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Factorized Graph Matching
Feng Zhou and Fernando De la Torre

Abstract—Graph matching (GM) is a fundamental problem in computer science, and it plays a central role to solve correspondence
problems in computer vision. GM problems that incorporate pairwise constraints can be formulated as a quadratic assignment problem
(QAP). Although widely used, solving the correspondence problem through GM has two main limitations: (1) the QAP is NP-hard and
difficult to approximate; (2) GM algorithms do not incorporate geometric constraints between nodes that are natural in computer vision
problems. To address aforementioned problems, this paper proposes factorized graph matching (FGM). FGM factorizes the large
pairwise affinity matrix into smaller matrices that encode the local structure of each graph and the pairwise affinity between edges.
Four are the benefits that follow from this factorization: (1) There is no need to compute the costly (in space and time) pairwise affinity
matrix; (2) The factorization allows the use of a path-following optimization algorithm, that leads to improved optimization strategies
and matching performance; (3) Given the factorization, it becomes straight-forward to incorporate geometric transformations (rigid and
non-rigid) to the GM problem. (4) Using a matrix formulation for the GM problem and the factorization, it is easy to reveal commonalities
and differences between different GM methods. The factorization also provides a clean connection with other matching algorithms
such as iterative closest point; Experimental results on synthetic and real databases illustrate how FGM outperforms state-of-the-art
algorithms for GM. The code is available at http://humansensing.cs.cmu.edu/fgm.

Index Terms—Graph matching, Feature matching, Quadratic assignment problem, Iterative closet point method.
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1 INTRODUCTION

E STABLISHING correspondence between two sets of
visual features is the key of many computer vi-

sion tasks, such as object tracking [1], structure-from-
motion [2], and image classification [3]. While solving
the correspondence between images is still an open prob-
lem in computer vision, much progress has been done
in the last decades. Early works such as RANSAC [4]
and iterative closest point (ICP) [5] assume that the
location of image features are constrained explicitly
(e.g., a planar affine transformation) or implicitly (e.g.,
epipolar ones) by a parametric form. While these meth-
ods achieved great success in exploring consistent cor-
respondence between feature points, they are limited
to correspondence problems with rigid transformations.
Unlike conventional methods, graph matching (GM)
formulates the correspondence problem as solving the
matching between two graphs. In the past decades, GM
has found wide application to address several problems
such as shape matching in 2-D [6] and 3-D [7], object
categorization [8], [9], feature tracking [1], symmetry
analysis [10], action recognition [11], [12], kernelized
sorting [13], and protein alignment [14]. Compared to
RANSAC and ICP, GM incorporates pairwise node in-
teractions which are important features when matching
structural objects (e.g., human bodies). Fig. 1 illustrates
an example of matching two graphs, where the nodes are
image locations returned by a body part detector. Match-
ing the graphs using only similarity between nodes (i.e.,
features) might lead to undesirable results because some
features of nodes (e.g., hands, feet) are likely to be simi-
lar. GM adds pairwise information between nodes (e.g.,
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Fig. 1. Matching two human bodies with 5 and 4 fea-
tures using FGM. FGM simultaneously estimates the
correspondence and a smooth non-rigid transformation
between shapes. FGM is able to factorize the 20 × 20
pairwise affinity matrix as a Kronecker product of six
smaller matrices. The first two groups of matrices of size
5 × 16 and 4 × 10 encode the structure of each of the
graphs. The last two matrices encode the affinities for
nodes (5× 4) and edges (16× 10).

length of the limbs, orientation of edges) that constraints
the problem and better correspondences are found.

Although extensive research has been done for
decades, there are still two main challenges in solving
GM. (1) Mathematically, GM is formulated as a quadratic
assignment problem (QAP) [15]. Unlike the linear assign-
ment problem, which can be efficiently solved with the
Hungarian algorithm [16], the QAP is known to be NP-
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hard. Therefore, the main body of research in GM has
focused on devising more accurate algorithms to solve it
approximately. Nevertheless, approximating GM by re-
laxing the combinatorial constraints is still a challenging
problem. This is mainly because the objective function
is in general non-convex and thus existing methods are
prone to local optima. (2) Many matching problems
in computer vision naturally require global constraints
among nodes. For instance, given two sets of coplanar
points in two images, the matching between points
under orthographic projection should be constrained by
an affine transformation. Similarly, when matching the
deformations of non-rigid objects between two consec-
utive images, that deformation is typically smooth in
space and time. Existing GM algorithms do not constrain
the nodes of both graphs to a given geometric transfor-
mation (e.g., similarity, affine or non-rigid). For instance,
how to constrain the global deformation of the human
body configuration shown in Fig. 1.

In order to address these issues, this paper presents
factorized graph matching (FGM), a novel framework
for optimizing and constraining GM problems. The key
idea behind FGM is a closed-form factorization of the
pairwise affinity matrix that decouples the local graph
structure of the nodes and edge similarities. This factor-
ization is general and can be applied to both undirected
and directed graphs. For instance, consider the matching
of the two human bodies shown in Fig. 1. The body
configurations are represented by two directed graphs
with 5 and 4 features, and 16 and 10 edges respectively.
Conventional GM algorithms need to construct a large
pairwise affinity matrix (20-by-20 in this case). Whereas
FGM only requires six small matrices to be computed.
In our example (Fig. 1), the first two binary matrices are
of dimension 5-by-16 and the second two of dimensions
4-by-10 and describe the local structure of the first and
second graph. The last two matrices are of dimensions
5-by-4 and 16-by-10, and they encode the similarity
between nodes and edges respectively.

The main contribution of this paper is to propose the
factorization of the affinity matrix and illustrate four
main benefits of this factorization in GM problems:
• Using the factorization, there is no need to compute

the expensive (in space and time) affinity matrix,
which computational cost scales quartically with the
number of features.

• We derive a new path-following algorithm that
leads to improved optimization strategies and
matching performance. This is possible because us-
ing the factorization it is relatively easy to provide
a concave and convex approximation, without the
proposed factorization it is unclear how to derive
this path-following algorithm.

• A major contribution of this work is to incorporate
global geometric constraints into GM. To the best of
our knowledge, this is the first work that addresses
adding non-rigid constraints into GM. This is pos-
sible due to the factorization, which decouples the

local structure in each of the graphs.
• We provide a simple and compact matrix notation

to formulate GM problems. Using the factorization
and the matrix formulation, it is very easy to un-
derstand the commonalities and differences between
GM methods and relate them to other problems like
ICP and Markov Random Fields (MRF).

2 PREVIOUS WORK ON GM
In this section, we review previous work on GM with
a unified matrix formulation. Formulating GM in ma-
trix form has several benefits beyond simplicity of un-
derstanding that will be discussed through the paper.
Section A introduces the GM problem and formulates
GM as a quadratic assignment problem in matrix form.
Section B discusses several advances of GM methods.

2.1 Definition of GM
To better understand the difference among previous
work, we provided here a brief overview of the graph
matching problem and its mathematical definition. We
denote (see notation1) a graph with n nodes and m
directed edges as a 4-tuple G = {P,Q,G,H}. The
features for nodes and edges are specified by P =
[p1, · · · ,pn] ∈ Rdp×n and Q = [q1, · · · ,qm] ∈ Rdq×m
respectively, where dp and dq are the dimensionality of
the features. For instance, pi could be a 128-D SIFT
histogram extracted from the image patch around the
ith node and qc could be a 2-D vector that encodes the
length and orientation of the cth edge. The topology
of the graph is encoded by two node-edge incidence
matrices G,H ∈ {0, 1}n×m, where gic = hjc = 1 if
the cth edge starts from the ith node and ends at the
jth node. Fig. 2a illustrates two synthetic graphs, whose
edge connection between nodes is encoded by the binary
matrices shown in Fig. 2b-c. In our previous work [17], a
simpler representation of graph was adopted and valid
only for undirected graphs. This representation is more
general and applicable for both undirected and directed
graphs. Directed graphs occur when the edge features
are asymmetrical such as the angle between an edge and
the horizontal line.

