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Abstract— Non-rigid object detection is a challenging open
research problem in computer vision. It is a critical part in
many applications such as image search, surveillance, human-
computer interaction or image auto-annotation. Most successful
approaches to non-rigid object detection make use of part-
based models. In particular, Conditional Random Fields (CRF)
have been successfully embedded into a discriminative parts-
based model framework due to its effectiveness for learning and
inference (usually based on a tree structure). However, CRF-
based approaches do not incorporate global constraints and
only model pairwise interactions. This is especially important
when modeling object classes that may have complex parts
interactions (e.g. facial features or body articulations), because
neglecting them yields an oversimplified model with suboptimal
performance. To overcome this limitation, this paper proposes
a novel hierarchical CRF (HCRF). The main contribution is to
build a hierarchy of part combinations by extending the label
set to a hierarchy of product label spaces. In order to keep
the inference computation tractable, we propose an effective
method to reduce the new label set. We test our method on two
applications: facial feature detection on the Multi-PIE database
and human pose estimation on the Buffy dataset.

I. INTRODUCTION

The seminal work by Fischler and Elschlager [10] pro-
posed a parts-based model as the parametrization of an
object class with a set of parts able to represent its shape
or structure. Each part has to be consistent with different
instances of the same object, and it corresponds to significant
locations of the object such as boundaries or distinguished
landmarks. This representation addresses a central problem
in computer vision: the localization of the object parts in an
image.

One of the most successful approaches for parts-based
models builds upon a set of candidates that potentially
correspond to an object part, and it selects the candidates
that jointly better fit the parts-based model [7]. Thus, it aims
to assign to each part a label that represents a candidate.
State-of-the-art methods that evaluate such labeling use Con-
ditional Random Fields (CRFs) as an energy function [1],
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Fig. 1. HCRF of parts for facial feature detection. Each part, simple or
compound, represents a node. Connections between levels are not drawn to
simplify the figure. Atomic parts are at the lowest level and hierarchically
compose the parts of the higher levels. The label sets form a hierarchy
of product label spaces, which are able to encode multiple atomic parts
simultaneously and model higher-order relations.

[9], [21], that naturally relates parts with their relative
location variability. Typically, these relations are defined
between pairs of parts, and the matching cost is based on
an individual appearance models for each part. Even though
these models lead to tractable inference, they are unable to
capture important patterns between sets of more than two
parts, which are present in most object classes. Such global
patterns appear when detecting faces or bodies because, for
instance, they are mostly symmetric or the skin color of a
person is mostly constant. Neglecting this global structure



might yield to myopic models. To address this problem, this
paper proposes a hierarchical conditional random field model
(HCRF) that provides a richer structure without sacrificing
inference effectiveness.

Lan and Huttenlocher [18] previously noticed the impor-
tance of including complex shape relations, proposing high-
order cliques to model relative positions involving several
parts. Caetano et al. [2], [20] introduced several graphs able
to impose a global shape constraint without using a fully
connected graph, and [14] proposed a method that learns
the most meaningful connections that preserve the shape of
the object class. These graphs yield an effective inference,
though the global constraints are purely geometric (e.g.
rigidity of the whole graph) and are not adequate for mod-
eling appearance relations between parts. In order to include
richer appearance relations in the context of human pose
estimation, [22] extended the pairwise constraints to capture
symmetry of clothing and smooth contour connections, and
[6] considered appearance consistency between pairs of
correlated parts. Recently, Sapp et al. showed promising
results enabling richer appearance models for the pairwise
constraints, either with a non-parametric method [25] or
including contour continuation and segmentation cues [26].
Although these models use richer cues than previous ones,
they are not defined to model sets of parts, and hence
still suffer from restricted expressiveness. Our aim is to go
one step further: model higher-order appearance and shape
relationships.

