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Abstract

Over the last decade 3D face models have been extensively used in many ap-
plications such as face recognition, facial animation and facial expression anal-
ysis. 3D Morphable Models (MMs) have become a popular tool to build and
fit 3D face models to images. Critical to the success of MMs is the ability
to learn a generic 3D face model. Towards that end, major limitations in the
current MMs’ process are: (1) collecting 3D data usually involves the use of
expensive laser scans and complex capture setups, (2) the number of available
3D databases is limited, and typically there is a lack of expression variability,
(3) finding correspondences and registering the 3D model is a labor intensive
and error prone process.

This paper proposes an incremental Structure-from-Motion (SfM) approach
to learn a generic 3D face model from large collections of existing 2D hand-
labeled images, containing many subjects under different expressions and poses.
Two major contributions are: (1) learning a generic 3D deformable face model
from 2D databases, (2) incorporating a prior subspace into the incremental
SfM formulation to provide robustness to noise, missing data and degenerate
shape configurations. Experimental results on the CMU-PIE database show
improvements in the generalization of the 3D face model across expression and
identity.

Key words: Structure from Motion, incremental learning, Morphable Models,
Active Appearance Models

1. Introduction

The face is a powerful channel of nonverbal communication and modeling
faces has been useful in many computer vision applications such as virtual
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Figure 1: Learning a generic 3D face model. Left: 2D labeled images of several subjects
with different expressions and poses. Top: A prior 3D model built from neutral expres-
sion shapes. Bottom right: Shape and texture of 3D faces with random expressions
generated by the learned model

avatars [1], face recognition [2, 3], facial expression analysis [4], and model-
based image coding [5]. Critical to the success of many computer vision face
related applications is the ability to build a generic 3D face model that can gen-
eralize to untrained situations (e.g. different people, illumination, expressions).
Moreover, the model should be able to decouple the facial deformations due to
3D motion and identity or expression.

Parameterized Appearance Models (PAMs) such as Eigentracking [6], Active
Appearance Models (AMMs) [7, 8, 9, 10, 11, 12] and 3D Morphable models (3D-
MMs) [13, 1, 14] have been popular tools to model the shape and appearance
of faces in images. Although extensively used, PAMs have some limitations.
One limitation of standard AAMs is its inability to decouple factors such as 3D
motion, identity and expression. This is because a shape basis, modeled with
Principal Component Analysis (PCA), is used to jointly model all these sources
of variability. 3D Morphable Models [13, 1, 14] partially solve this problem
by building 3D models that are able to decouple 3D pose changes from iden-
tity/expression. Although a promising approach, learning a generic 3D face
model traditionally requires 3D face surface representations, which to date, has
several drawbacks: (1) The number of available 3D databases is limited, and
typically there is a lack of expression variability in the faces (e.g. standard
databases include only neutral expressions). (2) Most common approaches use
laser scans to get 3D models, requiring complex setups [15]. (3) Finding corre-
spondences and registering the 3D model is a labor intensive and error prone
process. Moreover, building generic 3D face models that generalize well across
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several conditions requires large amounts of data and efficient algorithms should
process the data incrementally.

Alternatively, over the last few years there has been a lot of interest in
Structure-from-Motion (SfM) techniques to build 3D models from video. Previ-
ous work [16, 17, 18, 19, 20] built accurate person-specific face models from video
sequences. However, there are several challenges when applying SfM techniques
to the problem of learning a generic 3D face model from static 2D databases:

• Large baseline ranges between different images make it difficult to use SfM
methods that have temporal smoothness assumptions between frames (e.g.
[21]).

• Noise in landmarks due to the manual labeling process usually translates
into degenerate SfM solutions (e.g. [22]).

• Self-occlusions cause certain landmarks to appear only in a small set of
views resulting in large amounts of missing data [23, 24].

• Some face databases include only quasi-frontal images. Reduced parallax
can generate low accuracy in the recovered depth.

• Small number of views per subject results in inaccurate 3D models. Several
face databases contains few images per person (e.g. mugshot in police
records).

To mitigate these problems this paper proposes an incremental algorithm
for non-rigid SfM that builds a generic face model from a collection of 2D hand-
labeled images. The main contributions are: (1) learning a generic 3D face
model from 2D image databases, (2) an incremental approach to use prior 3D
shape information in the SfM formulation. This prior information acts as a
regularizing term reducing the spatial error in the recovered 3D structures.
Furthermore, we provide an analysis of the generalization properties of the linear
models generated by our SfM algorithm based on rank constraints. Figure 1
illustrates the main goal of this paper.

The rest of the paper is organized as follows. Section 2 reviews previous
work on SfM techniques and 3D face model building techniques. Section 3 de-
scribes our incremental non-rigid SfM algorithm. Firstly, we present a short
introduction to the non-rigid SfM problem, followed by a description of the
main limitations of previous SfM approaches. Secondly, we describe the formu-
lation of our algorithm. Finally, we propose a procedure to densify the model
and extract the appearance model from the training images. Section 4 presents
experimental results on building 3D face models from 2D image databases, an-
alyzing the geometrical accuracy of the achieved reconstructions and evaluating
the generalization properties to new individuals. Section 5 finalizes the paper
with the conclusions and future work.