Given a pair of graphs, G1 = {P1,Q1,G1,H1} and
G2 = {P2,Q2,G2,H2}, we compute two affinity matri-
ces, Kp ∈ Rn1×n2 and Kq ∈ Rm1×m2 , to measure the
similarity of each node and edge pair respectively. More
specifically, κpi1i2 = φp(p

1
i1
,p2

i2
) measures the similarity

between the ith1 node of G1 and the ith2 node of G2, and
κqc1c2 = φq(q

1
c1 ,q

2
c2) measures the similarity between the

1. Bold capital letters denote a matrix X, bold lower-case letters a
column vector x. xi represents the ith column of the matrix X. xij or
[X]ij denotes the scalar in the ith row and jth column of the matrix
X. All non-bold letters represent scalars. 1m×n,0m×n ∈ Rm×n are
matrices of ones and zeros. In ∈ Rn×n is an identity matrix. |X|
represents the determinant of the square matrix X. vec(X) denotes the
vectorization of matrix X. diag(x) is a diagonal matrix whose diagonal
elements are x. X ◦Y and X ⊗Y are the Hadamard and Kronecker
products of matrices.
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cth1 edge of G1 and the cth2 edge of G2. For instance, Fig. 2d
illustrates an example pair of Kp and Kq for the two
synthetic graphs.

Given two graphs and the associated affinity matrices,
the problem of GM consists in finding the optimal
correspondence X between nodes, such that the sum of
the node and edge compatibility is maximized:

Jgm(X) =
∑
i1i2

xi1i2κ
p
i1i2

+
∑

i1 6=i2,j1 6=j2
g1i1c1

h1
j1c1

=1

g2i2c2
h2
j2c2

=1

xi1i2xj1j2κ
q
c1c2 , (1)

where X ∈ Π is constrained to be a one-to-one mapping,
i.e., Π is the set of partial permutation matrices:

Π = {X|X ∈ {0, 1}n1×n2 ,X1n2 ≤ 1n1 ,X
T1n1 = 1n2}. (2)

The inequality in the above definition is used for the
case when the graphs are of different sizes. Without loss
of generality, we assume n1 ≥ n2 from now on. For
instance, the matrix X shown in the top row of Fig. 2e
defines the node correspondence shown in Fig. 2a.

To be concise in notation, we encode the node and
edge affinities in a symmetrical matrix K ∈ Rn1n2×n1n2 ,
whose elements are computed as follows:

κi1i2,j1j2 =


κpi1i2 , if i1 = j1 and i2 = j2,
κqc1c2 , if i1 6= j1 and i2 6= j2 and

g1
i1c1h

1
j1c1g

2
i2c2h

2
j2c2 = 1,

0, otherwise,

where the diagonal and off-diagonal elements encode the
similarity between nodes and edges respectively.

Using K, GM can be concisely formulated as the
following quadratic assignment problem (QAP) [15]:

max
X∈Π

Jgm(X) = vec(X)TK vec(X). (3)

2.2 Advances on GM
As a generic problem for matching structural data, GM
has been studied for decades in computer science and
mathematics [18]. Early works [19]–[21] on GM often
treated the problem as a special case of (sub)graph
isomorphism, where the graphs are binary and an ex-
act matching between nodes and edges is of interest.
Nevertheless, the stringent constraints imposed by exact
matching are too rigid for real applications in computer
vision. Modern works focus on finding an inexact match-
ing between graphs with weighted attributes on nodes
and edges. Due to the combinatorial nature, however,
globally optimizing GM is NP-hard. A relaxation of the
permutation constraints (Eq. 2) is necessary to find an
approximation to the problem. Based on the approxima-
tion strategy, previous work (see Fig. 3 for a summary)
can be broadly categorized in three groups: spectral
relaxation, semidefinite-programming (SDP) relaxation
and doubly-stochastic relaxation.

The first group of methods approximates the permu-
tation matrix with an orthogonal one, i.e., XTX = I.
Under the orthogonal constraint, optimizing GM can be
solved in closed-form as an eigen-value problem [22]–
[25]. However, these methods can only work for the
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Fig. 2. An example GM problem. (a) Two synthetic graphs.
(b) The 1st graph’s incidence matrices G1 and H1, where
the non-zero elements in each column of G1 and H1 indi-
cate the starting and ending nodes in the corresponding
directed edge, respectively. (c) The 2nd graph’s incidence
matrices G2 and H2. (d) The node affinity matrix Kp and
the edge affinity matrix Kq. (e) The node correspondence
matrix X and the edge correspondence matrix Y. (f) The
global affinity matrix K.

Koopmans-Beckmann’s QAP [26], a special case of QAP
(See Section 5 for more details). To handle more complex
problems in computer vision, Leordeanu and Hebert [27]
approximated Eq. 3 by relaxing X to be of unit length,
i.e., ‖ vec(X)‖2 = 1. The optimal X can then be efficiently
computed as the leading eigen-vector of K. Cour et
al. [28] incorporated an affine constraint to solve a more
general spectral problem, hence finding better approxi-
mations to the original problem.

As a general tool for approximating combinatorial
problems, SDP was also used to approximate GM. In
[29], [30], the authors reformulated the objective of GM
by introducing a new variable Y ∈ Rn1n2×n1n2 subject to
Y = vec(X) vec(X)T . SDP approximates GM by relaxing
the non-convex constraint on Y as a convex semi-definite
one, Y − vec(X) vec(X)T � 0. After computing Y using
SDP, the correspondence X can be approximated by a
randomized algorithm [29] or a winner-take-all strat-
egy [30]. The main advantage of using SDP is its theo-
retical guarantees [31] to find a polynomial time 0.879
approximation to many NP-hard problems. However,
in practice it is too expensive to use SDP because the
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variable Y squares the problem size.
Most methods relax X ∈ D to be a doubly stochastic

matrix, the convex hull of the permutation matrices:

D = {X|X ∈ [0, 1]n1×n2 ,X1n2 ≤ 1n1 ,X
T1n1 = 1n2}. (4)

Under this constraint, optimizing GM can be treated
as a non-convex quadratic programming problem and
various strategies have been proposed to find a local
optima. Almohamad and Duffuaa [32] approximated
the quadratic cost using linear programming. Zaslavskiy
et al. [33] employed a path-following strategy to ap-
proach the non-convex quadratic programming problem.
Recently, Liu et al. [34] extended the path-following
algorithm for matching asymmetrical adjacency matrices
in more general problems. However, these works are
only applicable to Koopmans-Beckmann’s QAP and it
is unclear how to apply it to the more general Lawler’s
QAP problem [35]. Gold and Rangarajan [36] proposed
the graduated assignment algorithm to iteratively solve a
series of linear approximations of the cost function using
Taylor expansions. Its convergence has been recently
studied and improved in [37] with a soft constrained
mechanism. Van Wyk and Van Wyk [38] proposed to
iteratively project the approximate correspondence ma-
trix onto the convex domain of the desired integer con-
straints. Leordeanu et al. [39] proposed an integer pro-
jection algorithm to optimize the objective function in an
integer domain. Torresani et al. [40] designed a complex
objective function which can be efficiently optimized
by dual decomposition. In addition to the optimization-
based work, probabilistic frameworks were shown to be
useful for interpreting and solving GM problems. Egozi
et al. [41] presented a probabilistic interpretation of the
spectral matching algorithm [27], which is a maximum-
likelihood estimate of the assignment probabilities. Zass
and Shashua [42] proposed a convex relative-entropy
error that emerges from a probabilistic interpretation of
the GM problem. Inspired by the PageRank algorithm,
Cho et al. [43] introduced a random-walk algorithm to
approximate GM problem.

In addition to the efforts on devising better approx-
imations for Eq. 3, there are three advances in GM
methods leading to improved results: learning the pair-
wise affinity matrix [44], [45], incorporate high-order
features [42], [46], and progressive mechanism [47]. First,
it has been shown that a better K for GM can be learned
in an unsupervised [44] or a supervised [45] manner.
Second, the matrix K encoding the pairwise geometry
is susceptible to scale and rotation differences between
sets of points. To make GM invariant to rigid defor-
mations, [42], [46] extended the pairwise K to a tensor
that encodes high-order geometrical relations. However,
a small increment in the order of relations leads to a
combinatorial explosion of the amount of data needed
to support the algorithm. Therefore, most of high-order
GM methods can only work on very sparse graphs with
no more than 3-order features. In addition, it is unclear
on how to extend high-order methods to incorporate

tr(XTA1XA2) + tr(KT
pX) vec(X)TK vec(X)

(Koopmans-Beckmann’s QAP) (Lawler’s QAP)

Spectral
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Fig. 3. Different relaxations on the constraints for GM.

non-rigid deformations. Third, the performance of GM
methods in real applications is often limited by the initial
construction of graphs. To resolve this issue, Cho and
Lee [47] proposed a progressive framework which com-
bines probabilistic progression of graphs with matching
of graphs. The algorithm re-estimates in a Bayesian
manner the most plausible target graphs based on the
matching result, and guarantees to boost the matching
objective at subsequent steps.