Similar in spirit, [29] proposed a hierarchical CRF
(HCRF) in which different levels correspond to a different
granularity of the object class structure. The local level (the
bottom) represents the atomic parts of the object class. The
global level (the top) represents the whole object, and in
between there are mid levels, which correspond to a set of
multiple parts of the object. For example, if we consider a
face as the object class, the local level could correspond to
the corners of the eyes, the corners of the mouth and the
nostrils. The mid level could represent the eyes, the mouth
and the nose, and the global level might be the whole face.
This approach takes into account sets of parts, and hence can
use more adequate cues at each level. However, to make it
tractable, [29] oversimplified the representation of the part
candidates using simple labels, which summarize the set of
combined parts. This might be valid for the lower levels
closer to the atomic parts, but it does not model very well
the higher levels. At these levels, far away from the atomic
parts, it imposes a rather simplistic model because it encodes
multiple parts together in a single label space.

This paper presents a novel HCRF structure that uses
labels of multiple dimensions to represent each set of parts
in the hierarchy. Instead of expressing all combined parts
simplifying its representation, we preserve the original rep-
resentation of all atomic parts using its product of label
spaces, see Figure 1. In order to make the underlying
optimization problem feasible, we introduce a branch-and-
bound strategy to reduce the prohibitive cardinality of the
product label space. Our model is able to integrate different

cues adequate to describe each part in the hierarchy. In
addition, it enables us to include richer relations both among
and within sets of parts. To show this capability, we include
in the HCRF a global shape model of a set of parts, which
we learn with Principal Component Analysis (PCA), and an
appearance model that takes into account color correlations
among multiple parts. Our contribution is three-fold: (i) the
hierarchy of product of label spaces, (ii) a strategy to reduce
the cardinality of the product of label spaces, (iii) a global
shape and appearance model embedded in the HCRF. Our
method achieves state-of-the-art results in two challenging
databases: Buffy [8] for human bodies and Multi-PIE [13]
for faces.

II. RANDOM FIELDS FOR PARTS-BASED MODELS

This section introduces the CRFs formulation for the parts-
based model. This formulation defines one random variable
for each part and a set of candidate parts indexed with
the label set L = {l1, l2, . . . , lm}. Each random variable
associates a part with one of the candidates taking a value
from L. The probability density function of how likely is to
assign certain candidates to the parts is modeled with a CRF,
and it can be represented with a graph G = (V,N ). The set
V indexes the nodes that correspond to random variables, and
N = {Ni} is the neighborhood system of the random field,
where Ni represents the set of all neighbors of node i ∈ V .
We use X = {Xi} to denote the set of random variables or
nodes, and x = {xi} a possible state or instantiation of X.

Let C be the set of all maximal cliques1 of the CRF. Then,
the posterior P (X = x|O) can be expressed as a Gibbs
distribution with energy E(x) =

∑
c∈C ϕc(xc,O) [15],

where ϕc is the potential function of the maximal clique
c ∈ C, and O some observations or measurements. From
now on, we omit the dependency of the potentials on O
for notation simplicity. The most probable state x∗ that
maximizes the posterior probability (MAP) is

x∗ = arg max
x

P (X = x|O) = arg min
x
E(x). (1)

Typically, most authors base the energy function on some
pairwise shape restrictions and a matching score based on
the individual appearance of each part. This can be written
as the sum of the unary and consistency potentials:∑

i∈V
φi(xi) +

∑
i∈V,j∈Ni

ψij(xi, xj), (2)

where Ni is defined by pairwise relationships. The unary
term φi(xi) is based on a matching score that relies on
some appearance or texture descriptors Oi, where Oi is
the observation that only affects Xi in the model. The
consistency potential ψij(xi, xj) determines the cost to set
labels xi and xj to the random variables Xi and Xj .
Usually, its purpose is to penalize deviation from some shape
constraint like proximity.

1A clique is a subgraph in which every node is connected to all other
nodes in the subgraph, and it is maximal when it is not a subset on any
other clique.
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Fig. 2. HCRF for human pose estimation. At the top level we encode all
parts using a hyperlabel space, which enables us to use a global shape and
appearance model of the whole human body.