2. Previous work

This section describes previous work on non-rigid SfM and face modeling.
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2.1. Non-rigid structure from motion
Structure-from-Motion (SfM) algorithms have been extensively used to fac-

torize the rigid and non-rigid 3D structure of objects from a set of 2D point
tracks. Early work by Tomasi and Kanade in the 90’s [25] proposed a factoriza-
tion approach to recover the shape of rigid objects from an orthographic camera.
Over the past few years the factorization framework has been extended to deal
with missing data [26, 27], more camera models (such as paraperspective or
projective cameras), and non-rigid structure [16, 17, 18, 19, 20].

Bregler et al. [16] described a factorization method for objects with non-rigid
structure where any 3D shape configuration is modeled as a linear combination
of basic shapes defining principal deformation modes. Assuming a weak per-
spective camera projection, [16] proposed a factorization method that exploits
rank constraints on camera rotations to recover non-rigid 3D shape and mo-
tion. Recently several authors [17, 18, 19] have shown that rotation constraints
for the pose are not enough to achieve reliable 3D reconstructions. Brand [17]
proposed an alternative optimization method by introducing extra constraints
and forcing the deformation to be as small as possible (relative to the mean
shape). Xiao et al. [18] proposed adding a set of constraints on the shape basis
to recover better 3D models. These constraints are based on the assumption
that there are n image frames (where n is the number of basis shapes) in which
the basis shapes are known to be independent. However, as it was later pointed
out by Brand [19], the algorithm breaks down with noisy data or when n is not
correctly estimated.

Alternated least squares (ALS) [26, 28, 29] and expectation maximization
(EM) [27, 21, 20] techniques have proven to be efficient methods to factorize the
shape and motion components in SfM algorithms. These methods have been
extended to incorporate missing data and to handle multiple view cases (where
multiple projections of the same shape configuration are available). In presence
of noisy data (e.g. inconsistencies in the tracked points or missing data), many
SfM problems become ill-posed and Singular Value Decomposition (SVD) for-
mulations are not effective. Torresani et al. [28] proposed a simple solution
based on an alternated minimization scheme with promising results even when
missing data is present. Buchanan and Fitzgibbon [23, 30] presented a class
of second-order optimizations which converged more reliably than alternation
approaches in different experiments. However, they concluded that for many
real SfM problems it is not sufficient to minimize the reprojection error in order
to get meaningful results and pointed out the need to further analyze the use
of prior information. In many scenarios estimating deformable 3D shapes is
inherently underconstrained, especially when using monocular 2D features, and
standard SfM algorithms give degenerate solutions. Torresani et al. [21, 20]
used an expectation maximization approach to solve the factorization problem,
assuming Gaussian priors over the deformation parameters in order to avoid ar-
bitrary variations. Del Bue et al. [31] enforced priors over the rigidity of some
points to obtain reliable estimates of the object’s rigid component. Olsen and
Bartoli [32] imposed temporal smoothness and continuous variation in shape
reconstructions. Similar in spirit to the approach presented in this paper, Del

4



Bue [33] introduced prior knowledge in the SfM algorithm in the form of previ-
ously known 3D shapes representing feasible configurations of the object, which
at the end were used to regularize the rigid component of a deformable object.
The formulation of this previous work is based on a factorization framework and
prior information is incorporated into an intermediate affine solution but not the
final metric reconstruction. Moreover, it is not clear how to incorporate miss-
ing data into the formulation. In this paper, we extend existing approaches by
incorporating prior information for morphable shape models into the final Eu-
clidean linear basis reconstruction and provide experimental results in difficult
scenarios (e.g. severe occlusions and reduced number of views).

2.2. Modeling faces from images
Parameterized Appearance Models (PAMs) such as Eigentracking [6], Active

Appearance Models (AMMs) [7, 8, 9, 10, 11, 12] and 3D Morphable models (3D-
MMs) [13, 1, 14] have been a popular tool to model the shape and appearance
of faces in images. Using labeled data, PAMs learn a shape and appearance
model by computing PCA on a set of landmarks and registered textures after a
previous normalization with Procrustes analysis. Recently, [34] pointed out how
registration and modeling of deformable bases are coupled problems. By rep-
resenting the identity/expression changes as a random noise in the Procrustes
procedure, the resulting bases are biased. Alternatively, SfM algorithms can
be used to jointly optimize motion and a non-rigid 3D basis. Previous work
[16, 17, 18, 19, 20] has shown how to build accurate person-specific models from
video, where depth information can be extracted from a sequence containing
wide range of poses and where it is possible to apply motion continuity con-
straints. However, it is unclear how to extend these approaches to build generic
face models from existing static image databases, especially those containing a
reduced set of views (i.e frontal galleries of common biometric databases).

Xiao et al. [35] showed how a non-rigid 3D model is built using SfM com-
bined with a 2D-AAM facial feature tracker. The 3D shape model is used as
a regularization term in the 2D tracking system, resulting in the ”Combined
2D+3D AAM” algorithm. Similarly to our method, the model is built from
a set of manually labeled static images, however in [35] the authors learned
a person-specific shape basis for each tracking sequence. This basis does not
intend to be a generic face model, and consequently, no evaluation of the geo-
metrical accuracy, 3D pose disambiguation or generalization properties of the
SfM algorithm is presented. Also, the SVD-based factorization approach used
in [35] makes it difficult to deal with a wide range of rotation angles that would
cause occlusions and missing data.