Unlike most of previous work, we tackle the GM
problems from a different perspective. We first derived
a principled factorization of the affinity matrix K. This
factorization enables the utilization of a path-following
algorithm that leads to state-of-the-art performance in
approximating GM problems. Thanks to the factoriza-
tion, we could further introduce global geometrical con-
straints to better handle non-rigid deformation in GM.

3 PREVIOUS WORK ON ICP
This section describes the ICP method, that as we will
see in future sections has a close connection to GM.

3.1 Definition of ICP
Given two sets of points, P1 = [p1

1, · · · ,p1
n1

] ∈ Rd×n1 and
P2 = [p2

1, · · · ,p2
n2

] ∈ Rd×n2 , the iterative closest point
(ICP) algorithm (e.g., [5]) aims to find the correspondence
and the geometric transformation between points such
that the sum of distances is minimized:

min
X∈Π,T ∈Ψ

Jicp(X, T ) =
∑
i1i2

xi1i2‖p
1
i1 − τ(p2

i2)‖22 + ψ(T ), (5)

where X ∈ {0, 1}n1×n2 denotes the correspondence
between points. Depending on the problem, X denotes
either a one-to-one or many-to-one matching. In this pa-
per, we consider a one-to-one matching between points
and X is thus constrained to be a permutation matrix
i.e., X ∈ Π, where Π is defined as Eq. 2. τ(·) : Rd → Rd
denotes a geometric transformation parameterized by T .
The transformation is softly penalized by the function
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Similarity Affine RBF Non-rigid

T
s ∈ R

V ∈ R2×2

t ∈ Rd W ∈ R2×nR ∈ R2×2

t ∈ R2

τ(p) sRp + t Vp + t p + Wφ(p)

τ(P) sRP + t1Tn VP + t1Tn P + WLp
ψ(T ) 0 0 λw tr(WLpWT )

Ψ
RTR = I2 ∅ ∅|R| = 1

Fig. 4. Parameterization of three geometrical transforma-
tions in 2-D space, where T , τ(·), Ψ and ψ(·) denote the
parameter set, transformation function, constraint set and
penalization function respectively.

ψ(·) and constrained within the set Ψ. Fig. 4 lists the
parameterization of three common transformations: sim-
ilarity, affine and RBF non-rigid transformation.

Similarity transformation: Given a point p ∈ R2 or
a point set P ∈ R2×n, its similarity transformation is
computed as τ(p) = sRp + t or τ(P) = sRP + t1Tn ,
where s ∈ R, R ∈ R2×2 and t ∈ R2 denote the scaling
factor, rotation matrix and translation vector respectively.
In addition, the rotation matrix R ∈ Ψ has to satisfy the
constraints Ψ = {R|RTR = I2, |R| = 1}.

Affine transformation: Given a point p ∈ R2 or a point
set P ∈ R2×n, its affine transformation is computed as
τ(p) = Vp+t or τ(P) = VP+t1Tn , where V ∈ R2×2 and
t ∈ R2 denote the affine matrix and translation vector
respectively.

RBF non-rigid transformation: The parameterization
of the RBF non-rigid transformation [48] depends on
the choice of the basis points. We choose the basis
points as the nodes of the second graph. Given a point
p ∈ R2 or a point set P ∈ R2×n, the transformation
is computed as a displacement shifted from its initial
position, i.e., τ(p) = p + Wφ(p) or τ(P) = P + WLp,
where W ∈ R2×n2 is the weight matrix and φ(p) =
[φ1(p), · · · , φn2(p)]T ∈ Rn2 denotes the n2 displacement
functions corresponding to the basis points. Each dis-
placement function, φi(p) = exp(−‖p − p2

i ‖22/σ2
w), is

computed between p and the basis p2
i with the band-

width σw. Lp = [φ(p2
1), · · · , φ(p2

n2
)] ∈ Rn2×n2 is the

RBF kernel defined on all basis pairs. Following [48],
we regularize the non-smoothness of the displacement
field, i.e., ψ(T ) = tr(WLpW

T ).

3.2 Advances on ICP
In the past decade, ICP has been widely used to solve
correspondence problems in image, shape, and surface
registration [49] due to its simplicity and low computa-
tional complexity. ICP methods can be classified by the
type of deformation they recover as rigid or non-rigid.

A major limitation of ICP methods is that they are
highly sensitive to the initialization. There have been var-
ious strategies proposed to address this issue [50]. One
common choice is to introduce structural information
into the registration schemes [7], [51]. For instance, Be-
longie et al. [52] proposed shape context, a robust shape

representation for finding correspondence between de-
formed shapes. Advanced optimization scheme can also
be employed to improve the performance of ICP. For
instance, Chui and Rangarajan [53] proposed to combine
soft-assignment with deterministic annealing for non-
rigid point registration. This work has been recently
extended in [48] for both rigid and non-rigid registration.
The most closely related work to our method is the
statistical approach [54], [55], where a binary neighbor-
hood graph is used for guiding the ICP minimization
for finding better correspondence. Unlike existing ICP
algorithms, FGM introduces pairwise constraints that
makes the matching problem less prone to local minima.

Alternatively, RANSAC [4] type of algorithms have
been widely used to find reliable correspondences be-
tween two or more images in the presence of outliers.
RANSAC estimates a global relation that fits the data,
while simultaneously classifying the data into inliers and
outliers. Unlike RANSAC-type of algorithms, FGM is
able to efficiently model non-rigid transformations and
large rigid transformations.

4 FACTORIZED GRAPH MATCHING

This section proposes a novel factorization of the pair-
wise affinity matrix K. As we will see in the following
sections, this factorization provides a light-weight repre-
sentation for GM problems, allows a unification of GM
methods, elaborates a better optimization strategy and
makes it easy to add geometric constraints to GM.

The pairwise affinity matrix K plays a central role in
GM because it encodes all the first-order and second-
order relations between graphs. Two properties of K,
full-rankness and indefiniteness, pose key challenges to
conventional GM methods such as spectral methods [27],
[28] and gradient-based ones [38], [39], [42], [43]. Fig. 5 il-
lustrates an empirical study on a thousand Ks computed
from three realistic benchmark datasets in Section 8. The
first row of Fig. 5 shows that the ratio between the rank
and the dimension of K equaled to one, i.e., K was a
full-rank matrix in all the experiments. This fact explains
why the spectral methods [27], [28] usually perform
worse than others: spectral methods employ the rank-
one approximation of K which inevitably leads to loss in
accuracy. The second row of Fig. 5 shows that K was an
indefinite matrix because the ratio between its maximum
and minimum eigenvalues was smaller than −0.4 in
the experiments. The indefiniteness of K indicates that
the maximization of vec(X)TK vec(X) is a non-convex
problem and thus the gradient-based methods [38], [39],
[42], [43] is prone to local optima. Instead of treating K as
a black box, we propose a factorization that decouples
the structure of K. To the best of our knowledge, this
work is the first to propose a closed-form factorization
for K and its applications to GM problems.

To illustrate the intuition behind the factorization, let
us revisit the synthetic problem shown in Fig. 2. Notice
that K ∈ Rn1n2×n1n2 (Fig. 2f) is composed by two types
of affinities: the node affinity (Kp) on its diagonal and the



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, NOVEMBER 2015 6

Houses Cars Motorbikes
#g

ra
ph

 p
ai

rs
#g

ra
ph

 p
ai

rs

#g
ra

ph
 p

ai
rs

#g
ra

ph
 p

ai
rs

#g
ra

ph
 p

ai
rs

#g
ra

ph
 p

ai
rs

0 0.5 1 1.5 2
0

200

400

600

−0.7 −0.6 −0.5 −0.4
0

50

100

−0.7 −0.6 −0.5 −0.4
0

20

40

60

 

 

−0.7 −0.6 −0.5 −0.4
0

10

20

30

 

 
with−diagonal
zero−diagonal

0 0.5 1 1.5 2
0

50

100

150

200

0 0.5 1 1.5 2
0

100

200

300

Fig. 5. Statistics of K computed for the graphs extracted
from three real image datasets used in the experiments.
The histograms in the top row illustrate the ratio between
the rank and the dimension of K. The histograms in the
bottom row show the ratio between the minimum and the
maximum eigenvalues of the K. For the last two datasets
(columns), we test K with zero values on the diagonal
as well. The top and bottom rows indicate that all the
computed K are full-rank and indefinite respectively.

pairwise edge affinity (Kq) on its off-diagonals. Without
the diagonal, K is a sparse block matrix with three
unique structures: (1) K is composed by n2-by-n2 smaller
blocks Kij ∈ Rn1×n1 . (2) Some of the Kijs are empty
if there is no edge connecting the ith and jth nodes of
G2. These empty blocks can be indexed by G2H

T
2 , i.e.,

Kij = 0 if [G2H
T
2 ]ij = 0. (3) For the non-empty blocks,

Kij can be computed in a closed form as G1 diag(kqc)H
T
1 ,

where c is the index of the edge connecting the ith and
jth nodes of G2, i.e., g2

ic = h2
jc = 1. Based on these

observations, and after some linear algebra, it can be
shown that K can be factorized exactly as:

K = diag(vec(Kp)) + (G2 ⊗G1) diag(vec(Kq))(H2 ⊗H1)T .
(6)

This factorization decouples the graph structure (G1, H1,
G2 and H2) from the similarity (Kp and Kq).

