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Abstract

Temporal segmentation of facial gestures in spontaneous
facial behavior recorded in real-world settings is an impor-
tant, unsolved, and relatively unexplored problem in facial
image analysis. Several issues contribute to the challenge of
this task. These include non-frontal pose, moderate to large
out-of-plane head motion, large variability in the temporal
scale of facial gestures, and the exponential nature of possi-
ble facial action combinations. To address these challenges,
we propose a two-step approach to temporally segment fa-
cial behavior. The first step uses spectral graph techniques
to cluster shape and appearance features invariant to some
geometric transformations. The second step groups the
clusters into temporally coherent facial gestures. We evalu-
ated this method in facial behavior recorded during face-to-
face interactions. The video data were originally collected
to answer substantive questions in psychology without con-
cern for algorithm development. The method achieved mod-
erate convergent validity with manual FACS (Facial Action
Coding System) annotation. Further, when used to prepro-
cess video for manual FACS annotation, the method signif-
icantly improves productivity, thus addressing the need for
ground-truth data for facial image analysis. Moreover, we
were also able to detect unusual facial behavior.

1. Introduction

Temporal segmentation of facial behavior from video
is an important unsolved problem in automatic facial im-
age analysis. With few exceptions, previous literature has
treated video frames as if they were independent, ignoring
their temporal organization. Facial actions have an onset,
one or more peaks, and offsets, and the temporal organi-
zation of these events is critical to facial expression under-
standing and perception [2, 5, 6]. For automatic facial im-
age analysis, temporal segmentation is critical to decompos-
ing facial behavior into action units (AUs) and higher-order

Figure 1. Temporal segmentation of facial gestures.

combinations or expressions [5], to improving recognition
performance of facial expression recognizers, and to detect-
ing unusual expressions, among other applications.

Several factors make the task of recovering the temporal
structure of facial behavior from video a challenging topic,
especially when video is obtained in realistic settings char-
acterized by non-frontal pose, moderate out-of-plane head
motion, subtle facial actions, large variability in the tempo-
ral scale of facial actions (both within and between event
classes) and an exponential number of possible facial ac-
tion combinations. To address these challenges, we propose
a two-step approach to temporally segment facial behavior.
The first step uses spectral graph techniques to cluster shape
and appearance features. The resultant clusters are invariant
to some geometric transformations. The second step groups
the clusters into temporally coherent facial gestures (fig. 1).
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This paper is organized as follows. Section 2 reviews
previous work on facial expression recognition and tempo-
ral segmentation. Section 3 reviews state of the art in clus-
tering algorithms. Section 4 proposes a method to discover
temporal clusters. Section 5 presents experimental results
and two novel applications of the method. One detects un-
usual or rare facial actions; the other increases the efficiency
of manual FACS annotation by preprocessing video using
automatic segmentation.

2. Previous work
There has been substantial effort devoted to automatic

facial image analysis over the past decade. Major topics
include facial feature tracking, facial expression analysis,
and face recognition[36, 26, 22]. Facial expression refers
to both emotion-specified expressions (e.g., happy or sad)
and anatomically based facial actions [14]. Comprehensive
reviews of automatic facial may be found in [30, 36, 22, 33].
Here we briefly review literature most relevant to the current
study.

The pioneering work of Black and Yacoob [3] recog-
nizes facial expressions by fitting local parametric motion
models to regions of the face and then feeding the resulting
parameters to a nearest neighbor classifier for expression
recognition. De la Torre et al. [10] use condensation and
appearance models to simultaneously track and recognize
facial expression. Chang et al. [18] use a low dimensional
Leipschitz embedding to build a manifold of shape variation
across several people and then use I-condensation to simul-
taneously track and recognize expressions. Lee and Elgam-
mal [21] use multi-linear models to construct a non-linear
manifold that factorizes identity from expression. Little-
worth et al. [23] learn an appearance classifier for facial
expression recognition. Shape and appearance features are
common to most work on this topic. More recently, inves-
tigators have proposed use of dynamic features in addition
to those of shape and appearance to recognize facial expres-
sions and actions [4, 7, 29]. Dynamics is relevant to tempo-
ral segmentation, in which the timing of facial actions (e.g.,
start, peak, and stop) must be parsed from the stream of be-
havior.

