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Abstract— Matching images with large geometric and iconic
changes (e.g. faces under different poses and facial expressions)
is an open research problem in computer vision. There are two
fundamental approaches to solve the correspondence problem
in images: Feature-based matching and model-based matching.
Feature-based matching relies on the assumption that features
are stable across view-points and iconic changes, and it uses
some unary, pair-wise or higher-order constraints as a measure
of correspondence. On the other hand, model-based approaches
such as Active Shape Models (ASMs) align appearance features
with respect to a model. The model is learned from hand-
labeled samples. However, model-based approaches typically
suffer from lack of generalization to untrained situations.

This paper proposes Active Conditional Models (ACM) that
combines the benefits of both approaches. ACM learns the
conditional relation (both in shape and appearance) between
a reference view of the object and other view-points or iconic
changes. The ACM model generalizes better to untrained
situations, because it has less number of parameters (less prone
to overfitting) and directly learns variations w.r.t a reference
image (similar to feature-based methods). Several examples
in the context of facial feature matching across pose and
expression illustrate the benefits of ACMs.

I. INTRODUCTION

Establishing correspondence between images is a funda-
mental problem in computer vision. Correspondence between
images is needed in many computer vision algorithms such as
object recognition [1], image registration [2], face detection
and tracking [3], face recognition [5], and 3D reconstruction
[4]. Approaches to solve for correspondence could be broadly
divided in feature-based and model-based methods. Feature-
based methods extract features in both images and use some
unary [6], [18], pair-wise [7] or higher-order constraint [10]
to solve correspondence. However, feature-based approaches
typically fail when there is a large change in camera mo-
tion, pose or large iconic changes (e.g. eyes closed). As
shown in Fig. 1(a), feature based approaches fail to detect
correspondence when there are strong changes in pose and
expression. On the other hand, model-based approaches
incorporate a priori information about iconic and view-point
changes. Many methods, such as Snakes [12], Parameterized
Appearance Models (e.g Active Shape Models(ASM) [13],
Active Appearance Models(AAM) [14], [27], 3D Morphable
Models (3DMM) [15]) have been successfully applied to
solve facial correspondence. However, these models typically
suffer from lack of generalization to untrained samples.
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Fig. 1. (a) Feature-based (SIFT) method for matching two images.
(b) Model-based approaches to solve the correspondence between image
features and a model. (c) Active Conditional Models (ACM) learn a mapping
from a reference image (red box) to other images with changes in pose and
expression.

In this paper we propose a new statistical model, Active
Conditional Models (ACMs), that benefits from both model-
based and feature-based matching. ACMs learn the shape and
appearance representation of one class of objects conditional
to a reference image. ACMs outperform PAMs in generaliza-
tion ability, because they learn the conditional information
relative to a reference image. Unlike feature-based corre-
spondence, ACMs constrain with a shape and appearance
model. Unlike model-based methods, ACMs incorporates a
reference image that reduces the amount of person-specific
variability. Fig. 1 illustrates the differences between the three
approaches to image matching.

The remainder of this paper is structured as follows: Sec-
tion 2 provides a brief overview of related work. Section 3
gives details of learning and inference in ACMs. In Section 4,
ACMs are extended by adding appearance. The experimental
results are presented and discussed in Section 5.



II. PREVIOUS WORK

This section reviews previous work on feature-based and
model-based image matching.

A. Feature-based image matching

Image matching has been a central research topic in com-
puter vision over the last few decades. Typical approaches
to correspondence involve matching feature points between
images. Lowe’s SIFT descriptor [18] is one of the state-of-
the-art methods to construct geometric invariant features to
match rigid objects. SIFT and its extensions [24], [19], [25],
[6], [23] have been successfully applied to many problems.

Alternatively, the correspondence problem can be formu-
lated into a graph matching problem considering each feature
point in the image as a node in a graph. Leordeanu and
Herbert [7] proposed a spectral graph matching optimization
algorithm using general unary and pairwise constraints. They
built an affinity matrix between pair-wise points, and the
correspondence is found by thresholding the leading eigen-
vectors. The problem of hyper-graph matching has been fur-
ther studied [20], [10], considering higher-order interactions
between tuples of features beyond pairwise.