Eq. 6 is the key contribution of this work. Previous
work on GM explicitly computed the computationally
expensive (in space and time) K, which is of size
O(n2

1n
2
2). On the contrary, Eq. 6 offers an alternative

framework by replacing K with six smaller matrices,
which are of size O(n1m1 + n2m2 + n1n2 + m1m2). For
instance, plugging Eq. 6 into Eq. 3 leads to an equivalent
objective function:

Jgm(X) = tr
(
KT
pX
)

+ tr
(
KT
q (GT

1 XG2 ◦HT
1 XH2︸ ︷︷ ︸

Y

)
)
, (7)

where Y ∈ {0, 1}m1×m2 can be interpreted as a corre-
spondence matrix for edges, i.e., yc1c2 = 1 if both nodes
of cth1 edge in G1 are matched to the nodes of cth2 edge in
G2. For instance, Fig. 2d illustrates the node and edge
correspondence matrices for the matching defined in
Fig. 2a.

5 A UNIFIED FRAMEWORK FOR GM
In past decades, a myriad of GM methods have been
proposed for solving a variety of applications. Previ-
ous GM methods varied in their objective formulations
and optimization strategies. Although much effort [18],
[56]–[58] has been made on comparing GM methods,
a mathematical framework to connect the various GM
methods in a coherent manner is lacking. This section
derives a unified framework to cast many GM methods
using our proposed factorization. Beyond the unification
of GM methods, we show that a close relation exists
between GM and ICP objectives. This insight allows us
to augment GM problems with additional geometrical
constraints that are necessary in many computer vision
applications. Moreover, we extend ICP to incorporate
pair-wise constraints.

5.1 Unification of GM methods
Eq. 3 summarizes one of the most important GM prob-
lems studied in recent research on computer vision [27]–
[30], [36]–[43]. However, the way of formulating GM is
not unique. In other applications [20]–[22], [25], [32], [33],
the goal of GM was alternatively formulated as:

max
X∈Π

tr(KT
pX) + tr(A1XA2X

T ), (8)

where the main difference from Eq. 3 is in the sec-
ond term, which measures the edge compatibility as
the linear similarity between two weighted adjacency
matrices A1 ∈ [0, 1]n1×n1 and A2 ∈ [0, 1]n2×n2 , given the
permutation X. In this case, the topology of a graph is
defined by a weighted adjacency matrix, A ∈ [0, 1]n×n,
where each element, aij , indicates the soft connectivity
between the ith and the jth nodes.

GM can be formulated as the classical QAP, that
has been well studied in the literature of operation
research since the 40′s. In operation research litera-
ture [15], Eq. 3 and Eq. 8 are known as Lawler’s
QAP [35] and Koopmans-Beckmann’s QAP [26] respec-
tively. Please refer to Fig. 3 for a taxonomy of previous
GM works in computer vision from a QAP perspective.
Roughly speaking, Lawler’s QAP is more general than
Koopmans-Beckmann’s QAP because it has 1

2n
2
1n

2
2 free

variables in K compared to 1
2n

2
1 + 1

2n
2
2 free variables in

A1 and A2. In fact, Koopmans-Beckmann’s QAP can
always be represented as a special case of Lawler’s
QAP if we assume K = A2 ⊗ A1. In this particular
Lawler’s QAP, the edge feature has to be a 1-D scalar
(i.e., qc = aij) and the edge similarity has to be linear (i.e.,
κqc1c2 = 〈q1

c1 ,q
2
c2〉). This special QAP can be limited when

representing the challenging matching problem encoun-
tered in real cases. However, Lawler’s QAP considers
more general similarity measures including Gaussian
kernels, which take the linear similarity as an instance.

In general, it is unclear on how to understand the
commonalities and differences between these two types
of GMs. In the following, we will propose a simple
and clean connection that exists using the proposed
factorization. Observe that Kq can always be factorized
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(e.g., SVD) as Kq = UVT , where U ∈ Rm1×c and
V ∈ Rm2×c. Taking advantage of the low-rank structure
of Kq , Eq. 7 can be re-formulated2 as follows:

Jgm(X) = tr
(
K
T
p X
)

+ tr
(

(UV
T

)
T

(G
T
1 XG2 ◦H

T
1 XH2)

)
= tr

(
K
T
p X
)

+ tr
(

(
c∑
i=1

uiv
T
i )
T

(G
T
1 XG2 ◦H

T
1 XH2)

)
= tr

(
K
T
p X
)

+
c∑
i=1

tr
(
A

1
iXA

2
iX

T
)
, (9)

where A1
i = G1 diag(ui)H

T
1 ∈ Rn1×n1 and A2

i =
G2 diag(vi)H

T
2 ∈ Rn2×n2 can be interpreted as adjacency

matrices for the two graphs. Eq. 9 reveals that c, the rank
of the edge affinity matrix Kq , is a key characteristic of
GM methods. If c = 1, Lawler’s QAP downgrades to the
Koopmans-Beckmann’s QAP. In other cases when c > 1,
solving Lawler’s QAP can be cast as a joint optimization
of c Koopmans-Beckmann’s QAPs.

Despite its importance, the relation between Eq. 3
and Eq. 8 has been rarely explored in the literature of
GM. In fact, many GM methods can benefit from this
connection. Consider the special case when the node
affinity matrix Kp is empty and the edge affinity matrix
Kq = uvT has a rank-1 structure. According to the
factorization, we can conclude K = A2 ⊗ A1, where
A1 = G1 diag(u)HT

1 and A2 = G2 diag(v)HT
2 . In this

case, the spectral matching algorithm [27] can be more
efficiently computed as eig(K) = eig(A2) ⊗ eig(A1),
where eig(K) denotes the leading eigen-vector of K.

5.2 Connections between GM and ICP
To connect ICP with GM methods, we denote the node
affinity matrix as, Kp(T ) ∈ Rn1×n2 , where each element,
κpi1i2(T ) = −‖p1

i1
− τ(p2

i2
)‖22, encodes the negative Eu-

clidean distance between nodes. Using this notation, the
original objective (Eq. 5) can be concisely formulated as:

Jicp(X, T ) = − tr
(
Kp(T )TX

)
+ ψ(T ). (10)

Eq. 10 reveals a clean connection between the ICP and
GM objective (Eq. 7). Given the transformation (T ),
minimizing Jicp over X is equivalent to maximize the
node compatibility in Eq. 7. This optimization can be cast
as a linear matching problem, which can be efficiently
optimized by the Hungarian algorithm if X is a one-
to-one mapping or the winner-take-all manner if X is
a many-to-one mapping. In general, however, the joint
optimization over X and T is non-convex, and no-
closed form solution is known. Typically, some sort of
alternated minimization (e.g., EM, coordinate-descent) is
needed to find a local optima.

6 A PATH-FOLLOWING ALGORITHM

This section presents a path-following algorithm for
approximating the GM problem. Traditionally, Eq. 3 is
approached by a two-step scheme: (1) solving a continu-
ously relaxed problem and (2) rounding the approximate

2. The equation, tr((uvT )T (A ◦ B)) = tr(diag(u)A diag(v)BT ),
always holds for arbitrary u ∈ Rm, v ∈ Rn and A,B ∈ Rm×n.

solution to a binary one. This procedure has at least
two limitations. First, the continuous relaxation is non-
convex and prone to local optima. Second, the rounding
step will inevitably cause accuracy loss because it is
independent of the cost function. Inspired by [33], [59],
we address these two issues using a path-following
algorithm by iteratively optimizing an interpolation of
two relaxations. This new scheme has three theoret-
ical advantages: (1) The optimization performance is
initialization-free; (2) The final solution is guaranteed to
converge to an integer one and therefore no rounding
step is needed; (3) The iteratively updating procedure re-
sembles the idea of numerical continuation methods [60],
which have been used for solving nonlinear systems of
equations for decades.