With few exceptions previous work on expression or ac-
tion unit recognition is supervised in nature (i.e. there is a
training set manually labeled) and little attention has been
paid to the problem of unsupervised temporal segmentation
prior to recognition. Manual segmentation is feasible for
constrained applications, such as in supervised learning. In
a pioneering study, Mase and Pentland [27] found that zero
crossings in the velocity contour of facial motion are useful
for temporal segmentation of visual speech. Recently, Hoey
[17] present a multilevel Bayesian network to learn the dy-
namics of facial expression. Irani and Zelnik [34] propose a
modification of structure-from-motion factorization to tem-

porally segment rigid and non-rigid facial motion.
These approaches all assume accurate registration prior

to segmentation. Accurate registration of non-rigid facial
features, however, is still an open research problem [36].
Especially for 2D image data, factorizing rigid from non-
rigid motion is a challenging problem. To solve this prob-
lem without recourse to 3D data and modeling, we propose
a clustering algorithm that is invariant to specific geomet-
ric transformations. This is the first step toward temporal
segmentation of facial actions. We then propose an algo-
rithm to group clusters effectively into temporally coherent
chunks. We show the benefits of our approach in two novel
applications. In one, we detect unusual or rare facial ex-
pressions and actions; in the other, we use the method to
preprocess video for manual FACS coding. By temporally
segmenting facial behavior, we increase the efficiency and
reliability of manual FACS annotation.

3. Algorithms for clustering
In this section we review the state of the art in clustering

algorithms. In this review, we use a new matrix formulation
that enlightens the connections between clustering methods.

3.1. K-means

Clustering refers to the partition of n data points into
c disjoint clusters. Among various approaches to unsuper-
vised clustering, k-means [25, 19] is one of the simplest and
most popular. k-means clustering splits a set of n objects
into c groups by minimizing the within clusters variation.
That is, k-means clustering finds the partition of the data
that is a local optimum of the energy function:

J(µ1, ...,µn) =
c∑

i=1

∑
j∈Ci

||dj − µi||22 (1)

where dj (see notation 1) is a vector representing the jth

data point and µi is the geometric centroid of the data points
for class i. The optimization criteria in previous eq. 1 can
be rewritten in matrix form as:

E1(M,G) = ||D−MGT ||F (2)
subject to G1c = 1n and gij ∈ {0, 1}

where G ∈ <n×c and M ∈ <d×c. G is a dummy indicator
matrix, such that

∑
j gij = 1, gij ∈ {0, 1} and gij is 1 if di

1Bold capital letters denote a matrix D, bold lower-case letters a col-
umn vector d. dj represents the j column of the matrix D. dij denotes the
scalar in the row i and column j of the matrix D and the scalar i-th element
of a column vector dj . All non-bold letters represent scalars. diag is an
operator that transforms a vector to a diagonal matrix or takes the diagonal
of the matrix into a vector. ◦ denotes the Hadamard or point-wise prod-
uct. 1k ∈ <k×1 is a vector of ones. Ik ∈ <k×k is the identity matrix.
tr(A) =

P
i aii is the trace of the matrix A and |A| denotes the determi-

nant. ||A||F = tr(AT A) = tr(AAT ) designates the Frobenious norm
of a matrix.
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belongs to class Cj , c denotes the number of classes and n
the number of samples. The columns of D ∈ <d×n contain
the original data points, and the columns of M represent
the cluster centroids; d is the dimension of the data. The
equivalence between the k-means error function and eq. 2
is valid only if G strictly satisfies the constraints.