Recently, researchers paid more attention to learn the
optimal set of parameters for graph matching. Caetano et
al. [11] made use of structural models improving the graph
matching solution. Torresani et al. [21] proposed an energy
minimization approach to establish correspondences for non-
rigid motion, in which the parameter of the error function are
learned by NIO algorithm [22]. Leordeanu and Herbert [9]
introduced a unsupervised learning strategy to learn the
weights in spectral matching.

B. Model-based image matching

Model-based methods are able to solve the correspondence
in difficult situations because the model encodes prior knowl-
edge of the expected shape and appearance of an object
class. ASMs [13] have been proven an effective method to
model the shape and appearance of objects. ASMs build
a model of shape variation by performing PCA on a set
of landmarks (after Procrustes). For each landmark, the
Mahalanobis distance between the sample and mean texture
is used to assess the quality of the fit of a new shape.
The fitting process is performed using a local search along
the normal of the landmark. Later, the new positions are
projected onto rigid and non-rigid basis. These two steps
are alternated until convergence. Further extensions of ASMs
include 3D Morphable Models [15], AAM [14] and kernel
generalizations [27] among others. The work that is closest to
the proposed one is the one done by Asthana et al. [16]. This
approach [16] utilizes the MPEG-4 based facial animation
system to generate virtual images having different poses. The
set of virtual images is used as training data for a view-based
AAM, and later locate landmarks in previously untrained
face images.

III. ACTIVE CONDITIONAL SHAPE MODELS (ACSMS)

This section describes the details of Active Conditional
Shape Models (ACSMs). Unlike ASMs, ACSMs learn a
mapping between a neutral shape and shape variations of
the same individual under different poses and expressions.

A. ACSMs Energy Function

Let FFF i ∈ ℜ3×d f (see footnote for notation1) be the ho-
mogeneous representation for d f landmarks located in the
neutral (or reference) view of the ith subject. Fig. 1.c shows
two examples of labeled face images with 66 landmarks
under different expressions and poses. FFF i has the following
structure:

FFF i =

 ui1 ui2 ... uid f

vi1 vi2 ... vid f

1 1 ... 1

 (1)

where (ui j,vi j)
T denotes jth landmark coordinates for the ith

subject.
ACSMs learn a mapping between the neutral (or reference)

view of the object and the object under different rigid and
non-rigid transformations (see Fig. 1(c)). Let qqqb

i ∈ ℜ2dg×1

denote the ith subject under q different configurations, and
dg denotes the number of landmarks. i= 1,2, ...,n indexes the
person identity, b = 1,2, ..., p denotes possible deformations
(e.g. viewpoint or expression changes) and n is number of
subjects . qqqb

i has the following structure:

qqqb
i =

(
xb

i1 yb
i1 ... xb

idg
yb

idg

)T
(2)

where (xb
i j,y

b
i j), j = 1,2, ...dg(dg ≤ d f ) is the coordinate of

jth point in the bth deformed shape of the ith individual.
The ACSM minimizes:

EACSM(AAA,BBB,CCC) =
n

∑
i=1

p

∑
b=1

∥qqqb
i − (

k

∑
j=1

cb
i jBBB j)vec(AAAb

i FFF i)∥2
2, (3)

where AAAb
i ∈ ℜ2×3 is an affine matrix that compensates

for geometric changes (e.g. rotation, scale). BBB j ∈ ℜ2dg×2d f

is a basis such that a linear combination weighted by
the coefficient cb

i j models non-rigid deformations and 3D
rigid transformations (that an affine transformation cannot
recover). Fig. 2 illustrates the deformation process from a
neutral face FFF i to faces under different view point or non-
rigid deformations due to changes in expressions and pose.