The pairwise CRF suffers from an inability to express
dependency among several parts at the same time. It only
exploits local information, while in most object classes there
exist certain dependency among multiple parts. Despite this
drawback, most authors adopt this framework and focus
on integrating richer cues to the model [6], [8], [9], [21],
[22], [25], [26]. In contrast, we propose Hierarchical CRF
(HCRF), a model that is able to capture the dependencies
among the parts.

III. HCRF WITH HIERARCHY OF PRODUCT LABEL
SPACES

We now introduce a novel structure of HCRF able to
model dependencies over sets of parts. The HCRF extends
the basic CRF by including parts at different granularities.
These parts are obtained as a combination of the original
(atomic) parts, and thus, successively model a higher level
part of the object class. Every new combination of parts is
defined hierarchically. For example, in a human body we first
could group the upper and forearm to form the whole arm,
then the arm with the body, and so on. Fitting the whole
hierarchy of parts is a complex task, but it allows us to
include more reliable cues based on larger regions.

As in [29], for each part, simple or compound, we desig-
nate one random variable or node placed in the corresponding
hierarchical graph. We add a superindex in our notation to
refer to the level in the hierarchy. The set V(k) are indexes
that associate nodes at level k with their corresponding
random variable, where V(k) ⊂ V . Analogously, we define
N (k)

i as the set of neighbors at all levels of random variable
i ∈ V(k). Note that since it is a hierarchy, the neighbors of
a k-level node, N (k)

i , can be at levels (k− 1), k or (k+ 1).
At the lowest level we place one node for each atomic part.
Nodes in the immediately upper level are pairwise connected
to nodes of the first level according to the hierarchy of parts.
We continue in the same way for higher levels.

In [29], the compound parts are represented by sum-
marizing all encoded parts with its central position. This
summarization stands for keeping the same form of the label
set L at all levels of the hierarchy, which yields tractable

inference. Although this representation might be valid for
lower levels, it does not model well higher levels. At these
levels, where multiple atomic parts are related, it leads to
a rather oversimplified model: it reduces the representation
of all encoded parts as if they were one single part. In
contrast, we propose to use multidimensional labels to take
into account multiple parts at the same time. We represent
a set of parts by the product of label spaces of the encoded
atomic parts.

Let Ls = L×L× . . .×L be the product label space built
using s label sets L. We refer as hyperlabel a label in Ls,
which is able to represent s atomic parts at the same time.
Note that the cardinality of the set of hyperlabels is |Ls| =
ms, where m = |L|. Although this can be substantially large,
in Section V we introduce an strategy that effectively reduces
the size of the hyperlabel set under consideration. Let `a ∈ L
be the label placed at dimension a < s of ` ∈ Ls, i.e.

` = (`1, `2, . . . , `a, . . . , `s). (3)

At each dimension we place a label that corresponds to a
candidate of an atomic part. From now on, we redefine the
label set of all nodes i ∈ V as Lsi

i , where si is the number
of parts encoded by the node. Each node has a different
label set Lsi

i , which is determined by si and the atomic
part that corresponds to each dimension. In the hierarchy,
the hyperlabel of a k-level node encodes the hyperlabels of
connected nodes at level (k−1), reusing the label spaces. For
instance, let i ∈ V(k) be a k-level node and j1, j2, . . . ∈ N (k)

i

all its connected nodes at level (k− 1), j1, j2, . . . ∈ V(k−1).
The label set of node i ∈ V(k) is

Lsi
i = Lsj1

j1
× Lsj2

j2
× . . . (4)

That is, the label set of a k-level node Lsi
i is the product of

label spaces of the connected (k − 1)-level nodes. All label
sets form a hierarchy of product label spaces following the
hierarchy of parts. Figure 2 shows an example of how all
label sets form a hierarchy.

