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Fast and Robust Circular Object Detection
with Probabilistic Pairwise Voting (PPV)
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Abstract—Accurate and efficient detection of circular objects
in images is a challenging computer vision problem. Existing
circular object detection methods can be broadly classified into
two categories: Hough Transform based and maximum likelihood
(ML) estimation based. The former is robust to noise, however
the computational complexity and memory requirement are high.
On the other hand, ML estimation methods (e.g., robust least
squares fitting) are more computationally efficient but sensitive
to noise, and can not detect multiple circles. This letter proposes
Probabilistic Pairwise Voting (PPV), a fast and robust algorithm
for circular object detection based on an extension of Hough
Transform. The main contributions are three fold: (1) We
formulate the problem of circular object detection as finding the
intersection of lines in the three dimensional parameter space (i.e.
center and radius of the circle). (2) We propose a probabilistic
pairwise voting scheme to robustly discover circular objects
under occlusion, image noise and moderate shape deformations.
(3) We use a mode-finding algorithm to efficiently find multiple
circular objects. We demonstrate the benefits of our approach on
two real-world problems: i) detecting circular objects in natural
images, and ii) localizing iris in face images.

Index Terms—Circular object detection, circular Hough Trans-
form, iris localization.

I. INTRODUCTION

C IRCULAR object detection is an important problem in
computer vision due to its wide applicability to problems

such as biological cell tracking, inspection (e.g., mechanical
parts detection) and biometrics (e.g., iris localization). Existing
methods can be broadly classified into two categories: maxi-
mum likelihood estimation (MLE) based and voting based. In
the following, we will discuss the benefits and drawbacks of
both approaches.

The MLE approach to circle fitting was first proposed by
Gander et al. [1], where they directly estimate the parameter of
the circle as a least square estimation problem. In order to im-
prove detection accuracy, Zelniker et al. [2] extended [1] with
convolution-based MLE to estimate the parameter of circular
object. Frosio and Borghese [3] employed prior knowledge of
foreground and background statistics to estimate the likelihood
of circular objects. Despite substantial improvements, these

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

L. Pan is with University of Electronic Science and Technology of
China, Chengdu, Sichuan 611731, China, and also with the Robotics In-
stitute, Carnegie Mellon University, Pittsburgh, PA 15213, USA (e-mail:
lilip@andrew.cmu.edu).

W.-S. Chu and F. De la Torre are with the Robotics Institute, Carnegie Mel-
lon University, Pittsburgh, PA 15213, USA (e-mail: wschu@andrew.cmu.edu,
ftorre@cs.cmu.edu).

J. M. Saragih is with the ICT Center, CSIRO, Brisbane, QLD 4096,
Australia (e-mail: Jason.saragih@csiro.au).

pairwise voting

(a) Input image and edge points (b) Mode-�nding in x-y-r parameter space

optimal parameter hypothesisx

y

y

x

r

x

Fig. 1. The proposed circular objection detection method.

approaches are still sensitive to noise, partial occlusion and
background clutter. Moreover, it is unclear how to extend these
approaches to detect multiple circles.

Unlike MLE-based methods, voting-based methods are
more robust against noise and occlusion. The most commonly
used voting-based algorithm is the Circular Hough Transform
(CHT) [4]. A major drawback of the method is the need to
build a 3-dimensional accumulator array of circle parameter
(i.e. center and radius), resulting in high computational com-
plexity and memory requirements. In [5], Xu et al. reduced
computational complexity by randomly selecting a subset of
edge points for voting. Another approach for reducing the
computational expense of CHT is to leverage gradient infor-
mation of every edge point. Valenti and Gevers [6] utilized
the first and the second order gradient derivatives to estimate
the curvature and radius of every possible circular object. In
practice, estimating the radius based on gradient derivatives
can be inaccurate in the presence of noise and shape defor-
mations. The work of [7] and [8] used 2-D gradient lines
and calculated their intersections for circular object detection.
These two methods improved the efficiency of circular object
detection substantially. However, they suffer from two inherent
drawbacks: firstly, it is unclear how to estimate the radius of
circular objects from 2-D gradient lines in image space only;
secondly, iterative search is required when detecting multiple
circular objects.

To circumvent the aforementioned limitations in existing
methods, this work proposes a fast and robust circular object
detection method based on three key ideas. First, we param-
eterize the circles as lines in the three dimensional parameter
space. This allows one to estimate the radius and center rapidly
together. Second, we use a probabilistic weighting scheme to
improve robustness of the detection. Third, we use a fast mode-
finding algorithm that allows the rapid and robust detection of
multiple circular objects. Fig. 1 illustrates the idea of the letter.
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Fig. 2. Center projection line analysis.

