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Abstract. Detection and tracking humans in videos have been long-
standing problems in computer vision. Most successful approaches (e.g.,
deformable parts models) heavily rely on discriminative models to build
appearance detectors for body joints and generative models to constrain
possible body configurations (e.g., trees). While these 2D models have
been successfully applied to images (and with less success to videos), a
major challenge is to generalize these models to cope with camera views.
In order to achieve view-invariance, these 2D models typically require
a large amount of training data across views that is difficult to gather
and time-consuming to label. Unlike existing 2D models, this paper for-
mulates the problem of human detection in videos as spatio-temporal
matching (STM) between a 3D motion capture model and trajectories
in videos. Our algorithm estimates the camera view and selects a subset
of tracked trajectories that matches the motion of the 3D model. The
STM is efficiently solved with linear programming, and it is robust to
tracking mismatches, occlusions and outliers. To the best of our knowl-
edge this is the first paper that solves the correspondence between video
and 3D motion capture data for human pose detection. Experiments on
the Human3.6M and Berkeley MHAD databases illustrate the benefits
of our method over state-of-the-art approaches.

1 Introduction

Human pose detection and tracking in videos have received significant attention
in the last few years due to the success of Kinect cameras and applications in
human computer interaction (e.g., [1]), surveillance (e.g., [2]) and marker-less
motion capture (e.g., [3]). While there have been successful methods that es-
timate 2D body pose from a single image [4–8], detecting and tracking body
configurations in unconstrained video is still a challenging problem. The main
challenges stem from the large variability of people’s clothes, articulated motions,
occlusions, outliers and changes in illumination. More importantly, existing ex-
tensions of 2D methods [4, 5] cannot cope with large pose changes due to camera
view change. A common strategy to make these 2D models view-invariant is to
gather and label human poses across all possible viewpoints. However, this is
impractical, time consuming, and it is unclear how the space of 3D poses can
be uniformly sampled. To address these issues, this paper proposes to formulate
the problem of human body detection and tracking as one of spatio-temporal



2 Feng Zhou and Fernando De la Torre

(a)
(b)

(a)
(a) (b)(b)

Fig. 1. Detection and tracking of humans in three videos using spatio-temporal match-
ing (STM). STM extracts trajectories in video (gray lines) and selects a subset of tra-
jectories (a) that match with the 3D motion capture model (b) learned from the CMU
motion capture data set. Better viewed in color.

matching (STM) between 3D models and video. Our method solves for the cor-
respondence between a 3D motion capture model and trajectories in video. The
main idea of our approach is illustrated in Fig. 1.

Our STM algorithm has two main components: (1) a spatio-temporal motion
capture model that can model the configuration of several 3D joints for a variety
of actions, and (2) an efficient algorithm that solves the correspondence between
image trajectories and the 3D spatio-temporal motion capture model. Fig. 1
illustrates examples of how we can rotate our motion capture data model to
match the trajectories of humans in video across several views. Moreover, our
method selects a subset of trajectories that corresponds to 3D joints in the
motion capture data model (about 2 − 4% of the trajectories are selected). As
we will illustrate with the Human3.6M database [9] and the Berkeley MHAD
database [10], the main advantage of our approach is that it is able to cope with
large variations in viewpoint and speed of the action. This property stems from
the fact that we use 3D models.

2 Related work

Early methods for detecting articulated human body in video sequences built
upon on simple appearance models with kinematic constraints [11]. State-of-the-
art methods for pose detection and body tracking make use of deformable part
models (e.g. [4, 12, 5, 6]) or regressors [7]. Andrilukaet al. [13] combined the initial
estimate of the human pose across frames in a tracking-by-detection framework.
Sapp et al. [14] coupled locations of body joints within and across frames from an
ensemble of tractable sub-models. Burgos et al. [15] merged multiple independent
pose estimates across space and time using a non-maximum suppression. More
recently, Tian et al. [16] explored the generalization of deformable part models [4]
from 2D images to 3D spatio-temporal volumes for action detection in video.
Zuffi et al. [17] exploited optical flow by integrating image evidence across frames
to improve pose inference. Compared to previous methods, this paper enforces
temporal consistency by matching video trajectories to a spatio-temporal 3D
model.
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Our method is also related to the work on 3D human pose estimation. Con-
ventional methods rely on discriminative techniques that learn mappings from
image features (e.g., silhouettes [18]) to 3D pose with different priors [19, 20].
However, many of them require an accurate image segmentation to extract shape
features or precise initialization to achieve good performance in the optimiza-
tion. Inspired by recent advances in 2D human pose estimation, current works
focus on retrieving 3D poses from 2D body part positions estimated by the
off-the-shelf detectors [4, 12, 5]. For instance, Sigal and Black [21] learned a mix-
ture of experts model to infer 3D poses conditioned on 2D poses. Simo-Serra et
al. [22] retrieved 3D poses from the output of 2D body part detectors by a robust
sampling strategy. Ionescu et al. [7] reconstructed 3D human pose by inferring
over multiple human localization hypotheses on images. Inspired by [23], Yu et
al. [24] recently combined human action detection and a deformable part model
to estimate 3D poses. Compared to our approach, however, these methods typ-
ically require large training sets to model the large variability of appearance of
different people and viewpoints.