Commonly used face image databases are labeled using a small set of land-
marks in order to reduce the manual intervention. As a result, models generated
from this training data have lower resolution than those obtained from dense
scans [36]. Consequently, they may reproduce unrealistic projections for certain
views or fail to accurately model the surface normals (e.g., when computing
light incidence angles). A possibility to obtain dense shape descriptions with-
out requiring exhaustive laser captures is to represent novel face configurations

5



by morphing neutral expression scans into a desired expression/identity. Sev-
eral techniques have been described to learn 3D shape deformations modeling
expression and identity changes in human faces. Some of them [37, 38] require a
small control group of subjects for which all the possible expressions have been
captured using laser scanners. Other approaches define the target 3D shape by
means of a SfM algorithm, eliminating the need of extra captures. Kim et al.
[39] use a factorization-based rigid SfM algorithm on the AAM point tracks of
a specific video sequence representing the target facial configuration.

In the following section we propose a novel 3D Morphable Model building
algorithm based on an incremental non-rigid SfM technique, which is able to
extract 3D surface descriptions from a collection of hand-labeled static images
containing multiple individuals and expressions.

3. Non rigid Structure from Motion

This section describes our approach to incremental SfM. Subsection 3.1 in-
troduces the SfM problem and ALS techniques. Subsection 3.2 describes the
main limitations of previous SfM approaches while subsections 3.3, 3.4 and 3.5
present our formulation.

3.1. Problem formulation
A common approach [16] to model the non-rigid 3D structure of deformable

objects is to use a linear combination of the deformation basis vectors S = {sl ∈
<3d×1}, l = 1, ..., n, where d denotes the number of points, and n the number
of basis components. A 3D shape instance, s, can be generated using a linear
combination of these basis vectors:

s = s̄ +
n∑
l=1

clsl = s̄ + Sc (1)

where c ∈ <n are the coefficients of the linear combination.
Using a RTS (rotation-translation-scale) camera model we can express the

projection of the shape onto image plane p as:

p =
[
x
y

]
= kRs + t (2)

where k is a scale parameter, R ∈ <2×3 is a matrix containing the first
two rows of the 3D rotation matrix, and t = (tx, ty)T is the translation. More
accurate perspective models exist, but this approximation has previously been
effective in similar contexts [25, 16] (especially if the face is far from the camera).

Let us consider now that we have q of these 2D shape projections, {pi}, i =
1 · · · q, representing several instances of a deformable object class projected with
pose parameters ki, Ri and ti. To solve the SfM problem, we minimize the
following objective function:

min
S,ci,ki,Ri,ti

q∑
i=1

‖pi − kiRi (s̄ + Sci)− ti‖22 (3)
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A commonly used technique when there is no missing data on pi is SVD
factorization [16, 18, 19]. Alternatively, the previous equation can be solved
using an Alternating Least Squares (ALS) technique [40, 20, 29].

The first step of the ALS optimization solves for the pose and shape coef-
ficients (equation 3) given the current estimate of shape deformation basis S,
and the mean shape s̄. Because of the non-linear dependency of the shape pro-
jections pi for the pose parameters (in particular, the rotation angles), this step
is also an iterative procedure. For every shape projection pi, we successively
compute refined shape coefficients and pose increments (∆ki, ∆Ri, ∆ti) which
are then used to update scale, rotation and displacement estimates (ki, Ri and
ti).

The second step upgrades the mean shape s̄ and the shape deformation basis
S. Considering that occlusions, due to pose changes, can introduce missing data,
we separately estimate each component j of s̄ and S using the set 1 : I of shape
projections for which the point j is visible, by means of the following equation:

vec(Ŝ(j)) = M+(p(j)
1:I − t1:I) (4)

where M+ denotes the pseudoinverse of M, and:

• Ŝ = [s̄,S], ĉ = [1, cT ]T is the concatenation matrix of the mean shape and
the deformation basis.

• p(j)
1:I = [p(j)

1

T
, · · · ,p(j)

I

T
] is the projection vector containing all visible

views of point j

• t1:I = [tT1 , · · · , tTI ]T is the translation vector containing the corresponding
displacements for each view

• M = [ĉ1⊗ (k1RT
1 ), · · · , ĉI ⊗ (kIRT

I )] combines shape parameters and mo-
tion to describe the shape configuration for each view.

3.2. Limitations for the Alternated Least Squares Algorithm
The ALS algorithm has two major drawbacks. Firstly, although it effectively

minimizes the reprojection error, the least squares solution for this objective
function does not necessarily correspond to a realistic solution [22]. For instance,
figure 2 represents the recovered 3D shape by applying rigid SfM to a given
subject using 3 views. It is a very simple example illustrating the problem of
degenerated solutions in SfM algorithms (real world applications will usually
involve more extensive datasets). Image (a) shows the results using an ALS
optimization. The reconstruction is unrealistic even when the reprojection error
is low. Image (a) shows a reconstructed mesh with overscaled Z component and
wrong camera orientations that, although geometrically feasible, is far from the
real solution. The real scene configuration is represented in image (b).