The energy function of graph G is now the sum of the
potentials at all levels,

∑
k

 ∑
i∈V(k)

φi(xi) +
∑

i∈V(k),j∈N (k)
i

ψij(xi,xj)

. (5)

Recall that xi is in boldface because it is a multidimensional
vector of labels, and both potentials φi(xi) and ψij(xi,xj)
relate sets of parts. The expressive power of our model stems
from the capacity of expanded representation of the hyperla-
bels, which enables us to consider relations among multiple
parts simultaneously. Since in our HCRF the same atomic
part is encoded at different levels, we need a consistency
potential between levels. This potential enforces a consistent
labeling of the same atomic part in the hierarchy. In the next
section, we define this potential and we also give several
examples of other potentials that benefit from our model.



IV. HYPERLABEL POTENTIALS

Once we have presented the HCRF hyperlabels structure,
we introduce several examples of potentials that are not
supported by all previous methods based on HCRF. In this
section, we distinguish the consistency potentials depending
on whether the nodes are in the same or different levels.

A. Consistency between Levels

An important issue that has to be addressed is the possible
inconsistency between nodes that encode the same atomic
part. To overcome this issue the consistency potential en-
forces a close position of the same atomic part encoded at
different nodes. For each pair of connected nodes i, j ∈ V
at different levels, where xi ∈ Lsi

i and xj ∈ L
sj

j , we define
the set Pij which contains all pairs of hyperlabel dimension
indexes (p, q) ∈ Pij that refer to the same atomic part. The
consistency potential between levels is

ψij(xi,xj) = max
(p,q)∈Pij

{
ψ′ij(x

p
i , x

q
j)
}
, (6)

where ψ′ij evaluates the squared Euclidean distance of the
two candidates xp

i and xq
j , and the max operator gets the

worst case over all pairs of parts in Pij . This enforces all
pairs of atomic parts that are in both product label spaces to
be close to each other.

B. Unary and Consistency within Levels

We introduce four different strategies to define the po-
tentials that relate parts within the same level. Their
implementation-specific details are provided in Sections VI
and VII.

1) Global Shape Potential: Our HCRF structure enables
us to define a potential to evaluate the shape of multiple parts
from a shape model learned on a training set. Let (u,v)
be the vector of image coordinates of all parts encoded in
the hyperlabel ` ∈ Lsi

i . Before learning a shape model, we
apply Procrustes analysis to remove rigid transformations
(e.g., rotation, scale and translation). We use (uR,vR) to
denote aligned coordinates with the rotation matrix R. Once
the training set has been aligned, we learn the shape model
by computing the Principal Component Analysis (PCA)
of the aligned coordinates. The PCA subspace is defined
with (B,µ), where µ is the mean shape of the object
examples, and B is the matrix of modes, i.e. the collection of
eigenvectors associated with higher eigenvalues of the PCA.
B encodes the possible shape variations learned from the
training set.

We define the potential as the minimum distance between
the PCA subspace and the evaluated shape (u,v). Thus, if
(ũ, ṽ) is the shape generated by the PCA with minimum
distance to (u,v), the potential becomes

φi(xi) =
∑

p

wp‖(up, vp)− (ũp, ṽp)‖22, (7)

where wp weights each part p. The computation of (ũ, ṽ)
is not trivial because the PCA model has been previously
learned with Procrustes alignment. Since we have two un-
knowns, R and (ũ, ṽ), we proceed iteratively in two steps

until convergence: (i) compute R, and (ii) obtain (ũ, ṽ)
by doing the inverse transformation of (ũR, ṽR), which is
computed as

[ũT
R ṽT

R ]T = µ+ B

projection to PCA subspace︷ ︸︸ ︷(
BT

([
uT

R vT
R

]T − µ))︸ ︷︷ ︸
back−projection to original space

. (8)

That is, we first project (uR,vR) to the PCA subspace,
and then, back-project it to the original space. We initialize
(ũR, ṽR) with the mean of the PCA model. In all tested
cases the algorithm converges in less than 20 iterations.