6.1 Convex and concave relaxation
To employ the path-following algorithm, we need to
find a convex and concave relaxation of Jgm(X). The
factorization (Eq. 6) offers a simple and principled way
to derive these approximations. To do that, let’s first
introduce an auxiliary function:

Jcon(X) =

c∑
i=1

tr
(
A1
i
T
XXTA1

i

)
+ tr

(
A2
iX

TXA2
i
T
)
.

As we know, a permutation matrix3 X ∈ Π is also an
orthogonal one, satisfying XXT = XTX = I. Therefore,
Jcon(X) = γ is always a constant,

γ =

c∑
i=1

tr
(
A1
i
T
A1
i

)
+ tr

(
A2
iA

2
i
T
)
,

if X is a permutation matrix. Introducing into Jgm(X) the
constant term, 1

2
Jcon(X), yields two equivalent objectives:

Jvex(X) = Jgm(X)− 1

2
Jcon(X)

= tr
(
KT
pX
)
− 1

2

c∑
i=1

‖XTA1
i −A2

iX
T ‖2F , (11)

Jcav(X) = Jgm(X) +
1

2
Jcon(X)

= tr
(
KT
pX
)

+
1

2

c∑
i=1

‖XTA1
i + A2

iX
T ‖2F . (12)

The above two functions achieve the same value up
to a constant difference γ

2 as Jgm(X) with respect to
any permutation and orthogonal matrix. Yet, they are
supplementary to each other in the domain of doubly-
stochastic matrices. In particular, the problems of max-
imizing Jvex(X) and Jcav(X) are convex and concave
respectively. This is because their Hessians,

∇2
XJvex(X) = −

c∑
i=1

(I⊗A1
i −A2

i ⊗ I)T (I⊗A1
i −A2

i ⊗ I),

∇2
XJcav(X) =

c∑
i=1

(I⊗A1
i + A2

i ⊗ I)T (I⊗A1
i + A2

i ⊗ I),

are negative and positive semi-definite, respectively.

3. We need to introduce dummy selection variables if the two graphs
are of different sizes.
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6.2 A path-following strategy
The main challenge of approximating GM comes from its
non-convex objective and the combinatorial constraints.
Inspired by [33], [59], we optimize Eq. 3 by iteratively
optimizing a series of the following convex-concave
problems [61]:

max
X∈D

Jα(X) = (1− α)Jvex(X) + αJcav(X), (13)

where α ∈ [0, 1] is a tradeoff between the convex relax-
ation and the concave one.

The advantages of the path-following algorithm over
conventional GM algorithms are three-fold: (1) The algo-
rithm starts with a convex problem when α = 0. Because
the problem is convex, a numerical optimizer can find
the global optimal solution independently of the initial-
ization. (2) When α = 1 (at the end of the iterations) the
problem is concave. It has been well-studied [62] that any
local optima of a concave optimization problem must lie
at the extreme point of the constraint set. According to
the Birkhoff-von Neumann theorem [63], all the doubly-
stochastic matrices (X ∈ D) form the Birkhoff polytope,
whose vertices are precisely the permutation matrices
(X ∈ Π). Therefore, the converged solution is guaranteed
to be binary and no further discrete rounding step is
needed. (3) By smoothly increasing α from 0 to 1, the
path-following algorithm is more likely to find better
local optima than gradient-based method.

To have a better understanding, we provide an ex-
ample of optimizing GM using this strategy in Fig. 6.
The graphs to be matched are extracted from one pair
of car images used in the experiment (See Section 8.4).
Fig. 6a plots the real GM objective (Jgm) and the objective
(Jα) to be optimized with respect to the change of α.
The convex (Jvex) and concave (Jcav) components are
also plotted. Overall, four observations can be concluded
looking at this figure. First, Jα equals to Jvex and Jcav
when α = 0 and α = 1 respectively. Second, the
curves of Jvex and Jcav are monotonically decreasing
and increasing as α→ 1. This is because as α increases,
the concave part gets more control than the concvex part
to direct the optimization of Jα. Third, the curve of Jα
intersects Jgm at α = 1

2 . This is true due to the fact that
the following equation holds:

Jα(X) = Jgm(X) + (α− 1

2
)Jcon(X), (14)

by plugging Eq. 11 and Eq. 12 into Eq. 13. At last, when
the algorithm converges at α = 1, the gap between Jgm
and the two relaxations is a constant γ

2 . This is because
X turns to be a permutation matrix (Fig. 6c) and the
equation, Jcon(X) = γ, always holds at α = 1.

6.3 Sub-problem optimization
For a specific α, we optimize Jα(X) using the Frank-
Wolfe’s algorithm (FW) [64], a simple yet powerful
method for constrained nonlinear programming. Unlike
gradient-based methods that require a projection onto
the constraint, FW algorithm efficiently updates the so-
lution by automatically staying in the feasible set.

Given an initial X0, FW successively updates the
solution as X∗ = X0 + ηD until converged. At each
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Fig. 6. An example of using the path-following algorithm
for optimizing the GM problem. (a) The comparison of
the objectives during the optimization with respect to the
change of α. (b) The comparison of using FW and MFW
for optimizing Jα(X) at two αs. (c) The change of xij
(each curve) as α→ 1.

step, it needs to compute two components: the optimal
direction D ∈ D and the optimal step size η ∈ [0, 1]. To
compute Y, we solve the following LP problem:

max
D∈D

tr
(
∇Jα(X0)T (D−X0)

)
, (15)

whose objective is the first-order approximation of Jα(X)
at the point X0. The gradients ∇Jα(X0) can be efficiently
computed using matrix operation as follows:

∇Jα(X) = ∇Jgm(X) + (α−
1

2
)∇Jcon(X),

∇Jgm(X) = Kp + H1(G
T
1 XG2 ◦Kq)H

T
2 + G1(H

T
1 XH2 ◦Kq)G

T
2 ,

∇Jcon(X) = 2
(
G1(H

T
1 H1 ◦UU

T
)G

T
1 + G2(H

T
2 H2 ◦VV

T
)G

T
2

)
X.

Similar to [33], [39], we adopt the Hungarian algorithm
to efficiently solve this linear programming.

Once the gradient is computed, the line search for the
optimal η can be found in closed form. The optimal η is
the maximum point of the following parabola:

Jα(X0 + ηD) = aη2 + bη + const, (16)

where a and b are the fixed 2nd and 1st order coefficients
respectively. It is well-known that the optimum point
of the parabola must be one of the three points, η∗ ∈
{0, 1,− b

2a}. A straightforward way to obtain the optimal
η∗ is to compute Jα(X0 +ηD) at each point and pick the
one yielding the largest value. In fact, it is more efficient
to choose η∗ based on the geometry of the parabola.
Fig. 7 illustrates the eight possible configurations of the
parabola and the corresponding optimal η.

6.4 Other implementation details
A similar path-following strategy was proposed in [33]
and its performance over the state-of-the-art methods
has been therein demonstrated for solving the less
general GM problem (Eq. 8). After exhaustive testing
this strategy for solving the most general GM problem
(Eq. 3), we empirically found that results can be im-
proved using the following two steps:

Convergence: Although the FW algorithm is easy
to implement, it converges sub-linearly. To get faster
convergence speed while keeping its advantages in ef-
ficiency and low memory cost, we adopt a modified
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Fig. 7. Eight possible shapes of the parabola f(η) =
aη2 + bη and the corresponding optimal step sizes η∗ =
arg maxη∈[0,1] f(η).

Frank-Wolfe (MFW) [65] to find a better searching direc-
tion D by a convex combination of previously solutions.
Fig. 6b compares MFW with the FW for two αs. As we
can see, MFW converges much faster than FW.

Local vs global: Although the path-following strategy
returns an integer solution by smoothly tracking the local
optima in a convex space, it does not guarantee to obtain
the global optimal solution of the non-convex objective
function. An important reason is that at each step, it
locally optimizes over Jα(X) instead of the global one
Jgm(X). It is possible that Jα(X) increases while Jgm(X)
decreases. To escape from this phenomenon, we keep
increasing the global score of Jgm(X) by discarding the
bad temporary solution that worsens the score of Jgm(X)
and computing an alternative one by applying one step
of FW for optimizing Jgm(X).