II. THE PROPOSED ALGORITHM

A. Center Projection Line
Consider the edge map of a noiseless image with a single

ideal circular object, as shown in Fig. 2(a). The center location
and radius of this circular object is represented by (xc, yc)

T ∈
R2 and rc ∈ R, respectively. For each edge point, we have
pi = {xi, yi, ϕi}, where (xi, yi)

T ∈ R2 is the pixel location
and ϕi ∈ R is the angle of the gradient direction. Based on
the fact that the gradient direction of an edge point of circular
object points either towards or away from its center, we have
the following relationships:

xc = xi − rc cosϕi and yc = yi − rc sinϕi. (1)

Here, we consider the case where the edge gradient direction
is pointing away from the object’s center. Once the circle is
parameterized by Eq. (1), it is easy to see that the parameter
of all possible circular objects that contain pi lie on a 3-D
line li in x-y-r parameter space. We will refer to this line
as the center projection line and illustrate it in Fig. 2(b). The
parametric equation of the line li takes the form: x

y

r

 =

 xi

yi

0

+ r

 − cosϕi

− sinϕi

1

 , r > 0. (2)

Fixing the radius, r = rc, implies that the object’s center
location is (xc, yc). For a noiseless image with a single ideal
circular object, all edge points are on the object’s boundary
and their center projection lines intersect at a single point xc =
(xc, yc, rc)

T ∈ R3 in the parameter space (see Fig. 2(b)). This
intersection corresponds to the circular object’s parameter.

In practice, image noise and background clutter often result
in multiple intersection points. Here, the optimal point xc is
defined as the point through which the maximum number of
center projection lines pass. This can be found through pair-
wise voting: calculating the intersection point of every pair of
center projection lines and voting for the point with maximum
intersections. Unlike previous approaches to circle detection
based on the 2-D gradient lines [7], [8], our approach can
obtain the center position and radius simultaneously by virtue
of formulating center projection lines in the 3-D parameter
space. This is one of our main contributions.

B. Probabilistic Pairwise Voting
Due to noise and deviations from an ideal circle, center

projection lines may not intersect in the parameter space even

when they are associated with the same circular object. Thus,
the hard voting schemes used in standard Hough Transform are
not adequate. Instead, we propose a pairwise voting procedure
under a probabilistic framework that is robust against small
shape deformations and noise. This formulation also enables
the search for the optimal parameter hypothesis in continuous
space through the use of mode-finding algorithms.

Given two edge points pi and pj , we first calculate the
probability that they are located on the same circular object,
denoted by p (oij = O|pi,pj). Here, oij is a random variable
representing whether pi and pj are both on the same circular
object (i.e. satisfying hypothesis ‘O’) or not. If they are on
the same circular object boundary, their corresponding center
projection lines should intersect in the ideal case. Although
the existence of shape deformations and noise in real-world
images means that this is often not the case, the minimum
distance (after scale normalization) between these lines is a
reasonable measure to use as it is related to the degree to
which the object is deformed, and thus, how circle-like it is.

The minimum distance between two center projection lines
can be found as follows. First, observe that any two lines, li
and lj , are intersected by a third that is perpendicular to both
(see Fig. 3). Let us denote by xij = (xij , yij , rij)

T and xji =

(xji, yji, rji)
T the intersection points of the perpendicular line

with the other two. xij and xji are calculated based on the
truth that the inner product of two perpendicular vectors is
zero.‖xij − xji‖2 is the minimum distance between the two
center projection lines. Then, we model the likelihood that two
edge points correspond to the same circular object as:

πij =

{
1
C exp

(
−‖xij−xji‖22

r̄2ijt

)
if ‖xij−xji‖2

r̄ij
< τ

0 otherwise
, (3)

where πij is shorthand for p (oij = O|pi,pj), r̄ij =
(rij+rji)

2
is a normalization factor that eliminates the effects of size
variations, and C is a normalizing constant that ensures πij is
a proper probability. t and τ are positive constants that trade
off detection accuracy against shape deformation robustness.
From Eq. (3), we can see this likelihood term is equal to
zero if the minimum normalized distance between two center
projection lines is larger than τ . This follows from the intuition
that the probability of two edge points belonging to the same
circular object is zero if this minimum distance is large.