2) Robust Pairwise Shape Potentials: When the number
of encoded parts in a hyperlabel is small, our global shape
model is unable to learn the object shape with the PCA. In
this case, the learned PCA subspace comprises almost all the
space of possible shapes, and hence is too flexible to capture
the object shape variability. To overcome this limitation, we
introduce a simpler model that relates all possible pairs of
atomic parts. We proceed in two steps. We first evaluate all
pairs of parts in the hyperlabel, and then select the worst
pair. The evaluation of each pair of parts is done computing
a score with the same Gaussian model as in [25]. Then,
instead of simply averaging all scores, we merge them by
selecting the worst one. This second step adds robustness
because enforces a consistent shape between all pairs of
parts.

3) Global Appearance Potential: The atomic parts are
usually too local, and consequently its descriptors are not so
discriminative. Since the hierarchy includes parts at different
granularities, we can adapt the descriptors of each part at its
level. At higher levels, where parts represent larger regions
with a richer context, we can use more reliable cues. For
instance, we can define a unary potential for the detection
of the whole face, which is far more accurate than the unary
potential of a single corner of an eye.

4) Color Correlation Potential: We introduce a potential
that evaluates the color correlation within parts encoded in a
hyperlabel. We first compute a color histogram hp for each
encoded part p, and then, we compute the one versus one
distance rpq = d(hp,hq), using the intersection histogram
distance [19]. The resulting feature vector r expresses the
color similarity among encoded parts. As usual, the potential
is based on a classification score obtained from r.

V. INFERENCE

We have presented a novel HCRF structure able to express
relations among multiple parts. However, because it is built
using hyperlabels, it suffers from an excessive cardinality
of the label set, |Lsi

i | = msi , which renders the inference
in practice infeasible. Traditionally, for discrete probabilistic
models with variables with very large domains, inference
is achieved by reducing the label set by either discarding
labels [11], [12] or sampling the label space [16], [28].
Analogously, we first use a branch-and-bound algorithm
that prunes Lsi

i selecting hyperlabels, and then, apply any
suitable inference algorithm like Loopy Belief Propagation



(LBP) [17]. In this section, we focus on the selection of the
hyperlabels, which enables us to effectively compute LBP.

Let x∗ be the (unknown) inferred solution when using
the large label set Lsi

i at all nodes. We do not have access
to x∗ due to infeasible inference, but we might have a good
approximation if inference is done over an equivalent smaller
label set. We reduce the label set Lsi

i of each node i ∈ V ,
starting from the lowest level to the highest because our
HCRF hierarchically reuses the label spaces. For each node,
we select the m′ < msi hyperlabels ` ∈ Lsi

i with higher
probability P (` = x∗i |O). This posterior models whether
hyperlabel ` is the non-approximated inferred solution x∗i
or not. It establishes a probability on the hyperlabel set,
which in turn allows us to rank the most likely hyperlabels.
It can be efficiently computed with the approximation (see
the Appendix):

P (` = x∗i |O) ∝ P (`)
∏
p<si

P (Xp
i = `p|Op

i ). (9)

The prior P (`) models any joint shape constraint between the
parts encoded in `, and P (Xp

i = `p|Op
i ) is the probability

that the part encoded in dimension p takes a certain label `p,
based on an observation Op

i relative to this single part.
A branch-and-bound algorithm is able to exhaustively

search among the whole space Lsi
i by massively discarding

large sets of fruitless hyperlabels. It establishes a search tree,
where hyperlabels are build incrementally by increasing the
number of encoded parts. At each level of the tree, it adds a
part until it reaches the leafs, where the hyperlabels are. For
instance, let `′′ ∈ Ln

i be a partially build hyperlabel at the
n-th level of the search tree, and `′ ∈ Ln+1

i be equal to `′′

after a branching to the (n+ 1)-th level. Since branching is
done by increasing the number of encoded atomic parts, we
add an extra dimension to `′′ to build `′. At the leafs of the
search tree we obtain the hyperlabels in Lsi