3 Spatio-temporal matching

This section describes the proposed STM algorithm. The STM algorithm has
three main components: (1) In training, STM learns a bilinear spatio-temporal
3D model from motion capture data, (2) Given an input video, STM extracts 2D
feature trajectories and evaluates the pseudo-likelihood of each pixel belonging
to different body parts; (3) During testing STM finds a subset of trajectories
that correspond to 3D joints in the spatio-temporal model, and compute the
extrinsic camera parameters.

3.1 Trajectory-based video representation

In order to generate candidate positions for human body parts, we used a
trajectory-based representation of the input video. To be robust to large cam-
era motion and viewpoint changes, we extracted trajectories from short video
segments. The input video is temporally split into overlapped video segments of
length n frames (e.g., n = 15 in all our experiments).

For each video segment, we used [25] to extract trajectories by densely sam-
pling feature points in the first frame and track them using a dense optical flow
algorithm [26]. The output of the tracker for each video segment is a set of mp
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trajectories (see notation1),

P =

 p1
1 · · · p1

mp

...
. . .

...
pn1 · · · pnmp

 ∈ R2n×mp ,

where each pij ∈ R2 denotes the 2D coordinates of the jth trajectory in the

ith frame. Notice that the number of trajectories (mp) can be different between
segments. Fig. 2b illustrates a video segment with densely extracted feature tra-
jectories. Compared to the sparser KLT-based trackers [27, 28], densely tracking
the feature points guarantees a good coverage of foreground motion and improves
the quality of the trajectories in the presence of fast irregular motions.

To evaluate a pseudo-likelihood of each trajectory belonging to a 3D joint, we
applied a state-of-the-art body part detector [5] independently on each frame.
We selected a subset of mq = 14 body joints (Fig. 2a) that are common across
several datasets including the PARSE human body model [5], CMU [29], Berke-
ley MHAD [10] and Human3.6M [9] motion capture datasets.

For each joint c = 1 · · ·mq in the ith frame, we computed the SVM score
aicj for each trajectory j = 1 · · ·mp by performing an efficient two-pass dynamic
programming inference [30]. Fig. 2c shows the response maps associated with
four different joints. The head can be easily detected, while other joints are more
ambiguous. Given a video segment containing mp trajectories, we then computed
a trajectory response matrix, A ∈ Rmq×mp , whose element acj =

∑n
i=1 a

i
cj

encodes the cumulative cost of assigning the jth trajectory to the cth joint over
the n frames.

3.2 Learning spatio-temporal bilinear bases

There exists a large body of work that addresses the representation of time-
varying spatial data in several computer vision problems (e.g., non-rigid struc-
ture from motion, face animation), see [31]. Common models include learning
linear basis vectors independently for each frame [32] or discrete cosine transform
bases independently for each joint trajectory [33]. Despite its simplicity, using a
shape basis or a trajectory basis independently fails to exploit spatio-temporal
regularities. To have a low-dimensional model that exploits correlations in space
and time, we parameterize the 3D joints in motion capture data using a bilinear
spatio-temporal model [34].

1 Bold capital letters denote a matrix X, bold lower-case letters a column vector x. All
non-bold letters represent scalars. xi represents the ith column of the matrix X. xij
denotes the scalar in the ith row and jth column of the matrix X. [X1; · · · ; Xn] and
[⇒

i
Xi] denote vertical and diagonal concatenation of sub-matrices Xi respectively.

