician. In the first
phase, the patients went through all the motor tasks with
their deep brain stimulator switched ‘on’. After that their
deep brain stimulators were switched off and following
a short break, they went through a second phase of the
capture session performing similar tasks as the first phase.
In both phases, the UPDRS scores ranged from 0 (minimal)
to 4 (severe) depending on the observed severity of the
symptoms. In particular, for tremor related symptoms, the
severity seemed to depend on whether their stimulator was
turned on or off. Further details about the effects of DBS on
tremor symptoms can be found in [16].

TABLE I
FEATURES VS. UPDRS SCORE CORRELATION

Task Feature Correlation
Action tremor Average of Vp(θx),Vp(θy),Vp(θz) 0.77

Residual Energy of θEL : Er(θEL) 0.75
Tremor at rest Average of Vp(θx),Vp(θy),Vp(θz) 0.86

Residual Energy of θEL : Er(θEL) 0.34
Hand Pro-Sup Rotation axis tremor Vp(θy) 0.92

Leg agility Amp. of heel tapping : max(zhl) -0.42
HF energy content (knee) : Er(zkn) 0.73

Gait Mean speed over the sequence -0.51
Mean Step width over the sequence 0.67

Postural stability Variance of Center of Mass (COM) 0.95
Variance of Center of Pressure (COP) 0.93

Max. heel deviation w.r.t init pos. 0.90
Body angle variance 0.94

In Fig. 3, we compare the relative values of various
features for different motor tasks averaged across mild (score
0-2) and severe (score 3-4) cases over all the subjects. There
is a clear discrimination between the mild and the severe
symptoms. The center of mass (COM) trajectories of the
body for the mild and severe cases of postural stability are
plotted in Fig. 4a (for a single subject). The severe symptoms
with reduced postural stability led to larger variability in
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Mild : Score [0−2]

Severe : Score [3−4]

a) Action tremor b) Tremor at rest c) Gait d) Leg ag. & Hand P/S e) Postural stability
Fig. 3. In Fig. 3a through 3e, we demonstrate the quantitative differences between mild and severe symptoms for different features across
the motor tasks. The feature values are normalized to the unit range due to the various ranges of variations across different features. The
features appearing in the bar plots are as follows : F1,F2,F3 represent Vp(θx), Vp(θy) and Vp(θz) respectively. F4,F5 represents Er(θEL) and
the average entropy over θx,y,z respectively. Maximum heel deviation and body angle variances are represented by F6 and F7 respectively.
It can be seen that there is a clear discrimination between the mild and the severe symptoms.

the COM trajectory compared to the mild case. Similar
patterns were observed across other subjects as well. The
corresponding quantitative comparisons can be found in the
bar plot (Fig. 3e). We also computed the correlation of the
features with each UPDRS score ranging from 0 to 4 (not
just mild (0-2) vs. severe (3-4)). The results are given in
Table. I. This gives a quantitative measure on the sensitivity
of the features for subtle changes in symptoms and would
be useful for designing better features.

The SVM classifier’s performance for discriminating mild
vs. severe symptoms across various motor tasks is shown
in Fig. 4b. All the classifiers go through leave one out
cross validation tests i.e. we train the classifier on all but
one subject and use the motion capture data from the left
out subject for testing. The average classification accuracy
over all the subjects were 91.7% for action tremor and
tremor at rest, 100% for hand pronate-supinate, 95.8% for
leg agility, 83% for gait and 88% for postural stability. SVMs
with a nonlinear kernel also showed similar performance
characteristics. The average accuracy for discriminating on
vs. off states of the DBS were as follows: 80% for action
tremor, 91.67% for tremor at rest, 88.33% for hand pronate-
supinate and 70% for leg agility. Gait and postural stability
did not reflect the DBS state (on vs. off SVM classifiers had
low accuracy). This failure is most likely due to the fact that
the DBS primarily affects tremor related symptoms. In fact,
people with severe gait/postural disturbances are not even
considered to be fit for the DBS implantation as it might
actually worsen the postural stability and freezing [16].
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SVM based classifier

a) COM trajectories b) SVM classification
Fig. 4. Fig. 4a plots the trajectories of the center of mass (COM)
of the body for mild and severe symptoms of postural stability. In
Fig. 4b, we give the performance evaluation of the SVM classifiers
for discriminating mild vs. severe symptoms (AT: action tremor,
TAR: tremor at rest, HM: hand movement (pronate-supinate), LA:
leg agility, GT: gait and PS: postural stability).

IV. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have performed full body motion capture
of Parkinson’s patients with deep brain stimulators. We
have demonstrated that the spatio-temporal features com-
puted from the motion capture data gives a quantitative
measure of the severity of PD symptoms across various
motor components of the UPDRS. We leverage this property
of the features to train SVM classifiers for discriminating
between mild vs. severe symptoms. In future work, these
analysis techniques could potentially be extended for reliable,
quantitative tracking of disease progression.
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