Secondly, ALS approaches are prone to local minima and are very sensitive
to initial values. As a simple illustrative example, figure 3 shows the results of
an ALS algorithm used to build a non-rigid model representing 3 expressions for
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Figure 2: Example of rigid 3D structure recovering. The images were captured us-
ing approximately -60, 0 and 45 degrees jaw rotation. A: mesh obtained using an
alternated least squares algorithm without prior information. B : ground truth mesh.
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a given subject (neutral, smile and scream) with different initializations. Figure
4 represents the evolution of the reprojection error in each iteration of the
algorithm (50 iterations). Similarly to [21], method (a) initializes the algorithm
with the SVD of the observation matrix containing all shape projections. This
initialization value is far away from the correct solution, and the algorithm
results in an unrealistic model. One of the main factors that justifies the poor
results achieved with this initialization method is the severe presence of missing
data, due to pose occlusions which yields a bad estimation of the mean shape.
Image (b) shows an alternative initialization method based on [41]. It fits a
low rank matrix to the projections, filling the missing elements, for which the
SVD can obtain a better mean shape estimation. Although the recovered mesh is
closer to the real shape and the obtained reprojection error is lower than previous
algorithm, the results are not satisfactory. In figure (c) we use a previously
existing set of 3D faces with neutral expression to initialize the algorithm. A
initial value for the linear shape basis is obtained by applying PCA analysis
to this 3D neutral dataset. Since this estimate is closer to a real solution, the
reprojection error quickly decreases to a lower value and the solution is visually
correct. Finally image (d) shows a feasible solution obtained by our algorithm,
using 3D neutral expression face shapes as a prior as it will be described in next
sections. It is interesting to note that the reprojection error in this case is bigger
than some of the previous approaches even when the solution is more realistic.
This is caused by the regularizing component introduced by the prior.

3.3. Joint pose parameters estimation
Unlike previous approaches [28, 20], we compute a joint estimation of the

scale, rotation and translation parameters. In particular, we build a motion basis
representing a linear approximation of all possible changes in 2D shape due to
pose changes around the current estimate of pose (tangent space). This motion
basis determines a gradient descent direction in which all pose parameters are
jointly optimized, preventing local minima solutions yielded by the consecutive
estimation.

Given an initial estimate of the shape parameters c in equation 3, we mini-
mize the shape reconstruction error with respect to pose parameters by deter-
mining an optimal increment for the rotation ∆R, scale ∆k and displacement
∆t. The parameter increments are computed using a linear optimization scheme
successfully used in previous techniques for robust model fitting (i.e. [42]).

p = k∆kR∆R

(
s̄ +

n∑
i=1

cisi + t + ∆t

)
(5)

For small rotation angles α, β, γ � 1, the rotation matrix ∆R can be ap-
proximated as:

∆R = ∆Rα∆Rβ∆Rγ ≈ (6) 1 −sinα sinγ
sinα 1 −sinβ
−sinγ sinβ 1


9



Figure 3: Non-Rigid 3D structure recovering example. Several initializations are used:
(a) initializing the algorithm with a rigid mesh obtained using SVD, (b): filling-in
the missing data in the observation matrix, (c): using a neutral expression basis, (d):
incremental SfM
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A: Initialization with rigid structure (missing data)
B: Initialization with rigid structure (filling algorithm)
C: Initialization with neutral basis
D: Including prior information

Figure 4: Reprojection error for different initializations of an ALS algorithm

Using this approximation, a rotated point R [x, y, z]T can be expressed as:

∆R

 x
y
z

 ≈
 x
y
z

+ (7)

+sinα

 −yx
0

+ sinβ

 0
−z
y

+ sinγ

 z
0
−x


Applying this approximation to every shape point, and ignoring the effects of
the rotation in the shape deformation vectors and translation, we have that
shape rotation can be approximated in the tangent space using an extra linear
basis including vectors sα, sβ , sγ :

∆R

(
s̄ +

n∑
l=1

clsl + t

)
≈ (8)

s̄ +
n∑
l=1

clsl + t + ∆t + cαsα + cβsβ + cγsγ

with coefficients cα = sinα, cβ = sinβ and cγ = sinγ and

sα = [−ȳ1, x̄1, 0,−ȳ2, x̄2, 0, · · ·]T (9)

sβ = [0,−z̄1, ȳ1, 0,−z̄2, ȳ2, · · ·]T

sγ = [z̄1, 0,−x̄1, z̄2, 0,−x̄2, · · ·]T
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Using this approximation, equation 5 can be written as:

p = k∆kR
(
s̄ + Sc + S̃c̃ + t

)
(10)

where:

• S and c are the initial shape linear basis and coefficients.

• S̃ = [sαsβsγsxsysz] and c̃ = [cαcβcγ∆tx∆ty∆tz]
T are the motion linear

basis, with sx = [1 1 · · · 0 0 · · · 0 0]T , sy = [0 0 · · · 1 1 · · · 0 0]T and sz =
[0 0 · · · 0 0 · · · 1 1]T displacement vectors of 3× p elements.

Subtracting kRs̄ in each term

p− kRs̄ = kRs̄(∆k − 1) + (11)

k∆kR
(
Sc + S̃c̃ + t

)
Considering k∆k ≈ k in the second term and introducing the error term

e = p − kR (s̄ + t), we get a linear relationship between current shape errors
and parameters increment that can be used to refine the estimation through an
iterative algorithm:

e = kRS′c′ (12)

where S′ and c′ are the extended shape and motion basis and extended param-
eters vector, including n+ 7 shape vectors and coefficients respectively:

S′ =
[
S, S̄

]
= [s1, s2, · · · , sn, s̄sα, sβ , sγ , sx, sy, sz] (13)

c′ = [c, c̄] = [c1, c2, · · · , cn, (∆k − 1), cα, cβ , cγ , tx, ty, tz]
T (14)

Similarly to [23], the use of a non-linear optimization to estimate the pose
parameters instead of alternately computing the scale, rotation and translation
avoids “flatlining” problems and yields accurate solutions. When used in our
SfM algorithm, we force the shape deformation basis to be orthogonal to this
explicitly modeled motion basis and it will result in better decoupling of the
structure and motion components, producing more accurate reconstructions as
shown in the experimental results.