The k-means algorithm performs coordinate descent in
E1(M,G). Given the actual value of the means M, the
first step finds for each data point dj , the gj such that one
of the columns is one and the others 0, and it minimizes eq.
2. The second step optimizes over M = DG(GT G)−1,
which is equivalent to computing the mean of each clus-
ter. Although it can be proven that alternating these two
steps will always converge, the k-means algorithm does not
necessarily find the optimal configuration over all possible
assignments. The algorithm is typically run multiple times
from different initial conditions with the best solution cho-
sen. Despite limitations, the algorithm is used fairly fre-
quently because of its ease of implementation and effective-
ness.

One of the advantages of relating the clustering problem
to an error function is the easy of deriving bounds. For in-
stance, after eliminating M, eq. 2 can be rewritten as:

E2(G) = ||D−DG(GT G)−1GT ||F = tr(DT D)

−tr((GT G)−1GT DT DG) ≥
∑min(d,n)

i=c+1 λi (3)

where λi are the eigenvalues of DT D. Minimizing eq. 3
is equivalent to maximizing tr((GT G)−1GT DT DG). Ig-
noring the special structure of G and considering the con-
tinuous domain, the G value that minimizes eq. 3 is given
by the eigenvectors of the covariance matrix DT D, and the
error is E2 =

∑min(d,n)
i=c+1 λi. A similar reasoning has been

reported by [12, 35], where they show that a lower bound of
eq. 3 is given by the residual eigenvalues. The continuous
solution of G lies in the c− 1 subspace spanned by the first
c− 1 eigenvectors with highest eigenvalues [12] of DT D.

3.2. Spectral graph clustering

Spectral graph clustering is popular because of its ease
of programming and favorable trade-off between accuracy
and computational complexity. Recently, [11, 8] pointed out
similarities between k-means and standard spectral graph
algorithms, such as Normalized Cuts [32], unifying both
approaches by means of kernel methods. The kernel is a
implicit way of ”lifting” the points of a dataset to a higher
dimensional space in which they may be linearly separable
(assuming that such a mapping can be found). Let us con-
sider a mapping of the original points to a higher dimen-
sional space, Γ = [ φ(d1) φ(d2) · · · φ(dn) ] where φ is a
high dimensional mapping. The kernelized version of eq. 2
will be [8]:

E3(M,G) = ||(Γ−MGT )W||F (4)

where we have introduced a weighting ma-
trix W for normalization purposes. Eliminating
M = ΓWWT G(GT WWT G)−1, it can be shown
that:

E3 ∝ −tr((GT WWT G)−1GT WWT ΓT ΓWWT G) (5)

where ΓT Γ is the standard affinity matrix in Normal-
ized Cuts [32]. After a change of variable Z =
GT W, the previous equation can be expressed as
E3(Z) ∝ −tr((ZZT )−1ZWT ΓT ΓWZT ). Choosing
W = diag(ΓT Γ1n)−0.5 the problem is equivalent to solv-
ing the Normalized Cuts problem. Observe that this formu-
lation is more general since it allows for arbitrary kernels
and weights. Also, observe that the weight matrix could
be used to reject the influence of a pair of data points with
unknown similarity (i.e. missing data).

3.3. Invariant clustering

In practice, most spectral graph methods (e.g. Normal-
ized Cuts [32]) compute the eigenvector of the normalized
affinity matrix diag(ΓT Γ1n)−0.5ΓT Γdiag(ΓT Γ1n)−0.5.
Eigenvectors computed in this way provide an embedding
better suited for clustering with standard algorithms such as
k-means [32]. Given a video with a set of tracked facial
features, success of temporal segmentation depends in part
on the ability to compute a set of clusters that are invari-
ant to geometric transformations. In this section, we show
how this might be accomplished for shape and appearance
features.