1m×n,0m×n ∈ Rm×n are matrices of ones and zeros. In ∈ Rn×n is an identity matrix.
‖X‖p = p

√∑
|xij |p and ‖X‖F =

√
tr(XTX) designate the p-norm and Frobenius

norm of X respectively. X† denotes the Moore-Penrose pseudo-inverse.
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Fig. 2. Example of feature trajectories and their responses. (a) Geometrical configura-
tion of 14 body joints shared across 3D datasets. (b) Dense trajectories extracted from
a video segment. (c) Feature response maps for 4 joints (see bottom-right corner).

Given a set of 3D motion capture sequences of different lengths, we randomly
select a large number (> 200) of temporal segments of the same length, where
each segment denoted by Q,

Q =

 q1
1 · · · q1

mq

...
. . .

...
qn1 · · · qnmq

 ∈ R3n×mq ,

contains n frames and mq joints. For instance, Fig. 3a shows a set of motion
capture segments randomly selected from several kicking sequences.

To align the segments, we apply Procrustes analysis to remove the 3D rigid
transformations. In order to build local models, we cluster all segments into k
groups using spectral clustering [35]. The affinity between each pair of segments
is computed as,

κ(Qi,Qj) = exp
(
− 1

σ2
(‖Qi − τij(Qj)‖2F + ‖Qj − τji(Qi)‖2F )

)
,

where τij denotes the similarity transformation found by Procrustes analysis
when aligning Qj towards Qi. The kernel bandwidth σ is set to be the average
distance from the 50% closest neighbors for all Qi and Qj pairs. As shown in
the experiments, this clustering step improves the generalization of the learned
shape models. For instance, each of the 4 segment clusters shown in Fig. 3b
corresponds to a different temporal stage of kicking a ball. Please refer Fig. 4
for examples of temporal clusters.

Given a set of l segments2, {Qi}li=1, belonging to each cluster, we learn a
bilinear model [34] such that each segment Qi can be reconstructed using a set
of weights Wi ∈ Rkt×ks minimizing,

min
T,S,{Wi}i

l∑
i=1

‖Q(TWiS
T )−Qi‖2F , (1)

2 To simplify the notation, we do not explicitly specify the cluster membership of the
motion capture segment (Qi) and the bilinear bases (T and S).
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where the columns of T ∈ Rn×kt and S ∈ R3mq×ks contain kt trajectories and
ks shape bases respectively. In the experiment, we found kt = 10 and ks = 15
produced consistently good results. Q(·) is a linear operator that reshapes any
n-by-3mq matrix to a 3n-by-mq one, i.e.,

Q
( q1T

1 · · · q1T
mq

...
. . .

...
qnT1 · · · qnTmq

) =

 q1
1 · · · q1

mq

...
. . .

...
qn1 · · · qnmq

 , ∀ qij ∈ R3.

Unfortunately, optimizing Eq. 1 jointly over the bilinear bases T, S and their
weights {Wi}i is a non-convex problem. To reduce the complexity and make the
problem more trackable, we fix T to be the discrete cosine transform (DCT)
bases (Top of Fig. 3c). Following [34], the shape bases S can then be computed
in closed-form using the SVD as,

[TT†Q−1(Q1); · · · ; TT†Q−1(Ql)] = UΣST . (2)

For example, the left part of Fig. 3c plots the first two shape bases si learned
from the 3rd cluster of segments shown in Fig. 3b, which mainly capture the
deformation of the movements of the arms and legs.

(b) (c)

Cluster 1 Cluster 3

Cluster 2 Cluster 4

All Segments

Shape Bases

DCT Bases

Reconstruction

(a)

Fig. 3. Spatio-temporal bilinear model learned from the CMU motion capture dataset.
(a) All the motion capture segments randomly selected from a set of kicking sequences.
(b) Clustering motion capture segments into 4 temporal clusters. (c) The bilinear bases
estimated from the 3rd cluster. Left: top-2 shape bases (si) where the shape deformation
is visualized by black arrows. Top: top-3 DCT trajectory bases (tj). Bottom-right:
bilinear reconstruction by combining each pair of shape and DCT bases (tjs

T
i ).

3.3 STM optimization

This section describes the objective function and the optimization strategy for
the STM algorithm.