3.4. Multiple views
The accuracy of ALS techniques can be improved by incorporating multiple

training views of the same individual in the formulation. In the multi-view ver-
sion of the ALS technique we modify the first alternating step to fit the shape
basis in multiple views of the same shape configuration, obtaining the pose and
shape parameters. Simultaneously, we adapt the second alternating step that
computes the shape basis by simply adding extra rows on both sides of equation
4 including the extra views provided for the different shape instances. Consider-
ing that each point j is seen from two views for a set of I shape configurations,
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then matrix M, projections vector p1:I and translation vector t1:I would have
the following form:

p(j)
1:I = [p(j)

1,1

T
,p(j)

1,2

T
, · · · ,p(j)

I,1

T
,p(j)

I,2

T
] (15)

M = [ĉ1(k1,1RT
1,1), ĉ1(k1,2RT

1,2), · · · , ĉI(kI,1RT
I,1), ĉI(kI,2RT

I,2)]T (16)

t1:I = [tT1,1, t
T
1,2, · · · , tTI,1, tTI,2]T (17)

where pi,v, ki,v, Ri,v and ti,v denote the projection view v for a shape i.

3.5. Adding prior shape information
Incremental learning (e.g. [43, 44]) plays an essential role in many subspace

based methods to solve computer vision problems. In the SfM problem do-
main, we show how it constitutes an efficient approach to integrate information
from multiple sources (3D shape descriptions and 2D manually labeled images)
in order to create accurate 3D face models using a computationally efficient
approach.

To prevent local minima and provide robustness to noise, our algorithm
regularizes the SfM by incorporating previous knowledge about possible solu-
tions. Similarly to [33], we incorporate prior information in the form of a set
Π0 of m 3D shapes that are already known to be feasible configurations for the
considered deformable object.

Π0 =
[
s1
0, s

2
0, · · · , sm0

]
(18)

We compute a prior shape basis S0 by applying Principal Component Anal-
ysis (PCA) on these known shapes. It is used at the first iteration to initialize
the shape deformation basis estimate. Moreover, S0 is combined with the in-
formation extracted from training data at successive iterations to regularize the
solution and force feasible shape basis estimations. Unlike previous algorithms
[33], priors are directly added to the final Euclidean description of the shape
basis without the need to compute a metric upgrade in a separate step. In the
following, we apply a SVD updating technique [45, 43] to formulate an incremen-
tal shape basis update step that makes use of the available prior information.

As mentioned in section 3.1, the first step of the ALS-SfM algorithm obtains
a set of shape parameters ci. These parameters will generate approximated
shape instances si of the object using the current estimate of the shape basis.
In order to get a new shape basis update minimizing the reprojection error,
we compute a set of 3D shape corrections ∆si to refine these shape estimates
(si ← si + ∆si). We deal with missing data computing the shape corrections
for each point j separately, using the input shape projections and the obtained
values for pose parameters:

p(j)
i − kR(s̄(j) + S(j)ci)− t = kR∆s(j)

i (19)
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∆s(j)
i = (kR)+

(
p(j)
i − kR(s̄(j) + S(j)c)− t

)
(20)

Let us denote by Π the 3D shape estimates matrix obtained by concatenation
of the q updated shapes si.

Π = [s1, · · · , sq] (21)

Now, we determine the updated shape basis that best represents (for a given
rank) the 3D shape estimates Π (obtained from the provided shape projections
p) and the subspace spanned by the provided prior basis S0 (with associated
eigenvalues λ0). First, we update the mean shape estimate s̄:

s̄← (s̄ +
∑
i(si)
q

)/2 (22)

The coefficients of the updated shape collection in the prior basis will be
given by:

c0 = ST0 ·Π (23)

Therefore, the component of Π orthogonal to the prior basis can be expressed
as:

Π⊥ = Π− S0· c0 (24)

We compute an orthogonal basis S⊥ spanning the subspace defined by Π⊥:

S⊥ = qr(Π⊥) (25)

and the coefficients of Π⊥ w.r.t this basis

c⊥ = ST⊥·Π⊥ (26)

Let us define S∗ and Λ as:

S∗ = [S0,S⊥] (27)

Λ =
[
λ0 c0

0 c⊥

]
(28)

Applying SVD on the matrix Λ:

[U,D,V] = svd(Λ) (29)

the new shape vectors and their associate eigenvalues will be given by:

S← S∗·U (30)

λ← diag(D) (31)
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Considering the new associated right singular vectors matrix V ′ to be:

V′ =
[

V0 0
0 I

]
V (32)

the values of S, λ and V ′ can be substituted to verify that they indeed
correspond to the SVD of the joint observation matrix [Π0 Π]:

SλV′T = S∗UDVT

[
V0 0
0 I

]T
= S∗Λ

[
V0 0
0 I

]T
=

= [S0 S⊥]
[
λ0 c0

0 c⊥

] [
V0 0
0 I

]T
=

=
[
S0 (I− S0S0

T )Π/c⊥
] [

λ0 S0
TΠ

0 c⊥

] [
V0 0
0 I

]T
=

=
[
S0λ0V0

T Π
]

= [Π0 Π] (33)

In this expression the SVD of the prior shape matrix is considered to be
Π0 = S0λ0V0). We finally limit the number of components in S and λ to the
given rank in the updated basis.