We assume that facial features have been tracked using
Active Appearance Models (AAMs) [28, 9] (see fig. 6).
Given the fiduciary points of the AAM we interpolate be-
tween points with a spline curve, which results in a non-
uniform sampling of the shape (see fig. 2 for an example
in the mouth region). Given the interpolated tracked shape,
we then estimate the affinity matrix K = ΓT Γ by comput-
ing all possible pairwise distances between the samples. To
compensate for in-plane rigid motion, we remove the simi-
larity transform between all possible pairs of shapes (i.e. set
of points tracked by the AAM) at different time instances.
That is, given the shape at times 1 and 2, s1 and s2, k12 =

e
−||s1−Hs2||

2
2

2σ2
s , where H =

 r cos α r sinα tx
−r sinα r cos α ty

0 0 1

 is

a matrix with 4 parameters (x and y translation, rotation,
scale). H is optimally computed for each pair of shapes. A
more general H can represent an homography or an affine
transformation that can compensate for out-of-plane rota-
tions. It is well known [1] that the 2D projected motion field
of a 3D planar surface can be recovered under orthographic
projection (x = X and y = Y ) by an affine model.

Observe that K is symmetric but there is no guarantee
that it is positive definite, which could cause degenerate so-
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lutions. However, in our experimental results we encounter
no problems of this type.

Figure 2. Number of samples in each segment.

Shape features alone are unlikely to capture differences
between subtle facial gestures. For instance, we can have
two completely different gestures with the same shape (see
fig. 3 bottom). To compensate for this effect, we incorpo-
rate appearance features. The appearance features are ex-
tracted by a geometric invariant histogram recently intro-
duced in [13]. We can decouple the effects of registration
in the appearance representation since the histogram pro-
posed in [13] is invariant to perspective transformations (see

fig. 3). The final affinity matrix is kij = e
−||si−Hijsj ||

2
2

2σ2
s ∗

e
−||hi−hj ||

2
2

2σ2
a , where hi is the invariant histogram of ith sam-

ple (in a given region) and σa is the standard deviation of
the appearance invariant histogram.

Figure 3. Features used for temporal segmentation.

4. Discovering temporal clusters
Once the facial features have been clustered into coher-

ent shape/appearance clusters, the goal is to group them into
a set of dynamic facial gestures (sets of consecutive clusters

that occur more than p times, where p is a user specified
criterion). In this section, we propose a simple but effective
method to search for temporal coherent clusters.

4.1. Removing temporal redundancy

In a first step, we automatically detect all neutral expres-
sions (i.e. AU 0 in FACS) [5] because they are usually the
most common facial “cluster” and are useful in many recog-
nition tasks. To detect subtle facial actions, for instance, it is
necessary to compute the difference between a neutral and
target image [24]. The algorithm to detect AU0 works as
follows: first, we compute the normalized error between the
shape/appearance at time t and time t− 1. A two-state Hid-
den Markov Model (HMM) is used to temporally segment
the time instants that contain appearance/shape changes.
The transition probabilities in the HMM are computed using
a logistic regression function. For state 0, representing no-
change, the probability is given by 1

1+e−βx and similarly for
the other state 1

1+e−β(x+τ) ). x is the normalized error and
β, τ are parameters computed from the error histogram. To
find a maximum a posteriori solution, the standard Viterbi
algorithm (dynamic programming) is executed. This iden-
tifies a set of static facial expressions, for which there is no
movement for two or more frames. This set includes AU 0
as well as other action units. In the next step, we separate
AU 0 from other AUs by performing spectral clustering of
the shape/appearance features. The cluster that has an av-
erage mean aperture of the mouth smaller than a threshold
and contains the larger number of samples is classified as
AU0. Fig 4 illustrates the process.

Figure 4. Process to automatically detect AU0.

The second step in discovering temporal clusters is to
achieve temporal invariance to the speed of the facial ges-
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ture. Towards this end, we first remove all the consecutive
frames that belong to the same cluster. In this way only the
changes in cluster state are preserved. Once this process is
completed, the video is reduced in length to about 10−20%
its original size. See fig. 8.a and 8.b .