1Bold capital letters denote matrices DDD, bold lower-case letters a column
vector ddd. ddd j represents the jth column of the matrix DDD. All non-bold letters
represent scalar variables. di j denotes the scalar in the row i and column j
of the matrix DDD and the scalar i-th element of a column vector ddd j . diag is an
sperator that transforms a vector to a diagonal matrix or takes the diagonal
of the matrix into a vector. 111k ∈ ℜk×1 is a vector of ones. ||ddd||22 denotes
the norm of the vector ddd. ◦ denotes the Hadamard or point-wise product,
⊗ denotes the Kronecker product, vec(·) represents the vec operator that
converts a matrix into a column vector, and mod(x,y) denotes the modulus
after x dividing by y.
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Fig. 2. Shape deformation process

Equation 3 can be re-written as:

EACSM(UUU ,BBB,CCC) =
m

∑
l=1

∥qqql − (
k

∑
j=1

c jlBBB j)vec(AAAlFFF l)∥2
2

=
m

∑
l=1

∥qqql − (
k

∑
j=1

c jlBBB j)uuul∥2
2,

(4)

where m = np, l is an index that includes all possible
instances of a subject i and all instances of possible con-
figurations b, satisfying i = ⌈l/p⌉ and b = mod(l, p), and
uuul = vec(AAAlFFF l) ∈ ℜ2d f ×1.

B. Optimization

To learn the ACSMs’ parameters we have to minimize
Eq. 4 with respect to the non-rigid transformation matrix BBB,
the local coefficients cccl for every subject and every instance
of deformation, and the affine transformation AAAl . We use
an alternated least square (ALS) strategy to monotonically
reduce the error in each step. ALS alternates between opti-
mizing for BBB while AAAl and cccl are fixed and optimizing AAAl
when cccl and BBB are fixed. The minimization scheme is shown
in the table of Algorithm 1, where:

QQQ = [qqq1 qqq2 ... qqqm], BBB = [BBB1 BBB2 ... BBBk]

UUU = [111kkk ⊗uuu1 111kkk ⊗uuu2 ... 111kkk ⊗uuum],

CCC =


c11 c12 ... c1m
c21 c22 ... c2m
... ... ... ...
ck1 ck2 ... ckm

 (5)

IV. ACTIVE CONDITIONAL APPEARANCE MODELS
(ACAMS)

Similar to ACSMs, ACAMs learn the conditional relation
between a reference (or neutral) appearance and the appear-
ance of the same subject under different conditions. Similar
to feature-based methods, it uses a reference image.

Algorithm 1 Learning Active Conditional Shape Models

1. Initialize parameters BBB and CCC.

2. For each instance l, minimize Eq. 4 over AAAl for fixed
BBB and cccl

AAA∗
l = (

k

∑
j=1

c jlBBB j)
−1qqqlFFF

T
l (FFF lFFFT

l )
−1

(6)

3. For each instance l, minimize Eq. 4 over cccl for fixed
AAAl(uuul) and BBB

ccc∗l = (ZZZT
1 ZZZ1)

−1ZZZT
1 qqql (7)

where ZZZ1 = BBBPPP, and PPP = diag(111k)⊗uuul

4. Minimize Eq. 4 over BBB for fixed AAA(UUU) and CCC

BBB∗ = QQQZZZT
2 (ZZZ2ZZZT

2 )
−1 (8)

where ZZZ2 = (CCC⊗12d f )◦UUU .

5. If not converged, return to step 2.

ACAMs are similar to ACSMs but no affine transformation
matrix AAAl is necessary. We use l to index all possible
instances of a subject i under all possible configurations b. d
is the dimension of the appearance features. Let xxxl ∈ℜd×1 be
the neutral appearance of the lth instance, and yyyl ∈ ℜd×1 be
the deformed appearance of the lth instance, then the energy
function is:

EACAM(BBB,CCC) =
m

∑
l=1

∥yyyl − (
k

∑
j=1

c jlBBB j)xxxl∥2
2 (9)

where m is the number of appearance samples with all
possible deformations. The ALS algorithm to fit ACAMs is
illustrated in the table for Algorithm 2.

Algorithm 2 Learning Active Conditional Appearance
Model

1. Initialize parameter BBB.

2. For each instance l, minimize Eq. 9 over cccl for fixed
BBB.

ccc∗l = (ZZZT
1 ZZZ1)

−1ZZZT
1 YYY l (10)

where ZZZ1 = BBBPPP, YYY = [yyy1 yyy2 ... yyym], and
PPP = diag(111k)⊗ xxxl .

