
Chapter 1
Discriminative Cluster Analysis

Fernando De la Torre and Takeo Kanade

Abstract Clustering is one of the most widely used statistical tools for data analy-
sis. Among all existing clustering techniques, k-means is a very popular method due
to its ease of programming and its good trade-off between achieved performance
and computational complexity. However, k-means is prone to local minima prob-
lems and does not scale well with high dimensional data sets. A common approach
to clustering high dimensional data is to project in the space spanned by the prin-
cipal components (PC). However, the space of PCs does not necessarily improve
the separability of the clusters. In this paper, we propose Discriminative Cluster
Analysis (DCA) that clusters data in a low dimensional discriminative that encour-
ages cluster separability. DCA simultaneously performs dimensionality reduction
and clustering, improving efficiency and cluster performance in comparison with
generative approaches (e.g. PC). We exemplify the benefits of DCA versus tradi-
tional PCA+k-means clustering through several synthetic and real examples. Addi-
tionally, we provide connections with other dimensionality reduction and clustering
techniques such as spectral graph methods and linear discriminant analysis.

1.1 Introduction

Clustering is one of the most widely used statistical methods in data analysis (e.g.
multimedia content-based retrieval, molecular biology, text mining, bioinformat-
ics). Recently, with an increasing number of database applications that deal with
very large high dimensional datasets, clustering has emerged as a very important
research area in many disciplines. Unfortunately, many known algorithms tend to
break down in high dimensional spaces because of the sparsity of the points. In
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such high dimensional spaces not all the dimensions might be relevant for cluster-
ing, outliers are difficult to detect, and the curse of dimensionality makes clustering
a challenging problem. Also, when handling large amounts of data, time complexity
becomes a limiting factor.

There are two types of clustering algorithms: partitional and hierarchical (?). Par-
titional methods (e.g. k-means, mixture of Gaussians, graph theoretic, mode seek-
ing) only produce one partition of the data; whereas hierarchical ones (e.g single
link, complete link) produce several of them. In particular, k-means (?) is one of
the simplest unsupervised learning algorithms that has been extensively studied and
extended (?). Although it is a widely used technique due to its ease of program-
ming and good performance, k-means suffers from several drawbacks. It is sensitive
to initial conditions, it does not remove undesirable features for clustering, and it
is optimal only for hyper-spherical clusters. Furthermore, its complexity in time is
O(nkl) and in space is O(k), where n is the number of samples, k is the number of
clusters, and l the number of iterations. This degree of complexity can be impractical
for large datasets.

To partially address some of these challenges, this papers proposes Discrimina-
tive Cluster Analysis (DCA). DCA jointly performs clustering and dimensionality
reduction. In the first step, DCA finds a low dimensional projection of the data well
suited for clustering by encouraging preservation of distances between neighboring
data points belonging to the same class. Once the data is projected into a low dimen-
sional space, DCA performs a ”soft” clustering of the data. Later, this information
is feedback into the dimensionality reduction step until convergence. Clustering in
the DCA subspace is less prone to local minima, noisy dimensions that are irrele-
vant for clustering are removed, and clustering is faster to compute (especially for
high dimensional data). Recently, other researchers (?), (?) have explored further
advantages of discriminative clustering methods versus generative approaches.

1.2 Previous work

This section reviews previous work on k-means, spectral methods for clustering,
and linear discriminant analysis in a unified framework.

1.2.1 k-means and spectral graph methods: a unified framework

k-means (?; ?) is one of the simplest and most popular unsupervised learning algo-
rithms used to solve the clustering problem. Clustering refers to the partition of n
data points into c disjoint clusters. k-means clustering splits a set of n objects into c
groups by maximizing the between-cluster variation relative to within-cluster varia-
tion. In other words, k-means clustering finds the partition of the data that is a local
optimum of the following energy function:
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J(m1, ...,mc) =
c

∑
i=1

∑
j∈Ci

||d j−mi||22 (1.1)

where d j (see notation 1) is a vector representing the jth data point and mi is the
geometric centroid of the data points for class i. The optimization criterion in eq.
(1.1) can be rewritten in matrix form as:

E1(M,G) = ||D−MGT ||F sub ject to G1c = 1n and gi j ∈ {0,1} (1.2)

where G is an indicator matrix, such that ∑ j gi j = 1, gi j ∈ {0,1} and gi j is 1 if di
belongs to class j, c denotes the number of classes and n is the number of samples.
M ∈ ℜd×c is the matrix containing all the means for each cluster. The columns of
D ∈ ℜd×n contain the original data points, and d is the number of features. The
equivalence between the k-means error function of eq. (1.1) and eq. (1.2) is only
valid if G strictly satisfies the constraints.