4. Building dense 3D surface descriptions and appearance modeling

The resulting deformable shape model obtained with the SfM algorithm
contains a reduced number of points corresponding to the selected landmarks
in the images. In the following, we describe how to densify the model using
Thin Plate Spline (TPS) as the mapping and interpolation tool for deformation
transfer and synthesis.

TPS [46] is an effective tool for modeling coordinate transformations that
has been successfully applied in several computer vision applications. It is a
commonly used technique to represent coordinate mappings from <2 to <2.
Let xi denote the target function in locations u = (ui,vi)T in the plane, with
i = 1, 2, · · · , p. We assume that the locations u are all different and are not
collinear. TPS defines a interpolant function f(u) that minimizes the bending
energy and is formulated as:

f(u) = c + Au + WT s(u) (34)

where:

• c, A and W are the TPS parameters.

• s(u) = (σ(u− u1), σ(u− u2), · · · , σ(u− um))T , with σ(r) = ‖r‖.

The deformation transfer problem is defined as follows: given a pair of point
sets xi = (xi, yi, zi)T and x′i = (x′i, y

′
i, z
′
i)
T with known correspondences on two

surfaces, and considering ui to be the common texture coordinate associated to
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Figure 5: Building a 3D Morphable Model. (a) Images used in the training process for
one subject (b) Different views of the sparse 3D geometrical reconstruction obtained
from the SfM algorithm (c) Model after mesh densifying (d) Final model after texture
mapping.
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each point i, we can fit a TPS over (ui, vi, x′i − xi) to get an interpolation de-
formation model for translation in x direction (similar for y and z) coordinates.

The 3D shape created using the SfM algorithm is projected into the prior
dense shape basis to obtain a dense representation for each subject in the train-
ing set. This projection is not able to represent deformations not included in
the prior database, such as novel expressions. Thus, we learn a deformation
transfer interpolant using TPS mapping 3D locations of the landmark points
in the achieved projection into the actual position obtained from the SfM algo-
rithm. Using this deformation model we estimate the position of all the points
in the dense model.

After having an accurate 3D shape description for each of the models in the
training samples, the next step is to compute the appearance model. We con-
struct a view independent cylindrical texture by capturing the pixel intensities
from the training images in the areas situated under the shape projections. In
order to avoid texture artifacts caused by the influence of pixels positioned in
border areas, we compute a blending weight for each triangle on the face mesh
for each image based on the angle between surface normal and the camera di-
rection. A test of visibility is performed using a z-buffer method [47]. When
the triangle is invisible, its weight is set to 0.0 and all the weights are then
normalized so that the sum over all the images is equal to 1.0. Figure 6 repre-
sents the blending weight maps for three different views of a face and the final
texture obtained by fusing the weighted pixel intensities captured from these
views. Finally, we apply PCA to the set of textures obtained for the different
face instances to build a linear appearance model.

5. Experimental results

This section describes experimental results evaluating the performance of
our incremental SfM algorithm and comparing it with other approaches. These
experiments use labeled facial images from the CMU Multi-PIE database [48].

The CMU Multi-PIE has 337 subjects simultaneously recorded with 15 cam-
eras and 6 expressions. It has been partially labeled using 68 distinctive shape
landmarks. These landmarks were manually located by trained personnel using
three basic rules:

• “Non-ambiguous” landmarks (those whose position can be easily deter-
mined based on the facial structure, i.e. nose tip) must be consistently
placed across different individuals and expressions. I.e. noise tip always
correspond to the minimum Z coordinate.

• Those landmarks for which is hard to define a exact location (i.e. points
along the jaw contour) are equispaced between the “non-ambiguous” land-
marks.

• Not all the landmarks are visible in every view due to face self occlusions.
For each pose we only determine the position of a subset of points that
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Figure 6: Texture mapping process. Different weight maps are obtained from the given
views to combine the pixel intensities into a final texture map
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are not occluded (i.e. we consider 39 landmarks for -60 and 45 degrees
rotations)

In despite of these rules, the low texture information in many areas of human
faces makes it hard to accurately match landmark locations between different
subjects, expressions and poses even for non-ambiguous landmarks. It results
in a noisy landmark dataset. See figure 7 for an example of the labeled images
(points considered “non-ambiguous” are represented in red, the remaining ones
in blue).

Given that no 3D information is originally provided with the CMU Multi-PIE
database, we initially built 3D ground-truth shape models for a subset of testing
subjects using SfM. We used the incremental SfM algorithm proposed in this
paper to extract these reference shapes but, contrarily to the models generated
during the experiments, the ground-truth estimation was performed using 13
views and manual correction of the reprojection errors to ensure the accuracy
of the face reconstructions. In the experiments, the models are built using 1, 2
o 3 views, a more realistic training set for most common face databases.

Additionally, we incorporate the prior 3D information required by our in-
cremental SfM algorithm from a set of 16 tridimensional faces with neutral ex-
pression. These shapes were generated as instances of a Morphable Model built
from laser scans [13]. The dimension of the shape representations in the prior is
reduced by matching the considered 68 face landmarks with corresponding 3D
points in the dense Morphable Model.