Spatio-temporal Matching for Human Detection in Video 7

(b)

(a)

G
re

et
in

g

W
al

k 
P

ai
r

Ju
m

p

S
it

W
al

k

S
w

in
g

(c)

Cluster 1 Cluster 4Cluster 2 Cluster 3All SegmentsCluster 1 Cluster 2 Cluster 3 Cluster 4All Segments

Fig. 4. Clustering motion capture segments into four clusters for different datasets. (a)
CMU motion capture dataset [29]. (b) Berkeley MHAD dataset [10]. (c) Human3.6M
dataset [9].

Objective function. Given the mp trajectories P ∈ R2n×mp extracted from
an n-length video segment, STM aims to select a subset of mq trajectories that
best fits the learned spatio-temporal 3D shape structure (T and S) projected
in 2D. More specifically, the problem of STM consists in finding a many-to-one
correspondence matrix X ∈ {0, 1}mp×mq , weights of the bilinear 3D model
W ∈ Rkt×ks , and a set of 3D-2D weak perspective projections3 R ∈ R2n×3n,
b ∈ R2n, that minimize the following error

min
X,W,R,b

‖RQ(TWST ) + b1T −PX‖1 + λa tr(AX) + λs‖TWΣ−1‖1, (3)

s. t. X ∈ {0, 1}mp×mq , XT1 = 1, RT
i Ri = I2 ∀ i = 1 · · ·n,

where the first term in the objective measures the error between the selected
trajectories PX ∈ R2n×mq and the bilinear reconstruction Q(TWST ) projected
in 2D using R and b. The error is computed using the l1 norm instead of the
Frobenious norm, because of its efficiency and robustness. Given the trajectory
response A ∈ Rmq×mp , the second term measures the appearance cost of the
trajectories selected by X and weighted by λa. The third term weighted by λs
penalizes large weights TW ∈ Rn×ks of the shape bases, where the singular
value Σ ∈ Rks×ks computed in Eq. 2 is used to normalize the contribution of
each basis. In our experiment, the regularization weights λa and λs are estimated
using cross-validation.

Optimizing Eq. 3 is a challenging problem, in the following sections we de-
scribe an efficient coordinate-descent algorithm that alternates between solving

3 R = [⇒
i
θiRi] ∈ R2n×3n is a block-diagonal matrix, where each block contains the

rotation Ri ∈ R2×3 and scaling θi for each frame. Similarly, b = [b1; · · · ; bn] ∈ R2n

is a concatenation of the translation bi ∈ R2 for each frame.
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X,W and R,b until convergence. The algorithm is initialized by computing X
that minimizes the appearance cost tr(AX) in Eq. 3 and setting Q(TWST ) to
be the mean of the motion capture segments.

Optimizing STM over X and W. Due to the combinatorial constraint on
X, optimizing Eq. 3 over X and W given R and b is a NP-hard mixed-integer
problem. To approximate the problem, we relax the binary X to be a continuous
one and reformulate the problem using the LP trick [36] as,

min
X,W,U,V,Us,Vs

1T (U + V)1 + λa tr(AX) + λs1
T (Us + Vs)1, (4)

s. t. X ∈ [0, 1]mp×mq ,XT1 = 1,

RQ(TWST ) + b1T −PX = U−V,U ≥ 0,V ≥ 0,

TWΣ−1 = Us −Vs,Us ≥ 0,Vs ≥ 0,

where U,V ∈ R2n×mq and Us,Vs ∈ Rn×ks are four auxiliary variables used
to formulate the l1 problem as linear programming. The term RQ(TWST ) is
linear in W and we can conveniently re-write this expression using the following
equality as:

vec
(
RQ(TWST )

)
= (Imq ⊗R) vec

(
Q(TWST )

)
= (Imq ⊗R)ΠQ vec(TWST ) = (Imq ⊗R)ΠQ(S⊗T)︸ ︷︷ ︸

Constant

vec(W),

where ΠQ ∈ {0, 1}3nmq×3nmq is a permutation matrix that re-orders the ele-
ments of a 3nmq-D vector as,

ΠQ vec
( q1

1 · · · q1
mq

...
. . .

...
qn1 · · · qnmq

) = vec
( q1T

1 · · · q1T
mq

...
. . .

...
qnT1 · · · qnTmq

), ∀ qij ∈ R3. (5)

After solving the linear program, we gradually discretize X by taking successive
refinements based on trust-region shrinking [36].