3. Minimize Eq. 9 over BBB for fixed CCC.

BBB∗ = YYY ZZZT
2 (ZZZ2ZZZT

2 )
−1 (11)

whereZZZ222 = (CCC ⊗ 12d f ) ◦ XXX , and XXX = [111kkk ⊗ xxx1 111kkk ⊗
xxx2 ...111kkk ⊗ xxxm].

4. If not converged, return to step 2.
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Fig. 4. Training error for ACSMs and ACAMs.

V. EXPERIMENTS AND DISCUSSION

We evaluated the proposed ACMs on the problem of
facial feature detection across pose and expression using
the CMU Multi-PIE face dataset [17]. The CMU Multi-
PIE database has a total of 337 subjects, with 129 subjects
present in all four sessions, under 15 different viewpoints,
6 expressions and 19 illuminations. 108,566 images under
different illuminations with different subject ID, viewpoints
and expressions are manually labeled.

Section V-A describes the training procedure for ACMs.
Section V-B compares the generalization performance of
ACMs against ASMs using the same training data. Section V-
C provides results of the fitting error.

A. Training Active Conditional Models

In all experiments, we used 8,240 labeled sample pairs
(each pair contains one frontal image and one image under
different pose or expression) from the CMU Multi-PIE
database. We used 360 pairs for testing and the rest for
training and cross-validation. As shown in Fig. 3, 66 salient
points were manually labeled for the pose ranging from −45
to 45 degrees, and 38 points in the range from −90 to −45
and 45 to 90 degrees.

We used 3,729 sample pairs for training the ACSM
(Algorithm 1) and the ACAM (Algorithm 2). Fig. 4 shows
the training error for ACSMs and ACAMs. As expected, the
error decreases monotonically with the number of iterations.
Fig. 5 shows the synthesis of different shapes for different
AAAl and cccl parameters. It is worth pointing out that unlike
ASMs, a linear ACSM can represent strong changes in pose
in a continuous manner (see Fig. 5).

In our experiments, the dimension of BBB, i.e. parameter
k in ACMs, is determined with 10-fold cross-validation in
which the 4,150 validation sample pairs are partitioned into

Fig. 5. Synthesized shapes using ACSMs.

10 subsamples. In the cross-validation set the optimal k was
estimated to be k = 21 for ACSM, and k = 6 for AASM. It
is worth pointing out, that to make a fair comparison ASMs
were trained with exactly the same data as ACMs (including
the neutral image). In the case of ASMs, the dimension
of shape and appearance is 30 and 58 respectively, which
preserves 95% of PCA energy.

B. Generalization of ACMs

This section analyzes the generalization properties of
ACSMs and compares it to ASMs. In this section, we
assume that the landmarks for the testing images (not training
subjects) are known.

We took 49 untrained subjects (360 sample pairs) for
testing and compared the shape reconstruction performance
of ASM [14] and ACMs. That is, given the labeled landmarks
in the testing sample l, we computed the shape reconstruction
error as follows:

es
l =

1
dg

∥gggs
l − rrrs

l∥, (12)

where gggs
l be the ground-truth shape vector, and rrrs

l =
(∑k

j=1 c jlBBB j)vec(AAAlFFF l) is the shape vector in the case of
the ACSM (after converge). FFF l is the shape vector of lth

frontal sample, BBB is the learned basis, AAAl and cccl are computed
iteratively using Eq. (6) and Eq. (7) with qqql = gggs

l .
Fig. 6 shows the shape reconstruction error for the 360

samples. We display the reconstruction error and the his-
togram of the error for the ACSM and ASM. As can be
observed, for most samples the shape error (assuming the
landmarks are known) for ACSMs is lower than for ASMs.