5.1. Face model construction using incremental SfM
This section evaluates the geometrical reconstruction error of our incremen-

tal non-rigid SfM algorithm. We select 30 subjects representing “neutral”,
“smile” and “scream” expressions from the Multi-PIE database. The SfM algo-
rithm builds a non-rigid 3D model for each expression that is used to represent
the different shape instances corresponding to different subjects. The geomet-
rical reconstruction error for every individual with respect to 3D ground truth
shapes is represented in figures 8, 9 and 10. This geometrical error is defined as
the mean 3D Euclidean distance between the points in the ground truth shape
and the corresponding points in the obtained shape reconstruction (after both
shapes are aligned removing rigid transformations). The experiments are re-
peated 3 times using one view per person (a frontal view, 0o of jaw rotation),
two views (0o and 450) or three views (0o, 45o and −60o).

We compare the results of our incremental SfM algorithm with an ALS op-
timization algorithm ([28] or BCD-LS algorithm in [20]) that shows competitive
performance when compared with state of the art techniques [20]. Two variants
are tested for the incremental SfM: (a) one using a consecutive least-squares
estimation of scale, rotation and translation in the pose estimation step (similar
to the original presented in [28, 20]), and (b) using a joint estimation of the
pose parameters (section 3.3). We empirically chose the rank of the learned
models for the different expressions to be 6 as it provides the more accurate
reconstructions.
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Figure 8: Geometrical error of the recovered 3D shapes for different individuals
(neutral expression), using 1 view (top), 2 views (middle) and 3 views (bottom)20
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Figure 9: Geometrical error of the recovered 3D shapes for different individuals (smile
expression), using 1 view (top), 2 views (middle) and 3 views (bottom)21
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Figure 10: Geometrical error of the recovered 3D shapes for different individuals
(scream expression), using 1 view (top), 2 views (middle) and 3 views (bottom)22



The initialization point for the different SfM methods (and the prior for our
algorithm) is obtained from a reduced set of 3D faces with neutral expression
previously introduced. We apply PCA to these 16 preexisting face representa-
tions and select the 6 principal shape deformation vectors to generate a linear
basis that is used as the initial value for the shape estimation and as regularizing
term in our algorithm.

As it is shown in figures 8, 9 and 10, our incremental SfM algorithm obtains
best average results in terms of reconstruction error. Even when only one view
per person is provided, the algorithm is able to incorporate depth information
from the prior dataset to reconstruct realistic 3D models. Having one view per
subject may be interpreted as an extreme case for conventional SfM algorithms.
However, in different applications (i.e. bioidentification based on identity cards)
it is a common scenario for which our proposed technique must provide accurate
solutions. As expected, when adding extra views, the algorithm reduces the
geometrical error by consistently integrating this additional information. When
the number of views is increased the gain provided by our algorithm gets smaller
since the geometrical information provided by the training 2D database becomes
more important compared to the prior.

Also it worth pointing out that the method using joint pose parameter es-
timation is more effective than the consecutive one. As mentioned in section
3.3, the joint method estimates a basis containing several “motion” vectors that
linearly approximates changes in the shape projections due to pose changes in
an interval around current pose estimate (tangent space). The estimated shape
deformation basis will be orthogonal to this motion basis and the resulting lin-
ear deformation model is less biased by pose changes components present in
training data.

When using only one training view, the use of an ALS algorithm without
prior information causes a great variance in the geometrical error. The reason
behind this behavior is that for some individuals the ALS algorithm recovers
a degenerate scene configuration (analogous to the one shown in figure 2 ( a)).
Additionally, it is interesting to note that the errors achieved for the “neutral”
expression case are smaller than “smile” or “scream”. This is coherent with
the dataset, as the shapes used for initialization (and prior information) also
represent neutral expression faces and we can assume the starting point in the
optimization is closest to the real desired solution.

The position of the landmarks in the different training images is determined
by a manual labeling process. As a result, there is an error in the point locations
that will affect the SfM performance. One consequence of this noisy training
set (together with the simplifications in the camera model) is the residual error
component at the convergence point that is presented in figures 8, 9 and 10.
The more views we use in the model construction the more accurate the least
squares estimate of the 3D shape is. This estimate minimizes the reprojection
error, but it will never be zero due to the labeling errors (and the approximated
camera model).

In the performed experiments, the reconstruction error has no significative
variance for different landmark locations. As an example, figure 11 plots the
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mean reconstruction error across the different subjects for each one of the 68
landmarks. The shape instances represented in this figure were obtained us-
ing our incremental SfM algorithm and 3 training views (0o, 45o and −60o).
As expected, the highest error values correspond to the “scream” expression
and specially those points around the jaw contour (since these points show the
biggest dissimilarity with respect to the closed mouth of the neutral expression
used as initialization value).
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Figure 11: Mean geometrical error at each point location for “neutral”, “smile” and
“screen” expressions using our incremental SfM (3 views)

Figure 12 shows some examples of the obtained 3D models for the experiment
using 3 training views after the densification and texture extraction process
described in section 4. The dense point information was extracted from the 16
neutral subjects obtained from [13].