Algorithm 1 summarizes the work-flow of our algo-
rithm. The initial X can be an arbitrary doubly stochastic
matrix. The complexity of our algorithm can be roughly
calculated as O

(
T (τhun + τ∇ + τλ) + τsvd

)
, where T is

the number of iterations for the FW, and τsvd = m1m
2
2

is the cost of computing the SVD of Kq . The Hungarian
algorithm can be finished in τhun = max(n3

1, n
3
2). The

gradient of ∇Jα and the line search of λ incur the same
computational cost, τ∇ = τλ = m1m2.

7 DEFORMABLE GRAPH MATCHING

GM has been widely used as a general tool in matching
point sets with similar structures. In many computer
vision applications, it is often required that the matching
between two sets is constrained by a geometric trans-
formation. It is unclear how to incorporate geometric
constraints into GM methods. This section describes de-
formable graph matching (DGM), that incorporates rigid
and non-rigid transformations into graph matching.

7.1 Objective function
To simplify the discussion and to be consistent with
ICP, we compute the node feature of each graph G =

Algorithm 1: A path-following algorithm
input : Kp, Kq , G1, H1, G2, H2, δ, X0

output: X

1 Initialize X to be a doubly stochastic matrix;
2 Factorize Kq = UVT ;
3 for α = 0 : δ : 1 do Path-following
4 if α = 0.5 and Jgm(X) < Jgm(X0) then
5 Update X← X0;

6 Optimize Eq. 13 via MFW to obtain X∗;
7 if Jgm(X∗) < Jgm(X) then
8 Optimize Eq. 3 via one step of FW to obtain

X∗;

9 Update X← X∗;

{P,Q,G,H} simply as the node coordinates, P =
[p1, · · · ,pn] ∈ Rd×n. Similarly, the edge features Q =
[q1, · · · ,qm] ∈ Rd×m are computed as the coordinate
difference between the connected nodes, i.e., qc = pi−pj ,
where gic = hjc = 1. In this case, the edge feature
can be conveniently computed in a matrix form as,
Q = P(G−H).

Suppose that we are given two graphs, G1 =
{P1,Q1,G1,H1} and G2 = {P2,Q2,G2,H2}, and a
geometrical transformation defined on points by τ(·).
Similar to ICP, we compute the node affinity Kp(T ) ∈
Rn1×n2 and the edge affinity Kq(T ) ∈ Rm1×m2 as linear
functions of the Euclidean distance, i.e.:

κpi1i2(T ) = −‖p1
i1 − τ(p2

i2)‖22,
κqc1c2(T ) = β − ‖ (p1

i1 − p1
j1)︸ ︷︷ ︸

q1
c1

− (τ(p2
i2)− τ(p2

j2))︸ ︷︷ ︸
τ(q2

c2
)

‖22, (17)

where β is chosen to be reasonably large to ensure that
the pairwise affinity is greater than zero.

Recall that the factorization (Eq. 6) reveals that the
goal of GM (Eq. 7) is similar to ICP (Eq. 10). In order
to make GM more robust to geometric deformations,
DGM aims to find the optimal correspondence X as well
as the optimal transformation T such that the global
consistency can be maximized:

max
X∈Π,T ∈Ψ

Jdgm(X, T ) = tr
(
Kp(T )TX

)
+ λ tr

(
Kq(T )TY

)
− ψ(T ), (18)

where λ ≥ 0 is used to balance between the importance
of the node and edge consistency. Similar to ICP, ψ(T )
and Ψ are used to constrain and penalize the transfor-
mation parameter. Eq. 18 extends ICP by adding the
transformation. In particular, if λ = 0, solving DGM is
equivalent to ICP. In other case when λ > 0 and T is
known, solving DGM is identical to a GM problem.

7.2 Optimization
Due to the non-convex nature of the objective, we op-
timize Jdgm by alternatively solving the correspondence
(X) and the transformation parameter (T ). The initializa-
tion is important for the performance of DGM. However,
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how to select a good initialization is beyond the scope of
this paper and we simply set the initial transformation
as an identity one, i.e., τ(p) = p.

Optimizing Eq. 18 consists of alternation between
optimizing for the correspondence and the geometric
transformation. Given the transformation T , DGM is
equivalent to a traditional GM problem. To find the node
correspondence X, we adopt the path-following algo-
rithm by optimizing Eq. 13. Given the correspondence
matrix X, the optimization over the transformation pa-
rameter T is similar to ICP. After some linear algebra,
it can be shown that for the following transformations,
the parameter can be computed in closed-form.

Similarity transformation: According to the definition
in Eq. 17, the similarity transformation of the edge fea-
ture is τ(q) = sRq or τ(Q) = sRQ. Since the translation
t only affects the node feature, the optimal t∗ can be
computed as follows once the optimal scalar s∗ and
rotation R∗ are known:

t∗ = p̄1 − s∗R∗p̄2, where p̄1 =
P1X1n2

1Tn1
X1n2

, p̄2 =
P2X

T1n1

1Tn1
X1n2

.

After centerizing the data, P̄1 = P1 − p̄11
T
n1

and P̄2 =
P2 − p̄21

T
n2

, the optimal rotation and scaling can be
achieved at:

R
∗

= U diag(1, · · · , |UV
T |)VT

,

s
∗

=
tr(Σ)

tr
(
1n1×2(P̄2 ◦ P̄2)XT

)
+ λq tr

(
1m1×2(Q2 ◦Q2)YT

) ,
where UΣVT = P̄1XP̄T

2 + λqQ1YQT
2 .

Affine transformation: After applying the transforma-
tion, the edge feature becomes τ(q) = Vq or τ(Q) = VQ.
Similar to the similarity transformation, the optimal
translation is dependent on the optimal affine matrix V∗:

t∗ = p̄1 −V∗p̄2, where p̄1 =
P1X1n2

1Tn1
X1n2

, p̄2 =
P2X

T1n1

1Tn1
X1n2

.

After centerizing all the data, we can compute the opti-
mal affine transformation:

V∗ = AB−1, where A = P̄1XP̄T
2 + λqQ1YQT

2 ,

B = P̄2 diag(XT1n1)P̄T
2 + λqQ2 diag(YT1m1)QT

2 .

Non-rigid transformation: According to the definition
in Eq. 17, the non-rigid transformation of the edge
features is τ(qc) = qc+W(φ(pi)−φ(pj)), where edge qc
connects between point pi and pj . In matrix form, we
can show that τ(Q) = Q+WLq , where Lq = Lp(G−H).
Setting the gradient of Jdgm(W) to zero yields the opti-
mal weight matrix W as W∗ = AB−1, where

A = P1X−P2 diag(X
T

1n1
) + λqQ1Y(G2 −H2)

T

− λqQ2 diag(Y
T

1m1
)(G2 −H2)

T
,

B = Lp diag(X
T

1n1
) + λwIn2

+ λqLq diag(Y
T

1m1
)(G2 −H2)

T
.

7.3 Comparison with ICP
It is well known that the performance of ICP algorithms
largely depends on the effectiveness of the initialization
step. In the following example, we empirically illustrate
how by adding additional pairwise constrains, DGM
is less sensitive to the initialization. Fig. 8a illustrates
the problem of aligning two fish shapes under varying
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Fig. 8. Comparison between ICP and DGM for aligning
shapes for several initial values of rotation and scale
parameters. (a) Examples of initializations for different
angles and scales. (b) Objective surfaces obtained by ICP.
(c) Objective surfaces obtained by DGM.

values for the initial rotation and scale parameters. As
shown in Fig. 8b, ICP gets trapped into a local optima
if the orientation gap is larger than 1

3π (the error should
be 0). Similarly, DGM fails for large orientation gap after
two iterations (the left column of Fig. 8c). However,
as the number of iterations increasing, DGM is able to
match shapes with very large deformation in rotation
and scales. After 24 iterations, DGM ultimately finds
the optimal matching for all the initializations (the right
column of Fig. 8c). This experiment shows that adding
pairwise constraints can make the ICP algorithm more
robust to the problem of local optima.

8 EXPERIMENTS

This section reports experimental results on four bench-
mark datasets and compares FGM to several state-of-
the-art methods for GM and ICP. In the first three
experiments, we test the performance of using the path-
following algorithm for optimizing GM problems. In the
last experiment we add a known geometrical transfor-
mation between graphs and compare with ICP on the
problem of matching rigid and non-rigid shapes.