Optimizing STM over R and b. If X and W are fixed, optimizing Eq. 3
with respect to R and b becomes an l1 Procrustes problem [37],

min
R,b

‖RQ + b1T −PX‖1, s. t. RT
i Ri = I2 ∀ i = 1 · · ·n, (6)

where Q = Q(TWST ). Inspired by the recent advances in compressed sensing,
we approximate Eq. 6 using the augmented Lagrange multipliers method [38]
that minimizes the following augmented Lagrange function:

min
L,E,µ,R,b

‖E−PX‖1 + tr
(
LT (RQ + b1T −E)

)
+
µ

2
‖RQ + b1T −E‖2F , (7)

s. t. RT
i Ri = I2 ∀ i = 1 · · ·n,
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where L is the Lagrange multiplier, E is an auxiliary variable, and µ is the
penalty parameter. Eq. 7 can be efficiently approximated in a coordinate-descent
manner. First, optimizing Eq. 7 with respect to R and b is a standard orthogonal
Procrustes problem,

min
R,b

‖RQ + b1T − (E− L

µ
)‖2F , s. t. RT

i Ri = I2 ∀ i = 1 · · ·n,

which has a close-form solution using the SVD. Second, optimizing Eq. 7 with
respect to E can be efficiently found using absolute value shrinkage [38] as,

E := PX− S 1
µ

(PX−RQ− b1T − L

µ
),

where Sσ(p) = max(|p| −σ, 0) sign(p) is a soft-thresholding operator [38]. Third,
we gradually update L← L + µ(RQ + b1T −E) and µ← ρµ, where we set the
incremental ratio to ρ = 1.05 in all our experiments.

3.4 Fusion

Given a video containing an arbitrary number of frames, we solved STM inde-
pendently for each segment of n frames (n = 15 in our experiments). Recall that
we learned k bilinear models (T and S) from different clusters of motion capture
segments (e.g., Fig. 3b) in the training step. To find the best model for each seg-
ment, we optimize Eq. 3 using each model and select the one with the smallest
error. After solving STM for each segment, the final joint position P̄i ∈ R2×mq

at frame i is the average coordinates of the selected trajectories {PcXc}c from
all the lc segments overlapped at i, i.e., P̄i = 1

lc

∑
c Pic

c Xc, where Pic
c ∈ R2×mp

encodes the trajectory coordinates at the ithc frame within the cth segment and
ic the local index of the ith frame in the original video.

4 Experiments

This section compares STM against several state-of-the-art algorithms for body
part detection in synthetic experiments on the CMU motion capture dataset [29],
and real experiments on the MHAD [10] and the Human3.6M [9] datasets.

For each dataset, the 3D motion capture model was trained from its associ-
ated motion capture sequences. The 3D motion capture training data is person-
independent, and it does not contains samples of the testing subject. Notice that
the annotation scheme is different across datasets (Fig. 2a). We investigated four
different types of 3D models for STM: (1) Generic models: STM-G1 and STM-
G4 were trained using all sequences of different actions with k = 1 and k = 4
clusters respectively. (2) Action-specific models: STM-A1 and STM-A4 were
trained independently for each action from each dataset. In testing, we assumed
we know what action the subject was performing. As before, STM-A1 and
STM-A4 were trained with k = 1 and k = 4 clusters respectively.
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Fig. 5. Comparison of human pose estimation on the CMU motion capture dataset.
(a) Original motion capture key-frames in 3D with 50 outliers that were synthetically
generated. (b) Results of the greedy approach and our method on four 2D projections.
(c) Mean error and std. for each method and action as a function of the number of
outliers. (d) Mean error and std. for each camera view. (e) Mean error and std. for all
actions and cameras.

4.1 CMU motion capture dataset

The first experiment validated our approach on the CMU motion capture dataset
[29], from which we selected 5 actions including walking, running, jumping, kick-
ing, golf swing. For each action, we picked 8 sequences performed by different
subjects. For each sequence, we synthetically generated 0 ∼ 200 random trajec-
tories as outliers in 3D. Then we projected each sequence (with outliers included)
onto 4 different 2D views. See Fig. 5a for examples of the 3D sequences as well
as the camera positions. To reproduce the response of a body part detector at
each frame, we synthetically generate a constant-value response region centered
at the ground-truth location with the radius being the maximum limb length
over the sequence. The response value of the jth feature trajectory for the cth

body part at ith frame is considered to be aicj = −1 if it falls in the region or
0 otherwise. Our goal is to detect the original trajectories and recover the body
structure.