i .
During the exploration of the tree, the algorithm maintains

a set S of the m′ < msi hyperlabels with the highest
posterior P (` = x∗i |O). An upper bound of this posterior
is evaluated for each partially build hyperlabel `′ ∈ Ln

i .
If the upper bound is lower than all the posteriors of the
hyperlabels in the set S, we can discard all hyperlabels build
from `′. Since these hyperlabels have a posterior lower or
equal than the upper bound, we are sure that none of them
has a posterior high enough to be selected. This pruning is
what preserves a tractable computational cost. In our case,
we define the upper bound of the posterior as

γ`′ = P (`′)
∏
p<n

P (Xp
i = `p|Op

i ). (10)

It is straightforward to check that this is in fact an upper
bound if P (`′) ≥ P (`). The definition of the prior P (`)
must satisfy this condition. In Algorithm 1 we summarize a
recursive implementation of our branch-and-bound.

VI. FACIAL FEATURE DETECTION

This section reports experimental results on the prob-
lem of facial feature detection using the CMU Multi-PIE

function S=Branch&Bound(`′′, S, n)
foreach l ∈ L do

`′ = (`′′, l) ; // Branch
if ∃` ∈ S : γ`′ ≥ P (` = x∗i |O) then // Bound

if n = si then // If it is a leaf
`′ � S; // Replace worst in S

else
S=Branch&Bound(`′, S, n+ 1);

end
end

end
end

Algorithm 1. Branch-and-bound algorithm for selecting the m′ hyperlabels
` ∈ Lsi

i with higher posterior P (` = x∗i |O). The set S stores the best
found hyperlabels.

dataset [13]. It contains a total of 337 subjects, under 15
different viewpoints, 6 expressions and 19 illuminations. A
total of 108, 566 images have been manually labeled with
ground-truth of the 68 landmarks of the human face. We used
1, 704 images of frontal faces showing different expressions,
and built a model to recover the location of 8 landmarks:
the corners of the eyes, the corners of the mouth and the
nostrils.

A. Implementation

Structure of the hierarchy: To recover the 8 landmarks
we use the HCRF with three levels illustrated in Figure 1.
The 8 atomic parts are represented in the first level. The
second level is built by combining pairs of these parts to
form the mouth, nose and eyes. This allows us to include
larger meaningful parts of the face, which can be described
with more reliable cues. The node at third level stands for
the whole shape of the face. It includes all atomic parts to
jointly evaluate the global shape of the resulting face.

Candidate parts: We obtained candidate points using the
Harris corner detector, that [23] showed good performance
to detect the corners of the eyes, mouth and nostrils. We
used around 1000 candidates for the first level. For the
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Fig. 4. Qualitative results on MultiPIE. We compare results of the CRF of the first level (top), the HCRF without the top level (middle) and the full
HCRF (bottom). The eyes are indicated with red and green, the mouth with blue, and nostrils with magenta.

second level, we selected 1000 hyperlabels with the branch-
and-bound strategy and 100 hyperlabels for the third level
(without using the prior P (`) of Eq. (9) by setting it always
to 1).

Unary potentials: For the first level, we extracted a patch
of 20 × 20 pixels around each candidate, and represented
it using the SIFT descriptor. The second level models the
global appearance for each part combination. To model all
the region of the part, we concatenated the SIFT histograms
of the encoded atomic parts. We used a SVM classifier with
intersection kernel [19] to compute matching scores, trained
with the same number of positive and negative samples.
Positive examples were built with the Harris detected corners
that were closer than 4 pixels to the ground-truth, and
negative examples were randomly selected. For the third
level, we used the global shape unary potential learned with
PCA (only the first eigenmode).

Consistency Potentials within Levels: They are in the
first and second levels. We defined each of them as robust
pairwise shape potentials described in Section IV. The con-
nections were set between parts closer to each other.