8.1 Baselines and evaluation metrics
In the experiment, we compared against 8 algorithms.

Hungarian algorithm (HUN): HUN [16] is the al-
gorithm that solves the linear assignment problem in
polynomial time. We use it as a baseline to find the
correspondence X that maximize the 1st-order term of
GM’s objective: tr(KpX

T ).
Graduated assignment (GA): GA [36] performs gradi-

ent ascent on a relaxation of Eq. 3 driven by an annealing
schedule. At each step, it maximizes a Taylor expansion
of the non-convex QP around the previous approximate
solution. The accuracy of the approximation is controlled
by a continuation parameter, βt+1 ← αβt ≤ βmax. In all
experiments, we set α = 1.075, β0 = .5 and βmax = 200.
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Spectral matching (SM): SM [27] optimizes a relaxed
problem of Eq. 3 that drops the affine constraints and
introduces a unit-length constraint on X, that is:

max
X

Jgm(X), s. t. ‖ vec(X)‖22 = 1.

The globally optimal solution of the relaxed problem is
the leading eigenvector of K.

Spectral matching with affine constraints (SMAC):
SMAC [28] adds affine constraints to SM maximizing:

max
X

Jgm(X), s. t. A vec(X) = b and ‖ vec(X)‖22 = 1.

The solution is also an eigenvalue problem.
Integer projected fixed point method (IPFP): IPFP [39]

can take any continuous or discrete solution as inputs
and iteratively improve the solution. In our experiments,
we implemented two versions: (1) IPFP-U, which starts
from the same initial X as our method; (2) IPFP-S, which
is initialized by SM.

Probabilistic matching (PM): PM [42] designs
minX∈D S(Y‖X), a convex objective function that can
be globally optimized, where S(·) denotes the relative
entropy based on the Kullback-Leibler divergence and
Y is calculated by marginalizing K.

Re-weighted random walk matching (RRWM):
RRWM [43] introduces a random walk view on the
problem and obtains the solution by simulating random
walks with re-weighting jumps enforcing the matching
constraints on the association graph. We fixed its param-
eters α = 0.2 and β = 30 in all experiments.

Concave optimization (CAV): Concave optimization
was firstly used in [59] for optimizing GM. Compared
to conventional method, concave optimization is guar-
anteed to converge at an integer solution and no further
rounding step is needed. Similar to [59], we imple-
mented CAV by employing the Frank-Wolfe algorithm
to iteratively optimizing the concave relaxation (Eq. 12)
of GM. To demonstrate the benefit of the path-following
procedure, CAV was initialized by solving the same con-
vex relaxation (Eq. 11) as FGM-D. The main difference
between CAV and FGM-D is that the latter employs a
path-following strategy to iteratively improve the result.

Degenerate similiary (DEN): To evaluate the effect of
each component in the factorization (Eq. 6), we gener-
ated a degenerate edge similarity by setting Kq = 1 so
that the edge similarly is only dependent on the topology
of the graph defined by G1, G2, H1 and H2. DEN was
optimized using the same path-following method.

Factorized graph matching (FGM): We implemented
two versions of our method, FGM-U for undirected
graphs with only symmetric edge features and FGM-
D for directed graphs with either symmetric or asym-
metric edge features. FGM-U was first proposed in [17],
which contains a similar factorization to Eq. 6. The
main difference between FGM-U and FGM-D is that the
former factorization can only be used for undirected
graphs, while FGM-D can handle both undirected and
directed graphs. To use FGM-U for matching graphs
with directed edges, we converted the directed edges

to undirected edges and computed the edge affinity as
the average value of the original affinity between the
directed edges. The parameters were fixed to δ = 0.01.

We used codes from the author’s websites for all
methods. The code was implemented in Matlab on a
laptop platform with 2.4G Intel CPU and 4G memory.
FGM-U and FGM-D were able to obtain the solution
within a minute for graphs with 50 nodes.

We evaluated both the matching accuracy and the
objective score for the comparison of performance. The
matching accuracy, acc = tr(XT

algXtru)/ tr(1n2×n1
Xtru),

is calculated by computing the consistent matches be-
tween the correspondence matrix Xalg given by algo-
rithm and ground-truth Xtru. The objective score, obj =
Jgm(Xalg)/Jgm(Xours) is computed as the ratio between
the objective values of FGM-D and other algorithms.

8.2 Synthetic dataset
This experiment performed a comparative evaluation of
GM algorithms on randomly synthesized graphs follow-
ing the experimental protocol of [28], [36], [43]. For each
trial, we constructed two identical graphs, G1 and G2,
each of which consists of 20 inlier nodes and later we
added nout outlier nodes in both graphs. For each pair
of nodes, the edge was randomly generated according to
the edge density parameter ρ ∈ [0, 1]. Each edge in the
first graph was assigned a random edge score distributed
uniformly as q1

c ∼ U(0, 1) and the corresponding edge
q2
c = q1

c +ε in the second graph was perturbed by adding
a random Gaussian noise ε ∼ N (0, σ2). Notice that the
edge feature was asymmetrical. The edge affinity Kq was
computed as kqc1c2 = exp(−(q1

c1−q
2
c2)2/0.15) and the node

affinity Kp was set to zero.
The experiment tested the performance of GM meth-

ods under three parameter settings. For each setting, we
generated 100 different pairs of graphs and evaluated the
average accuracy and objective ratio. In the first setting
(Fig. 9a), we increased the number of outliers from 0 to
20 while fixing the noise σ = 0 and considering only
fully connected graphs (i.e., ρ = 1). In the second case
(Fig. 9b), we perturbed the edge weights by changing
the noise parameter σ from 0 to 0.2, while fixing the
other two parameters nout = 0 and ρ = 1. In the last
case (Fig. 9c), we verified the performance of matching
sparse graphs by varying ρ from 1 to 0.3. In most cases,
FGM-D achieved the best performance over all other
algorithms in terms of both accuracy and objective ratio.
RRWM and CAV are our closest competitors. FGM-
U did not achieve comparatively good results because
it solved an undirected approximation of the original
problem. Initialized by the same convex solution as
FGM-D, however, CAV performed worse than FGM-D
due to the lack of the robust path-following strategy.
We also found by only relying on the graph topology
(Kq = 1), DEN would perform dramatically worse than
other baselines even using the path-following algorithm.
This indicates the importance of designing a good edge
similarity for the problem.
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FGM provides a superior matching performance. In
addition, FGM uses less memory to represent the affinity
matrix. Fig. 10a plots two random graphs with 100
nodes. We computed the graph connection using De-
launay triangulation. Fig. 10b compares the number of
elements in the original affinity matrix K with the six
smaller components. The proposed factorization allows
to represent large-scale GM with much less memory.

8.3 House image dataset
The CMU house image sequence4 was commonly
used to test the performance of graph matching algo-
rithms [40], [43], [45], [46]. This dataset consists of 111
frames of a house, each of which has been manually
labeled with 30 landmarks. We used Delaunay trian-
gulation to connect the landmarks. The edge weight
qc was computed as the pairwise distance between the
connected nodes. Due to the symmetry of distance-based
feature, the edge was undirected. Given an image pair,
the edge-affinity matrix Kq was computed by kqc1c2 =
exp(−(q1

c1−q
2
c2)2/2500) and the node-affinity Kp was set

to zero. We tested the performance of all methods as a
function of the separation between frames. We matched
all possible image pairs, spaced by 0 : 10 : 90 frames
and computed the average matching accuracy and ob-
jective ratio per sequence gap. Fig. 11a demonstrates an
example pair of two frames.

We tested the performance of GM methods under two
scenarios. In the first case (Fig. 11b) we used all 30 nodes

4. http://vasc.ri.cmu.edu//idb/html/motion/house

(i.e., landmarks) and in the second one (Fig. 11c) we
matched sub-graphs by randomly picking 25 landmarks.
First of all, DEN achieved the worst performance, be-
cause it only relies on the graph topology to find the
correspondence. Secondly, IPFP-S, RRWM, CAV, FGM-
U and FGM-D almost obtained perfect matching of the
original graphs in the first case (Fig. 11b). As some
nodes became invisible and the graph got corrupted
(Fig. 11c), the performance of all the methods degraded.
However, FGM-U and FGM-D consistently achieved the
best performance. The results demonstrate the advan-
tages of the path-following algorithm over other state-
of-the-art methods in solving general GM problems. In
addition, it is interesting to notice that FGM-U and FGM-
D performed similarly in both cases. This is because
FGM-U can be considered as a special case of FGM-D
when the graph consists of undirected edges.