Similarly, to evaluate the generalization of ACAMs to
untrained samples, the appearance similarity error ea

p,l for the
pth salient point (p = 1,2, ...,dg) in the lth testing sample is
defined as:

ea
p,l =

Ei∈N1(p){∥ggga
l,p,i − rrra

l,p,i∥}
E j∈{N2(p)−N1(p)}{∥ggga

l,p, j − rrra
l,p, j∥}

, (13)

where ggga
l,p,i denotes the ground-truth appearance representa-

tion for the ith neighbor of point p in lth sample, rrra
l,p,i the

synthesized one, E{·} is the mean operator, and N1(p) and
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Fig. 7. Appearance error. (a) Size of N1(p) equals 5×5, and size of N2(p)
equals 17×17; (b) (a) Size of N1(p) equals 1×1, and size of N2(p) equals
9×9

N2(p) represent small-sized and large-sized neighbors of p.
∥ggga − rrra∥ is the appearance error between the image patch
and its reconstruction by the ACAM.

Smaller values ea
p,l indicates that for each point p, the

appearance difference of its close neighbor is smaller than
the differences of its distant neighbors, which means that
the fitting/searching process is more likely to find the right
position of p. The appearance similarity error for the sample
l is the average of the appearance similarity error for each
p, that is denoted by ea

l .
Fig. 7 shows two graphics with the error for two different

sizes of N1(p) and N2(p). In the first graphic N1(p) has the
size of 5×5, and N2(p) has the size of 17×17. In the second
graphic, N1(p) has the size of 1×1, and N2(p) has the size
of 9× 9. It is clear from Fig. 7 that independently of the
neighbor size, ACAMs have a smaller appearance similarity
error. This typically translates that the the ACAM is more
likely to have a local minima in the expected position of the
landmark.

C. Fitting Error in ACMs

Previous section has shown the generalization properties
of ACMs assuming the landmarks in the testing images are
known. This section compares the fitting performance, when
the landmarks in the testing images are unknown.

The ACMs search for landmarks is similar to the ASM
search. First, we use a face detector to locate the face, and
initialize the ACM with a mean shape. In each iteration and
for each landmark point, the ACM’s search is done along
the normal of the shape profile and it selects the location
with smaller appearance error. The new location is projected
into the ACSMs. This process is repeated until the difference
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Fig. 8. Shape deformation during the search process.
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Fig. 9. Correspondence results with different viewpoints and expressions.

between the current synthesized shape and image points is
less than an average of 0.3 pixel/point. We use the same
graylevel representation to build a model for ASMs and
ACMs.

Fig. 9 shows ACMs matching results across pose and
expression, given the landmarks in the neutral image. Images
in Fig. 9(a)-(h) are from Multi-PIE, and images in Fig. 9(g)-
(h) are images taken with a regular camera in an unstructured
environment. As can be seen, ACMs are able to successfully
match across pose and expression. Fig. 8 illustrates how the
shape varies with each iteration when fitting an untrained
image.

Fig. 10 illustrates the correspondence error between facial
features under different viewpoints (from -90 to 90) and
different expressions (e.g., smile, disgust). We compared
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three approaches: feature-based correspondence, ASMs and
ACMs. For feature matching, we used SIFT as the feature to
get sparse feature correspondence and interpolate them to get
the landmarks in the expected locations. The correspondence
error is defined as el =

1
dg
∥gggl −rrrl∥, where subscript l denotes

different deformation instances, such as smile, surprise or
viewpoint changes. rrrl is the ground truth landmarks, and
gggl is the reconstructed shape (vectorized) from the neutral
image.

Fig. 10 shows a quantitative evaluation of the shape
error (difference between the ground truth labels and the
landmarks provided by the algorithm). SIFT-based corre-
spondence performs badly under strong changes in pose or
expression. As expected, ACMs outperform ASMs because
it is less prone to overfitting and learns a conditional relation
with a reference image.

VI. CONCLUSION

This paper proposes ACMs, a model that learns condi-
tional relations between images of an object under different
configurations and a reference image. ACMs learn a discrim-
inative bilinear shape and appearance model. Experimental
results on the CMU Multi-pie face database show that ACMs
outperforms ASMs and feature-based methods (using SIFT)
when matching face images undergoing changes in pose and
expression. Further research needs to be addressed to avoid
local minima in the fitting process.
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