Learning HCRF parameters: We learned a weighting for
each potential in the HCRF and also the Gaussian model
of each robust pairwise shape potential. We discriminatively
learned these parameters with a Gibbs-like sampling algo-
rithm, which varies one single parameter at a time.

B. Experiments

We split the multi-PIE database into 4 subsets, such that
the subject identities do not overlap. Then, we performed a
4-cross validation, where 3 sets were use for training and 1
for testing.

Evaluation of the HCRF: In Figure 3, we show the
performance of the HCRF described above and also similar
CRF-based methods. Results show that using a CRF with
the connectivity pattern of our first level, the percentage of
images with a root-mean-squared (RMS) error lower than 10
pixels is 57%, whereas with the three levels of hierarchy the
score reaches to 93%. As we add the appearance of the parts
at second level or the global shape model, the HCRF is able
to capture more complex appearance and shape patterns. In
Figure 4 results are depicted.

In order to show that high-order relations in fact do exist
and that previous CRF-based methods are unable to capture
them, we compare with a fully connected CRF with pairwise
potentials. These potentials are the same Gaussian models
as we use at the first level. Our HCRF clearly outperforms
the fully connected CRF. This shows that our hyperlabels
potentials are able to capture meaningful information not
modeled by the CRF.

The HCRF of [29] is able to include parts at different
granularities and describe them with adequate cues. Instead
of using a product of label spaces it uses a simple label set
that models each compound part with the central position
of the encoded atomic parts. We evaluated our hierarchy
using their label spaces, being the first and second levels
equivalent. However, at the top node, all atomic parts are
summarized with the central position of the face, and hence,
we are unable to evaluate the global shape of the atomic
parts. Thus, the representation of [29] is not suitable for the
third level of our hierarchy.

Active Shape Models (ASM) [3] and extensions [4],
[5], [24], [27] have been a popular tool for facial feature
detection. These methods build holistic shape and appearance



models using a variant of PCA, and the search is typically
based on deterministic optimization methods that may result
in local minima. It is important to notice, that unlike our
HCRF, the performance of these methods is rather dependent
on the initialization. In the next section we will further
illustrate the performance of our HCRF on the problem of
human pose estimation.

VII. HUMAN POSE ESTIMATION

This section addresses the problem of 2D human pose
estimation. This problem consists on localizing the body
parts of a person in an image. To show the effectiveness
of the HCRF we evaluated our method on the challenging
Buffy dataset [8]2. It is composed by frames from the TV
show Buffy the Vampire Slayer. In each image a person is
annotated with line segments indicating the position of its
head, torso, upper arms and forearms.

A. Implementation

Structure of the Hierarchy: Figure 2 provides a two
level hierarchy for human pose estimation. The highest level
consists on a single node that encodes all atomic parts. It
enables us to capture the color correlation among parts and
the global shape. We omit any possible intermediate level
because the number of parts is small enough to group all of
them in a single node.

Candidate parts: Candidates of atomic parts are repre-
sented with the position of the joint and its orientation vector.
We consider all possible positions and orientations every 15
degrees. Since this label space is too large to apply our
inference algorithm, for the first level we select the 300
candidates with lower unary potential. For the top level of the
hierarchy, we select 500 candidates of hyperlabels with the
branch-and-bound strategy. We set the prior P (`) of Eq. (9)
equal to 0 when upper arms and forearms have their shared
boundaries too far away, or arms are too distant from the
center of the torso. Otherwise, the prior was set to 1.

Unary potentials: We used the unary potentials of [25]3

for the first level, which are classification scores obtained
with GentleBoost and HOG as descriptor. For the top level,
we merged two unary potentials, the global shape model
and the color correlation between parts, by learning the
weighting factor. The global shape is modeled using the
endpoint’s coordinates of the segments of all parts (two pairs
of coordinates per part, one at each extreme). We used the
number of PCA eigenmodes that preserve 90% of the energy.
For the color correlation potential we learned the relations
with a linear SVM.