We quantitatively evaluated our method with a leave-one-out scheme, i.e.,
each testing sequence was taken out for testing, and the remaining data was
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used for training the bilinear model. For each sequence, we computed the error
of each method as the percentage of incorrect detections of the feature points
compared with the ground-truth position averaged over frames. To the best of
our knowledge, there is no previous work on STM in computer vision. Therefore,
we implemented a greedy baseline that selects the optimal feature points with
the lowest response cost without geometrical constraints.

Fig. 5b shows some key-frames for the greedy approach, our method and the
ground truth using the STM-A4 for detecting the kicking actions across four
views. As can be observed, STM is able to select the trajectories more precisely
and it is more robust than the greedy approach. Fig. 5c-d quantitatively compare
our methods with the greedy approach on each action and viewpoint respectively.
Our method consistently outperforms the greedy approach for detection and
tracking in presence of outliers. In addition, the STM-A1 model obtains lower
error rates than STM-G1 because STM-A1 is an action-specific model, unlike
STM-G1 which is a generic one. By increasing the number of clusters from one
to four, the performance of STM-G4 and STM-A4 clearly improves from STM-
G1 and STM-A1 respectively. This not surprising because the bilinear models
trained on a group of similar segments can be represented more compactly (fewer
number of parameters) and generalize better in testing.

4.2 Berkeley multi-modal human action (MHAD) dataset

In the second experiment, we tested the ability of STM to detect humans on
the Berkeley multi-modal human action database (MHAD) [10]. The MHAD
database contains 11 actions performed by 12 subjects. For each sequence, we
took the videos captured by 2 different cameras as shown in Fig. 6a. To ex-
tract the trajectories from each video, we used [25] in sliding-window manner to
extract dense trajectories from each 15 frames segment. The response for each
trajectory was computed using the SVM detector score [5]. The bilinear models
were trained from the motion capture data associated with this dataset.

To quantitatively evaluate the performance, we compared our method with
two baselines: the state-of-the-art image-based pose estimation method proposed
by Yang and Ramanan [5], and the recent video-based method designed by Bur-
gos et al. [15] that merges multiple independent pose estimates across frames. We
evaluated all methods with a leave-one-out scheme. The error for each method is
computed as the pixel distance between the estimated and ground-truth part lo-
cations. Notice that a portion of the error is due to the inconsistency in labeling
protocol between the PARSE model [5] and the MHAD dataset.

Fig. 6b-d compare the error to localize body parts of our method againts
[5] and [15]. Our method largely improves the image-based baseline [5] for all
actions and viewpoints. Compared to the video-based method [15], STM achieves
lower errors for most actions except for “jump jacking”, “bending”, “one-hand
waving” and “two-hand waving”, where the fast movement of the body joints
cause much larger error in tracking feature trajectories over time. Among the four
STM models, STM-A4 performs the best because the clustering step improves
the generalization of the bilinear model. As shown in Fig. 6d, the hands are the
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most difficult to accurately detect because of their fast movements and frequent
occlusions.

Fig. 6e-g investigate the three main parameters of our system, segment length
(n), number of bases (ks and kt) and the regularization weights (λa and λs).
According to Fig. 6e, a smaller segment length is beneficial for “jump jacking”
because the performance of the tracker [25] is less stable for fast-speed action.
In contrast, using a larger window improves the temporal consistency in actions
such as “throwing” and “standing up”. Fig. 6f shows the detection error of
STM using different number of shape (ks) and trajectories (kt) bases for the
first subject. Overall, we found the performance of STM is not very sensitive
to small change in the number of shape bases because the contribution of each
shape basis in STM (Eq. 3) is normalized by their energies (Σ). In addition,
using a small number (e.g., 5) of trajectory bases can lower the performance of
STM. This result demonstrates the effectiveness of using dynamic models over
the static ones (e.g., a PCA-based model can be considered as a special case of
the bilinear model when kt = 1). Fig. 6g plots the cross-validation error for the
first subject, from which we pick the optimal λa and λs.

Our system was implemented in Matlab on a PC with 2GHz Intel CPU and
8GB memory. The codes of [5, 15] were downloaded from authors’ webpages.
The linear programming in Eq. 4 was optimized using the Mosek LP solver [39].
Fig. 6f analyzes the computational cost (in seconds) for tracking the human pose
in a sequence containing 126 frames. The most computationally intensive part
of the method is calculating the response for each joint and each frame using [5].
Despite a large number of candidate trajectories (mp ≈ 700) per segment, STM
can be computing in about 8 minutes.