The k-means algorithm performs coordinate descent in E1(M,G). Given the ac-
tual value of the means M, the first step finds, for each data point d j, the value
of g j minimizing eq. (1.2) subject to the constraints. The second step optimizes
M = DG(GT G)−1, which effectively computes the mean of each cluster. Although
it can be proven that alternating these two steps will always converge, the k-means
algorithm does not necessarily find the optimal configuration of all possible assign-
ments. The algorithm is significantly sensitive to the initial randomly selected clus-
ter centers. It is typically run multiple times, and the solution with less error is
chosen. Despite these limitations, the algorithm is used frequently as a result of its
easiness of implementation and effectiveness.

After optimizing over M, eq. (1.2), can be rewritten as:

E2(G) = ||D−DG(GT G)−1GT ||F = tr(DT D)

−tr((GT G)−1GT DT DG)≥ ∑
min(d,n)
i=c+1 λi (1.3)

where λi are the eigenvalues of DT D. Minimizing E2(G), eq. (1.3), is equivalent to
maximizing tr((GT G)−1GT DT DG). Ignoring the special structure of G and con-
sidering the continuous domain, the optimum G value is given by the eigenvec-
tors of the Gram matrix DT D. The error of E2 with the optimal continuous G is
E2 = ∑

min(d,n)
i=c+1 λi. A similar reasoning has been reported by (?; ?), demonstrating

that a lower bound of E2(G), eq. (1.3), is given by the sum of residual eigenvalues.

1 Bold capital letters denote matrices D, and bold lower-case letters signify a column vector d. d j

represents the jth column of the matrix D. d j is a column vector that designates the j-th row of the
matrix D. All non-bold letters refer to scalar variables. di j corresponds to the scalar in the row i
and column j of the matrix D, as well as the i-th element of a column vector d j . diag is an operator
that transforms a vector into a diagonal matrix or transforms the diagonal of a matrix into a vector.
vec vectorizes a matrix into a vector. 1k ∈ℜk×1 is a vector of ones. Ik ∈ℜk×k denotes the identity
matrix. ||d||22 denotes the norm of the vector d. tr(A) = ∑i aii is the trace of the matrix A, and |A|
denotes the determinant. ||A||F = tr(AT A) = tr(AAT ) designates the Frobenious norm of matrix
A. Nd(x; µ,Σ) indicates a d-dimensional Gaussian on the variable x with mean µ and covariance
Σ . ◦ denotes the Hadamard or point-wise product.
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The continuous solution of G lies in the c− 1 subspace, spanned by the first c− 1
eigenvectors with highest eigenvalues (?) of DT D.

Finally, it is worthwhile to point out the connections between k-means and stan-
dard spectral graph algorithms (?), such as Normalized Cuts (?), by means of kernel
methods. The kernel trick is a standard method for lifting the points of a dataset to a
higher dimensional space, where points are more likely to be linearly separable (as-
suming that the correct mapping is found). Consider a lifting of the original points
to a higher dimensional space, Γ = [ φ(d1) φ(d2) · · · φ(dn) ] where φ represents a
high dimensional mapping. The kernelized version of eq. (1.2) is:

E3(M,G) = ||(Γ −MGT )W||F (1.4)

in which we introduce a weighting matrix W for normalization purposes. Eliminat-
ing M = Γ WWT G(GT WWT G)−1, it can be shown that:

E3 ∝ tr((GT WWT G)−1GT WWT
Γ

T
Γ WWT G) (1.5)

where Γ
T

Γ is the standard affinity matrix in Normalized Cuts (?). After a change of
variable Z = GT W, the previous equation can be expressed as E3(Z) ∝ tr((ZZT )−1ZWT Γ

T
Γ WZT ).

Choosing W = diag(Γ T
Γ 1n)−

1
2 the problem is equivalent to solving the Normal-

ized Cuts problem. This formulation is more general since it allows for arbitrary
kernels and weights. In addition, the weight matrix can be used to reject the influ-
ence of pairs of data points with unknown similarity (i.e. missing data).

1.2.2 Linear Discriminant Analysis

The aim of LDA is to find a low dimensional projection, where the means of the
classes are as far as possible from each other, and the intra-class variation is small.
LDA can be computed in closed form using the following covariance matrices, con-
veniently expressed in matrix form (?):

f St =
n

∑
j=1

(d j−m)(d j−m)T = DP1DT

f Sw =
c

∑
i=1

∑
d j∈Ci

(d j−mi)(d j−mi)T = DP2DT

f Sb =
c

∑
i=1

ni(mi−m)(mi−m)T = DP3DT

where f = n− 1, and Pi’s are projection matrices (i.e. PT
i = Pi and P2

i = Pi) with
the following expressions:

P1 = I− 1
n

1n1T
n P2 = I−G(GT G)−1GT P3 = G(GT G)−1GT − 1

n
1n1T

n (1.6)
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Sb is the between-class covariance matrix and represents the average distance be-
tween the mean of the classes. Sw is the within-class covariance matrix and it is a
measure of the average compactness of each class. Finally, St is the total covari-
ance matrix. Through these matrix expressions, it can be easily verified that St =
Sw +Sb. The upper bounds on the ranks of the matrices are min(c−1,d), min(n−
c,d), min(n−1,d) for Sb,Sw, and St respectively.