4.2. Temporal correlation to discover facial ges-
tures

Once we have simplified the temporal representation of
the video sequence, we are ready to find temporal patterns
of different lengths. The algorithm starts selecting long
patterns (usually 8 − 9 consecutive clusters) as templates.
Then, it computes normalized correlation of each of the
templates with the sequence. All the instances that have
normalized correlation of 1 (i.e. same pattern as the tem-
plate) are removed from the sequence. If the data is too
noisy, smaller thresholds than 1 can be imposed. After that,
the algorithm selects smaller templates (typically one clus-
ter less), searches again for all instances of normalized cor-
relation 1, and proceeds this way until all the frames have
been searched.

Fig. 5 shows how the algorithm works on synthetic data
containing three temporal clusters of length 4 (fig. 5.a and
5.b). The algorithm automatically discovers the 3 temporal
clusters.

Figure 5. a) 3 synthetic clusters b) Synthetic sequence c) Temporal
clusters found by our algorithm.

5. Experiments
We evaluated the algorithm two ways. One, we tested

its ability to temporally segment facial gestures and iden-
tify ones that occur rarely. Two, we used it to preprocess
video of spontaneous facial expression intended for FACS
annotation.

5.1. Temporal segmentation of mouth events

In this experiment, we have recorded a video sequence
in which the subject spontaneously made five different fa-
cial gestures (sad, sticking out the tongue, speaking, smil-
ing, and neutral). We use person-specific Active Appear-
ance Models [28, 9] to track the non-rigid/rigid motion in
the sequence (see fig. 6).

Figure 6. AAM tracking across several frames.

After using AAM to track the video sequence, we use
the algorithm proposed in Sections 4.1 and 4.2 to identify
clusters (see fig. 7 for AU0) and remove temporal redun-
dancy from the video sequence. By eliminating consecutive
frames that have the same cluster label, sequence length is
reduced to 20% of the original length (see fig. 8.a and 8.b).
Then, the temporal segmentation algorithm discovers the fa-
cial gestures shown in 8.c. Observe that there are some time
windows that remain unclassified. These windows corre-
spond to gestures lasting only a single frame or ones that
are unusual or infrequent.

Figure 7. Examples of detected AU0.

Accuracy of the clustering approach was confirmed
by visual inspection. The results of the video
can be downloaded from www.cs.cmu.edu/˜ftorre/
seg facial behavior.avi. Fig. 9 shows one frame of the
output video resulting from finding the temporal clusters in
the video sequence. Each frame of the video contains three
columns, the first column shows the original image fitted
with a person-specific AAM [28] model. The second col-
umn represents a prototype of each of the clusters found by
the algorithm. The third column shows all facial gestures
found in the video. In each frame, the cluster and temporal

5



Figure 8. a) Original sequence of clusters. b) Sequence of clusters
with just the transitions. c) Discovered facial gestures.

gesture that corresponds to the image is highlighted.

Figure 9. Frame of the output video.

5.2. Computer-Assisted system to increase speed
and reliability of manual FACS coding

FACS (Facial Action Coding System [14]) coding is the
state of the art in manual measurement of facial action [5].
FACS coding, however, is labor intensive and difficult to
standardize. A goal of automated FACS coding [6] is to
eliminate the need for manual coding and realize automatic
recognition and analysis of facial actions. Completing the
necessary FACS coding for training and testing algorithms
has been a rate-limiter. Manual FACS coding remains ex-

pensive and slow. The speed, efficiency, and quality control
of FACS coding can be increased dramatically by making
use of the temporal segmentation proposed in this paper to
preprocess video streams for human coders.

5.2.1 Current Approaches to FACS coding

Currently, FACS coders typically proceed in either single
or multiple passes through the video. When a single-pass
procedure is used, they view the video and code the occur-
rences of all target action units in each frame. As they pro-
ceed, they may easily have to remain alert to as many as
20, 30, or more action units simultaneously. They must be
generalists and watch for all possible action units. Coding
proceeds slowly (because all AUs must be considered), and
quality suffers because similar action units occurring at dif-
ferent frames cannot be reviewed together. Instances of any
given AU may be separated by long periods of coding other
AUs, which interferes with the ability to visually recall past
occurrences. When coders proceed in multiple passes, qual-
ity improves because only a subset of AUs is coded in any
given pass. The coder is then a specialist, looks only for
those few AU and benefits from memory of previous occur-
rences in the same subject. This process is inefficient, how-
ever, because the coder must view potentially long expanses
of video that do not include any of the target AUs. Visual
memory becomes impaired as the time between coding of
the same or related AUs stretches out.