4.3 Human3.6M dataset

In the last experiment, we selected 11 actions performed by 5 subjects from the
Human3.6M dataset [9]. Compared to the Berkeley MHAD dataset, the motions
in Human3.6M were performed by professional actors, that wear regular clothing
to maintain as much realism as possible. See Fig. 7a for example frames.

As in the previous experiment, our methods were compared with two base-
lines [5, 15] in a leave-one-out scheme. The bilinear models were trained from
the motion capture data associated with this dataset. Fig. 6b-c show the per-
formance of each method on localizing body part for each action and viewpoint
respectively. Due to the larger appearance variation and more complex motion
performance, the overall error of each method is larger than the one achieved
on the previous Berkeley MHAD dataset. However, STM still outperforms both
the baselines [5, 15] for most actions and viewpoints. If the action label is known
a priori, training action-specific models (STM-A1 and STM-A4) achieves better
performance than the ones trained on all actions (STM-G1 and STM-G4).

5 Conclusion
This paper presents STM, a robust method for detection and tracking human
poses in videos by matching video trajectories to a 3D motion capture model.
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STM matches trajectories to a 3D model, and hence it provides intrinsic view-
invariance. The main novelty of the work resides in computing the correspon-
dence between video and motion capture data. Although it might seem compu-
tationally expensive and difficult to optimize at first, using an l1-formulation to
solve for correspondence results in an algorithm that is efficient and robust to
outliers, missing data and mismatches. We showed how STM outperforms state-
of-the-art approaches to object detection based on deformable parts models in
the (MHAD) [10] and the Human3.6M dataset [9].

A major limitation of our current approach is the high computational cost
for calculating the joint response, which is computed independently for each
frame. In future work, we plan to incorporate richer temporal features [25] to
improve the speed and accuracy of the trajectory response. Also, we are solving
STM independently for each segment (sub-sequence), which might result in some
discontinuity in the estimation of the pose; a straight-forward improvement could
be made by imposing consistency between overlapping segments.
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8. Eichner, M., Jesús, M., Zisserman, A., Ferrari, V.: 2d articulated human pose
estimation and retrieval in (almost) unconstrained still images. Int. J. Comput.
Vis. 99(2) (2012) 190–214

9. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: Large scale
datasets and predictive methods for 3d human sensing in natural environments.
IEEE Trans. Pattern Anal. Mach. Intell. (2014)

10. Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., Bajcsy, R.: Berkeley MHAD: A
comprehensive multimodal human action database. In: IEEE Workshop on Appli-
cations on Computer Vision (WACV). (2013) 53–60

11. Poppe, R.: Vision-based human motion analysis: An overview. Comput. Vis. Image
Underst. 108(1-2) (2007) 4–18

12. Sapp, B., Toshev, A., Taskar, B.: Cascaded models for articulated pose estimation.
In: ECCV. (2010)

13. Andriluka, M., Roth, S., Schiele, B.: Monocular 3d pose estimation and tracking
by detection. In: CVPR. (2010)

14. Sapp, B., Weiss, D., Taskar, B.: Parsing human motion with stretchable models.
In: CVPR. (2011)

15. Burgos, X., Hall, D., Perona, P., Dollár, P.: Merging pose estimates across space
and time. In: BMVC. (2013)

16. Tian, Y., Sukthankar, R., Shah, M.: Spatiotemporal deformable part models for
action detection. In: CVPR. (2013)

17. Zuffi, S., Romero, J., Schmid, C., Black, M.J.: Estimating human pose with flowing
puppets. In: ICCV. (2013)

18. Agarwal, A., Triggs, B.: Recovering 3d human pose from monocular images. IEEE
Trans. Pattern Anal. Mach. Intell. 28(1) (2006) 44–58

19. Elgammal, A.M., Lee, C.S.: Inferring 3d body pose from silhouettes using activity
manifold learning. In: CVPR. (2004)

20. Urtasun, R., Fleet, D.J., Fua, P.: 3d people tracking with Gaussian process dy-
namical models. In: CVPR. (2006)

21. Sigal, L., Black, M.J.: Predicting 3d people from 2d pictures. In: AMDO. (2006)



16 Feng Zhou and Fernando De la Torre
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