Each pair of edge points (including their locations and
gradient directions) lines to the distribution of circular object
parameters. Specifically, the likelihood of the circular object’s
parameter θ = (xc, yc, rc)

T given two edge points lying on it
is modeled as an isotropic Gaussian:

p (θ|oij = O,pi,pj) = N
(
θ; x̄ij , σ

2
ijI
)
, (4)

where x̄ij =
xij+xji

2 is the point that is closest to both projec-
tion lines li and lj (see Fig. 3). In Eq. (4), σij = r̄ijw, where
w is a constant scaling factor. Combining Eqs. (3) and (4) and
using Bayes’ theorem, then the conditional probability of both
edge points lying on the boundary of the same circular object
whose center and radius are represented by θ is:

p (oij = O, θ|pi,pj) = p (θ|oij = O,pi,pj) p (oij = O|pi,pj) ,
(5)
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Fig. 3. Pairwise probabilistic voting analysis.

C. Optimal Hypothesis Search

The score of a parameter hypothesis can be found by
marginalizing over all edge point pairs that contribute to this
hypothesis:

S (O, θ) =
∑
i

∑
j

p (oij = O, θ|pi,pj) p(pi,pj). (6)

Assuming p(pi,pj) is a uniform distribution:

S (O, θ) ∝
∑
i

∑
j

p (oij = O, θ|pi,pj)

∝
∑
i

∑
j

πij N
(
θ; x̄ij , σ

2
ijI
)
. (7)

The optimal hypothesis corresponds to the maximum of this
distribution. Following [9], we can use quadratic maximization
combined with gradient ascent to find the local modes of the
underlying mixture of Gaussian distributions rapidly or just
use mean shift. For multiple circular objects detection, we
simply retain the k-best modes. k is the number of modes
whose corresponding score (defined in Eq. (6)) normalized by
scale is larger than a threshold ζ.

The computational complexity of our algorithm is
O
(
N2 + hM

)
, where N is the number of edge pixels, M

the number of non-zero components in Eq. (7), and h the
number of steps that the mode-finding algorithm takes to
converge. The memory requirement of our algorithm is O(M).
In comparison, for CHT [4], the computational cost is O(n2N)
and the memory requirement is O(n3) given the size of
parameter space is n×n×n. Because the number of iterations
h is typically small, and N � n2, the computational complex-
ity and memory requirements of the proposed algorithm are
lower than CHT. Moreover, we can speed up our method by
randomly sampling edge points.

III. EXPERIMENTS

We demonstrate the effectiveness of the proposed algorithm
on two tasks: detecting circular objects in natural images and
localizing iris in face images. All experiments were imple-
mented in Matlab on 2.80 GHz Intel Core 2 Duo processor.

A. Detecting Circular Objects in Natural Images

We compare PPV against a number of existing methods on
four typical natural images gathered from Google Image1. The

1Find at http://humansensing.cs.cmu.edu/wschu/project circdet.html

(a) (b) (c) (d)

Fig. 4. Circle detection results. (a) occlusion; (b) background clutter; (c)
shape deformation; (d) multiple circular objects.

selected four representative images included partial occlusion,
background clutter, shape deformation and multiple circular
objects (see Fig. 4). The sizes of the four test images are
400× 286, 429× 440, 224× 225 and 406× 356 respectively.
We compared PPV with three circle detection algorithms:
1) Circular Hough Transform (CHT) [4], 2) Randomized
Circle Detection (RCD) [10], and 3) Approximate Maximum-
Likelihood Estimation (AMLE) [2]. Each input image was
smoothed with a Gaussian filter with standard deviation 2.0,
and an edge map was then generated for each image using a
Canny edge detector with a low (high) threshold of 0.16 (0.4).
For PPV, we set the threshold τ to be 0.2 and fixed t = 0.2τ
in Eq. (4). For CHT, we used the hard voting scheme.

TABLE I
DETECTION RESULT ANALYSIS ON NATURAL SCENE IMAGES

algorithm Fig.4 (a) Fig.4 (b) Fig.4 (c) Fig.4 (d)
CHT [4]
error in (xc, yc) 0.5 1.4 8.6 1.0
error in rc 2.0 1.0 6.0 0.4
time 79.32s 179.70s 8.61s 176.88s
RCD [10]
error in (xc, yc) 1.5 1.4 0.6 0.5
error in rc 1.0 1.0 0.0 0.5
time 2.08s 4.16s 1.91s 5.12s
AMLE [2]
error in (xc, yc) 2.2 142.2 0.3 -
error in rc 2.5 10.3 0.5 -
time 0.08s 0.12s 0.03s -
PPV
error in (xc, yc) 3.2 0.8 0.4 0.6
error in rc 0.0 0.5 0.1 0.7
time 0.59s 0.86s 0.13s 3.18s

The detection results of PPV are shown in Fig. 4. For
each image, the performance of the different methods were
evaluated using the Root Mean Square (RMS) error of the
center position (xc, yc) and radius rc. The ground-truth was
manually labeled. The error and the running time for each
algorithm is reported in Table I.