8.4 Car and motorbike image dataset

The car and motorbike image dataset was created in [44].
This dataset consists of 30 pairs of car images and 20
pairs of motorbike images taken from the PASCAL chal-
lenges. Each pair contains 30 ∼ 60 ground-truth corre-
spondences. We computed for each node the feature, pi,
as the orientation of the normal vector to the contour. We
adopted the Delaunay triangulation to build the graph.
In this experiment, we considered the most general
graph where the edge was directed and the edge feature
was asymmetrical. More specifically, each edge was rep-
resented by a couple of values, qc = [dc, θc]

T , where dc
was the pairwise distance between the connected nodes
and θc was the angle between the edge and the horizon-
tal line. Thus, for each pair of images, we computed the
node affinity as kpij = exp(−|pi−pj |) and the edge affinity
as kqc1c2 = exp(−σ|dc1 − dc2 | − (1 − σ)|θc1 − θc2 |), where
σ = [0, 1] is the parameter that is a trade-off between
the distance and angle features. We set σ = 1

2 in the
experiments to provide the same importance to the two
edge features. Fig. 12a and Fig. 12b demonstrate example
pairs of car and motorbike images respectively. To test
the performance against noise, we randomly selected
0 ∼ 20 outlier nodes from the background. Similarly, we
compared FGM-D against 11 state-of-the-art methods.
However, we were unable to directly use FGM-U to
match directed graphs. Therefore, we ran FGM-U on
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Fig. 11. Comparison of GM methods on the CMU house datasets. (a) An example pair of frames with the
correspondence generated by our method, where the blue lines indicate incorrect matches. (b) Performance of several
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an approximated undirected graph, where we computed
the feature of the undirected edge as the average value
of the original affinities between the directed edges.

As observed in Fig. 12c-d, only using the node sim-
ilarity (HUN) or a degenerate edge similarity (DEN)
cannot perform well on this challenging dataset. This
indicates the importance of designing good similarity
functions to solve matching problem in realistic datasets.
In addition, the proposed FGM-D consistently outper-
formed other methods on both datasets. Based on similar
path-following strategy, however, FGM-U was unable to
achieve the same accuracy because the graph consisted
of directed edges and FGM-U was only applicable to
undirected edges. It is worth to point that CAV per-
formed not very well compared to FGM-D although it
solved the same initial convex problem and optimized
the same concave relaxation at the final step. This result
as well as the previous experiment clearly demonstrated
the path-following algorithm used by FGM-D provided
a better optimization strategy than existing approaches.
Finally, it is important to remind the reader that without
the factorization proposed in this work it is not possible
to apply the path-following method to general graphs.

Fig. 13a-b evaluate the performance of GM methods
on the car and motorbike datasets for different weights
(σ) between the distance and angle edge features. When
σ = 0, the edge similarity is solely dependent on the
angle feature. On the other hand, when σ = 1, the edge
similarity is computed from edge distances. It can be
observed that for most methods, the best performance is
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Fig. 13. Comparison of GM methods using different fea-
ture weights (σ) on the car (a) and motorbike (b) datasets.

achieved around σ = 0.5. This indicates a combination of
distance and angle features provides a better similarity
for this challenging task. In addition, our method (FGM-
D) consistently achieved the best performance compared
to others for most settings. Interestingly, when σ is close
to 1 and the similarity is becoming a symmetric one
(using distance features), our un-directed method (FGM-
U) slightly out-performed the more general FGM-D.

8.5 Fish and character shape dataset

The UCF shape dataset [53] has been widely used for
comparing ICP algorithms. In our experiment, we used
two different templates. The first one has 91 points
sampled from the outer contour of a tropical fish. The
second one consist of 105 points sampled from a Chinese
character. For each template, we designed two series of
experiments to measure the robustness of an algorithm
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under different deformations and outliers. In the first
series of experiments, we rotated the template with a
varying degree (between 0 and π). In the second set of
experiments, a varying amount of outliers (between 0
and 20) were randomly added into the bounding box
of template. For instance, Fig. 14a-b illustrate two pairs
of example shapes with 20 outliers. We repeated the
random generation 50 times for different levels of noise
and compared DGM with ICP and the coherent point
drifting (CPD) [48]. The ICP algorithm was implemented
by ourselves and CPD implementation was taken from
the authors’ website. We initialized all the algorithms
with the same transformation, i.e., τ(p) = p. In DGM,
Delaunay triangulation was employed to compute the
graph structure. Recall that DGM simultaneously com-
putes the correspondence and the rotation.

As shown in Fig. 14c-d, the proposed DGM can per-
fectly match the shapes across all the rotations with-
out outliers, whereas both ICP and CPD get trapped
in the local optimal when the rotation is larger than
2
3π. When the number of outliers increases, DGM can
still match most points under large rotation at 2

3π. In
contrast, ICP and CPD drastically failed in presence of
outliers and large rotations (Fig. 14e-f). In addition to
a similarity transform, DGM can also incorporate non-
rigid transformations in GM. Similar to the rigid case
described in the main submission, we synthesized the
non-rigid shape from the UCF shape dataset [53]. To
generate the nonrigid transformation, we followed a
similar setting in [48], where the domain of the point
set was parameterized by a mesh of control points. The
deformation of the mesh was modeled as an spline-
based interpolation of the perturbation of the control
points. We repeated the random generation 50 times. For
instance, Fig. 15a illustrates a synthetic pair of graphs.

We compared DGM with other two state-of-the-art
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Fig. 15. Comparison between DGM and GM methods for
aligning non-rigidly deformed shapes. (a) An example of
two fishes, where the red one is generated by a non-
rigid transformation from the blue one. (b) Accuracy. (c)
Results, where the green and black lines indicate correct
and incorrect correspondence respectively.

GM methods: SM [27] and RRWM [43]. In addition, we
tested the performance of our algorithm (FGM-D) only
using the path-following algorithm for computing the
correspondence but without estimating the transforma-
tion. As shown in Fig. 15b-c, FGM-D performed better
than the other two GM methods. This is due to the path-
following algorithm that is more accurate in optimizing
GM problems. In addition, DGM significantly improved
FGM-D by estimating the transformation.

9 CONCLUSIONS AND FUTURE WORK

This paper proposes FGM, a new framework for under-
standing and optimizing GM problems. The key idea
is a novel factorization of the pairwise affinity matrix
into six smaller components. Four main benefits follow
from factorizing the affinity matrix. First, there is no need
to explicitly compute the costly affinity matrix. Second,
it allows for a unification of GM methods as well as
existing ICP algorithms. Third, the factorization enables
the use of path-following algorithms that improve the
performance of GM methods. Finally, it becomes easier
to incorporate global geometrical transformation in GM.

The most computationally consuming part of the al-
gorithm is the large number of iterations needed for
FW method to converge when Jα is close to a convex
function. Therefore, more advanced techniques (e.g., con-
jugate gradient) can be used to speedup FW. In addition,
we are exploring the extension of FGM to other higher-
order graph matching problems [42], [46] as well as
learning parameters for graph matching [44], [45].

Beyond GM problems, there are other computer vision
problems using pairwise constraints that can benefit
for the proposed factorization. A popular problem is
segmentation using Markov random fields (MRFs) [66].
Given n1 nodes and n2 labels, MRF problems consist in
finding the optimal labeling matrix X ∈ Φ that defines
a many-to-one mapping from nodes to labels, i.e.:

Φ = {X|X ∈ {0, 1}n1×n2 ,X1n2 = 1n1}. (19)
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Fig. 16. An MRF example of four nodes (red circles) with
three labels (blue boxes). Similar to GM, the affinity matrix
K can be factorized into six smaller matrices.

Fig. 16 illustrates a simple MRF problem, where four
nodes need to be assigned to three labels. Under the
many-to-one constraint (Eq. 19), MRF can be formalized
as a similar QAP as follows:

max
X∈Φ

Jmrf (X) = vec(X)TK vec(X).

Although it is originally designed for GM problems,
our factorization (Eq. 6) can be applied to model and
understand MRF problems as well. For instance, the 12-
by-12 K modeling the problem shown in Fig. 16 can be
decomposed into six components. In particular, G1 and
H1 are two 4-by-8 binary matrices, encoding the node-
edge incidence of the node graph. G2 and H2 are two
3-by-6 binary ones, describing the fully connected label
graph. Kp and Kq are used to encode the first-order and
second-order potentials respectively. In future work, we
plan to further explore this connection.
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