Consistency Potentials within Levels: In the proposed
hierarchy, these potentials are only at the first level. We
defined all of them as pairwise shape potentials between
parts close to each other. Since none of them involves more
than two atomic parts, we used the same Gaussian model as
presented in [25].

2Available at http://www.robots.ox.ac.uk/∼vgg/data/stickmen.
3Available at http://vision.grasp.upenn.edu/cgi-bin/index.php?n=Video

Learning.PSBaselineCode

Torso U. arm Forearm Head Total
HCRF w/ shape+color model 99.7 91.3 63.9 95.5 84.3

HCRF w/ shape model 99.2 91.0 63.5 95.2 83.9
HCRF w/ color model 99.1 90.9 63.7 94.6 83.8

fully connected pairwise CRF 99.6 90.3 59.2 94.1 82.1
CRF (HCRF w/o top level) 99.7 88.7 55.8 93.0 80.3

TABLE I
RESULTS ON BUFFY DATASET.

Learning HCRF parameters: We learned the same param-
eters as with the facial feature selection experiment, i.e. the
weighting of each potential and the Gaussian model of each
pairwise shape potential. We also learned them with a Gibbs
sampler of the parameter space.

B. Experiments

We use episodes 3 and 4 for training (472 images), and
episodes 2, 5 and 6 for testing (276 images), as established
for comparison with other methods. The evaluation criteria
is the Percentage of Correctly detected Parts (PCP). A part is
correctly localized if the endpoints of its segment lie within
50% of the ground-truth segment length (evaluation code
supplied with the dataset).

Evaluation of the HCRF: In Table I we summarize the
results of our HCRF and the CRF-based methods. Results
show that we obtain a 4% of improvement when adding the
top node, and 2% compared to the fully connected pairwise
CRF. We believe that this improvement is because our HCRF
is able to learn global relations among parts. Figure 5 shows
some results.

At the top node, the candidates of [29] would represent
the detection of the whole upper-body of the person. Because
images in the Buffy dataset are already composed by the
cropped upper-body, this method is unable to improve the
results of pairwise CRF using our two-level hierarchy.

Comparison with state-of-the-art: The best results in the
Buffy dataset are reported by [26] with a PCP of 85.5%.
This method is based on a coarse-to-fine cascade of parts-
based models. Each stage in the cascade prunes the pose
space so that computationally expensive cues are computed
at the final stages. It is important to notice that there is no
theoretical reason why this strategy could not also be used
in our generic framework.

VIII. CONCLUSIONS

We presented a novel HCRF for parts-based models fitting
that uses product of label spaces to encode multiple atomic
parts. Unlike pairwise CRFs, which only take into account
local appearance and pairwise shape relations, our HCRF
incorporates relations among sets of parts. This is specially
important because it enables us to capture complex patterns
such as the global shape structure or color correlations among
parts. Experiments show that our HCRF obtains state-of-
the-art results on facial feature detection and human pose
estimation on two challenging datasets.

APPENDIX

Using the Bayes rule, the posterior becomes

P (` = x∗i |O) ∝ P (` = x∗i )P (O|` = x∗i ). (11)



Fig. 5. Qualitative results on Buffy dataset.

The computation of the likelihood P (O|` = x∗i ) is hazardous
due to the dimensionality of O. We propose the following
approximation:

P (O|` = x∗i ) ≈ P (Oi|` = x∗i ) = (12)∏
p<si

P (Op
i |`

p = xp
i
∗) ∝ (13)∏

p<si

P (`p = xp
i
∗|Op

i ), (14)

where in Eq. (12) we discard the observations not relative to
node i ∈ V , in Eq. (13) we assume conditional independence
between the observations done for each part Op

i , and finally,
we apply again Bayes rule and assume equiprobability for
all Op

i . Since inference will provide us a solution close to
the optimal, we can easily compute the prior P (` = x∗i ) as
P (`), and the factors P (`p = xp

i
∗|Op

i ) of the likelihood as
P (Xp

i = `p|Op
i ).
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