The proposed algorithm has 98.93% and 40.08% execution
time improvement over CHT and RCD respectively. Although
AMLE was faster than PPV, it was more sensitive to back-
ground clutter and noise. This can be seen in the second col-
umn of Table I, where AMLE has the largest RMS-error when
tested on Fig. 4(b). Moreover, MLE-based approaches can not
account for multiple circular objects.CHT has relatively large
RMS-error on Fig. 4(c) since it is based on hard voting and
thus can not tolerate shape deformations. The RCD method
has comparable accuracy to PPV, but it is slower.
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Fig. 5. Eye localization results on CMU Multi-PIE database.

B. Localizing the Iris in Face Images

To further demonstrate PPV’s effectiveness, we tested it
on the challenging task of localizing the iris in face images.
We used 920 frontal face images from 337 persons from the
CMU Multi-PIE face database [11]. Finding iris in face image
is a particularly challenging problem because of reflections
from eye glasses, occlusions from eyelash, eyelid and hair.
Moreover, out-of-axis gazing is also present in some images.

To evaluate the eye localization accuracy, we used the
normalized error as in [6]:

e =
max (dl, dr)

‖Cl − Cr‖
, (8)

where dl is the Euclidean distance between the localized left
eye center and the ground-truth. Similarly, dr is defined for
the right eye. Cl and Cr are the ground truth positions for left
and right eye centers.

We first evaluated the effect of the parameter τ in Eq. (3)
on the localization performance. This parameter trades off
robustness to shape deformation against localization accuracy.
Through out this experiment, the low and high thresholds for
the Canny operation were set at 0.1 and 0.25. All local modes
in parameter space were obtained. For each mode, we deter-
mined which edge point pairs contribute to this hypothesis
and calculate the sum of their gradient derivatives. Finally,
the two consistent hypotheses whose related edge points’
gradient derivative sums are maximal were selected. Since
some subjects wear circle-like shape glasses, we imposed scale
constraints for the final selection. We used e < 0.05 and
e < 0.1 to measure the localization performance of our algo-
rithm with different τ values (t = 0.2τ ), and the localization
accuracy are reported in Fig. 6(a). The best performance was
obtained for τ = 0.4.

Apart form CHT and AMLE, we also compared PPV
with the state-of-art circle detection based iris localization
algorithms: Maximum Isocenter + Mean Shift (MIC+MS)
[6]. In every baseline method, we detected the two circles
whose gradient magnitude integration along circular object
edge are maximal. For better comparison, the localization
was applied in the upper face region (including two eyes,
eyebrows, hair, eye glasses etc.) instead of detected eye regions
used in [6]. Fig. 6(b) plots the accuracy of the four methods
for different normalized errors. Larger area under the curve
indicates a better performance. Because MIC estimates radii by

τ e < 0.05 e < 0.1

0.1 77.83% 86.09%
0.2 79.13% 89.67%
0.3 79.46% 90.22%
0.4 80.46% 90.43%
0.5 79.35% 90.33%
0.6 78.91% 89.33%
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Fig. 6. Our results: (a) localization accuracy under different τ and normalized
error e, (b) cumulative error distribution curves.

gradient derivative, it is inaccurate under noise and small shape
deformations in real-world. On the other hand, PPV considers
shape deformations and noise when calculating every vote and
hence can achieve better results. Similarly, the hard voting
scheme used in the traditional CHT fails to account for non-
circular shape deformations, leading to poor performance.
Moreover, because AMLE is sensitive to noise and background
cluster, it also have inferior performance to PPV. The average
computational costs for CHT, MIC+MS, AMLE and PPV are
23.77s, 0.11s, 0.12s and 0.30s.

IV. CONCLUSION

This work proposes PPV for fast and robust circular object
detection. PPV is robust to occlusion, noise, and small shape
deformations and it can detect multiple circular objects in
a single image. Experiments of detecting circular objects in
natural images and localizing iris in face images illustrates
the benefits of PPV against the state-of-the-art methods.
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