The inefficiency in both approaches is not inherent to
FACS. It is inherent to the failure of technology to make
coders more productive by providing them with relatively
homogeneous video to process. In this section, we show
how our dynamic clustering segments video likely to con-
tain similar action units. FACS coders will no longer need
to code all possible AUs in one pass, which compromises
quality and efficiency; nor will they need to code in multi-
ple passes, which wastes their attention during uneventful
segments and challenges visual memory, albeit less than in
the single pass case. We will present the FACS coder with
preprocessed video segments that are likely to contain the
target AU, resulting in a faster and more reliable FACS cod-
ing.

5.2.2 Grouping facial expressions

We use subject 19 from the DS107 database [16]. The
DS107 is a deception scenario in which 20 young adults
must convince an interviewer of their honesty whether or
not they are guilty of having taken a sum of money. In the
observational scenario, subjects entered a room in which
there was or was not a check for a specified amount (typi-
cally $100). Subjects were instructed that they could take
the check if they wished and then would be interrogated
about their actions. The subject’s task then was to convince
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Subject Accuracy # of clusters # of frames
19 68% 21 558

Table 1. Clustering Accuracy.

the interrogator that they had not taken the check whether or
not they had. We have tracked the facial features of subject
19 with AAMs [28, 9]. We remove AU0 by the procedure
describe in section 4. After the preliminary processing we
have 558 frames that have been manually labeled into 21
AUs by a certified FACS coder. This manual FACS coding
provides ground truth for the analysis.

From the shape and appearance data, we compute the
affinity matrix K with shape and appearance information
and compute the first 20 eigenvectors. We run 50 itera-
tions of k-means in the embedded space and keep the so-
lution with smallest error. To compute the accuracy of the
results for a c cluster case with the ground truth, we com-
pute a c−by−c confusion matrix C, where each entry cij is
the number of samples in cluster i, which belong to class
j. It is difficult to compute the accuracy by only using the
confusion matrix C because we do not know which cluster
matches which class. An optimal way to solve for the cor-
respondence [20] is to compute the following maximization
problem:

max tr(CP) | P is a permutation matrix (6)

and the accuracy is obtained by dividing the results for the
number of data points to be clustered. To solve eq. 6, we
use the classical Hungarian algorithm [20]. Table 1 shows
the accuracy results. The clustering approach achieved 68%
agreement with manual annotation, which is comparable to
the inter-observer agreement of manual coding (70%).

It is interesting to notice that the clustering results de-
pend on the shape and appearance parameters, i.e. σs and
σa. Figure 10 shows the accuracy as a function of these
two parameters, and we can observe that it is stable over a
large range of values.

6. Conclusions and Future work
In this paper we have presented a method for temporal

segmentation of facial behavior and illustrate its usefulness
in two novel applications. The method is invariant to geo-
metric transformations, which is critical in real-world set-
tings in which head motion is common. The method clus-
ters similar facial actions, identifies unusual actions, and
could be used to increase the reliability and efficiency of
manual FACS annotation.

The current implementation is for the mouth region. This
is the most challenging region in that the degrees of free-
dom of facial motion are largest in this region. The densest
concentration of facial muscles is in the mouth region and
the range of motion includes horizontal, lateral, and oblique

Figure 10. Accuracy variation versus σa and σs.

[15]. Also, because of higher concentration of contralateral
innervation in the lower face, the potential for asymmetric
actions is much greater than for the rest of the face [31]. To
be useful, a system must include all facial regions. Current
work expands clustering to include eye, midface, and brow
features.
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