5.2. Generic face models using rank constraints
Similarly to other approaches, the proposed non-rigid SfM algorithm is based

on the assumption that all possible shape configurations for the considered ob-
ject are caused by a limited range of deformations that can be modeled using a
reduced-rank basis. As we have seen in previous section, this restriction allows
to learn an accurate shape description and pose estimates for training subjects
using a set of noisy 2D projections. But it is also desirable that the learned
shape basis could characterize the intrinsic non-rigid object structure of the
object class so it can effectively generalize across new shape instances. In this
section, we empirically show how our incremental SfM algorithm is able to model
human faces having a defined expression, and generalize to previously unseen
subjects.
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Figure 12: Mean geometrical error at each point location for “neutral”, “smile” and
“screen” expressions using our incremental SfM (3 views)
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Figure 13: A: Fitting a morphable model to a novel view not included in the linear
span of the 3D basis. B : Fitting using a regularized model. C : Fitting model obtained
using incremental SfM algorithm. 26



In order to analyze the capability of the 3D deformable shape model to
represent a new individual we need to determine which are the best parameters
for the shape basis that generate a 3D representation of the new considered
subject as accurate as possible. These optimal parameters can be obtained
using a model fitting algorithm. In this section we use a gradient descent fitting
algorithm described in [42] that minimizes the reprojection error and allows for
regularization term. For each testing subject we provide a frontal view and the
fitting algorithm solves for the optimal pose (motion) and shape parameters
that describe that face assuming a RTS camera model.

Given a subject with an untrained expression, it is likely that the motion and
shape parameters are biased in the fitting process. This might lead to recon-
structed shapes far from the average and heavily distorted motion parameters.
Figure 13 illustrates this situation. In figure 13 (a) we use the gradient descent
algorithm to estimate the rigid pose parameters and shape coefficients of a face
with a “surprise” expression using a 3D model learned exclusively from neutral
expression instances. As it can be observed, the neutral model is not able to
accurately reproduce a 3D mesh with open mouth. Figure 13 (b) represents the
result of fitting the same linear 3D shape basis using a regularized approach,
forcing shape parameters close to zero1. The estimated frontal projection is
slightly less accurate than figure 13 (a) because proximity to the mean shape
is imposed. However, the recovered 3D mesh presents less shape artifacts when
projected onto a novel view. In this paper, we have proposed an incremental
SfM algorithm that can be used to incorporate extra modes in the shape basis to
represent a new expression. Figure 13 (c) represents the result achieved when
fitting a model that has been learned using our SfM approach incorporating
information about the “scream” expression from a 2D database.

In the following we provide a quantitative evaluation of the accuracy of the
learned model to represent an “expression class” and generalize to previous un-
seen subjects. We generate different models representing “neutral”, “smile” or
“scream” expressions using our incremental SfM algorithm. These models are
then fitted to a frontal view of a new subject and we measure the geometrical
error between the generated shape instance and the 3D ground truth repre-
sentation of that subject. The training dataset used to build these models is
composed of 40 subjects and the same prior information as previous section
(consisting in 16 3D shapes of faces having “neutral” expression). Different
number of views are used in the experiments to compare the results (using the
same rotation angles 0o, 45o and −60o). The testing set consists of 30 different
individuals having the desired expression from the CMU Multi-PIE database.

1The well known bias-variance analysis [49] shows that a trade-off between matching quality
and prior density is needed in order to achieve good generalization performance. Based on
this idea, Blanz et al. [42] proposed a regularized fitting process that prevents overfitting
using a Bayesian formulation. Regularized approaches bias the estimate of the recovered
shape towards the mean shape producing more realistic results. However, these approaches
are unlikely to recover previously untrained facial expressions not contained in the linear span
of the model.
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The mean geometrical error between the reconstructed shape and ground truth
is measured in order to evaluate the accuracy of the model when representing
new shapes. For comparison purposes, we plot the error for the 3D shapes
obtained by fitting the prior model (created performing PCA to the initial 16
neutral expression shapes) using the basic gradient descent fitting algorithm and
its regularized version. Results are represented in figure 14. The reduced prior
model is able to represent the subjects with neutral expression with relatively
low error (top image). However, it fails to reproduce scream expressions at
the bottom because it does not include deformation modes modeling the facial
configuration for this expression (i.e. open mouth).

6. Conclusions

Most common approaches to build 3D Morphable Models use information
extracted from laser scans. The amount of captures and the expression variabil-
ity contained in those scans is usually limited and, in many cases, restricted to
neutral expressions. We have illustrated how models trained exclusively from
neutral expression databases do not generalize properly to new expressions in-
volving significative changes in facial morphology (i.e. “scream” expression).
On the other hand, we have proposed an incremental SfM algorithm to build
generic 3D Morphable Models that is able to incorporate new deformation modes
corresponding to different expressions from widely used images databases.

The main contributions of the paper are: (1) a method based on SfM to
learn generic 3D face models from existing 2D databases, (2) the introduction
of an incremental approach to incorporate prior 3D shape information in the
SfM formulation. The proposed technique requires only a reduced number of
views to accurately build the 3D models. No smoothness assumptions between
different frames are needed (i.e. temporal continuity in the landmark sets) and,
consequently, the algorithm can be used in wide baseline scenarios. The use of
prior information in the form of preexisting 3D surfaces makes it possible to
apply the algorithm to quasi-frontal image datasets with limited depth informa-
tion and prevents degenerate solutions. The ALS based formulation deals with
noise in manually labeled databases and missing data due to self-occlusions.

Experimental results show how our algorithm produces accurate shape re-
constructions using one or a very reduced number of input images per subject.
Comparative results show how our algorithm outperforms existing approaches
for SfM in these scenarios with a limited number of training views. Finally,
we have empirically verified that the rank constrained optimization involved in
our algorithm yields generic models able to represent new shape instances for
individuals not included in the training set.
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