LDA computes a linear transformation of the data B ∈ℜd×k that maximizes the
distance between class means and minimizes the variance within clusters. Rayleigh-
like quotients are among the most popular LDA optimization criterion (?). For in-
stance, LDA can be obtained by minimizing:

E2(B) = tr((BT S1B)−1BT S2B) (1.7)

where several combinations of S1 and S2 matrices lead to the same LDA solution
(e.g. S1 = {Sb,Sb,St} and S2 = {Sw,St ,Sw}). The Rayleigh quotient of eq.(1.7) has
a closed-form solution in terms of a Generalized Eigenvalue Problem (GEP), S2B =
S1BΛ (?). In the case of high-dimensional data (e.g. images) the covariance matrices
are not likely to be full rank due to the lack of training samples and alternative
approaches to compute LDA are needed. This is the well-known small sample size
(SSS) problem. There are many techniques to solve the GEP when S1 and S2 are
rank deficient, see (?; ?) for a recent review. However, solving LDA with standard
eigensolvers is not efficient (neither space or nor time) for large amounts of high
dimensional data. Formulating LDA as a least-squares problem suggests efficient
methods to solve LDA techniques. Moreover, a least-squares formulation of LDA
facilitates its analysis and generalization.

Consider the following weighted between-class covariance matrix Ŝb = DGGT DT =
∑

c
i=1(

ni
n )2mimT

i , that favors classes with more samples. mi is the mean vector for
class i, and we assume zero mean data (i.e. m = 1

n D1n). Previous work on neural
networks (?; ?) have shown that maximizing J4(B) = tr((BT ŜbB)(BT StB)−1) is
equivalent to minimizing:

E4(B,V) = ||GT −VBT D||F ∝−tr((BT DDT B)−1BT DGGT DT B) (1.8)

This approach is attractive since (?) have shown that the surface of eq. (1.8) has
a unique local minima, and several saddle points.

1.3 Discriminative Cluster Analysis

In the previous section, we have provided a least-squares framework for LDA (su-
pervised dimensionality reduction) and k-means (unsupervised clustering). The aim
of DCA is to combine clustering and dimensionality reduction in an unsupervised
manner. In this section, we propose a least-squares formulation for DCA.
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1.3.1 Error function for LDA and DCA

The key aspect to simultaneously performing dimensionality reduction and cluster-
ing is the analysis of eq. (1.8). Ideally we would like to optimize eq. (1.8) w.r.t.
B and G. However, directly optimizing eq. (1.8) has several drawbacks. First, eq.
(1.8) biases the solution towards classes that have more samples because it maxi-
mizes Ŝb = DGGT DT = ∑

c
i=1(

ni
n )2(mi)(mi)T . Secondly, eq. (1.8) does not encour-

age sparseness in G if gi j > 0. That is, assuming that C = BT D ∈ ℜk×n, then eq.
(1.8) is equivalent to E4 = tr(GT G)− tr(GT CT (CCT )−1CG). If gi j ∀ i, j is posi-
tive, minimizing the first term, tr(GT G), does not encourage sparseness in gi ∀i (gi

represents the ith row of G, see notation).
In this section, we correct eq. (1.8) to obtain the unbiased LDA criterion by nor-

malizing E4 as follows:

E5(B,V,G) = ||(GT G)−
1
2 (GT −VBT D)||F (1.9)

where (GT G)−
1
2 is the normalization factor. After eliminating V, eq. (1.9) can be

written as:

E5(B,G) = ||(GT G)−
1
2 GT (In−CT (CCT )−1C)||F

∝ tr((BT DDT︸︷︷︸
f St

B)−1BT DG(GT G)−1GT DT︸ ︷︷ ︸
f Sb

B) (1.10)

If G is known, eq. (1.10) is the exact expression for LDA.
Eq. (1.10) is also the basis for DCA. unlike LDA, DCA is an unsupervised tech-

nique and G will consider a variable to optimize, subject to the constraints that
gi j ∈ {0,1}, and G1c = 1n. DCA jointly optimizes the data projection matrix B and
the indicator matrix G.

1.3.2 Updating B

The optimal B given G can be computed in closed form by solving the following
GEP:

DRDT B = DDT BΛ 1 where R = G(GT G)−1GT (1.11)

There are many methods for efficiently solving the GEP in the case of high-
dimensional data when (d >> n) (?; ?; ?). In this section, we propose a regularized
stable closed form solution. Assuming DT D is full rank, computing (DT D)−1 can be
a numerically unstable process, especially if DT D has eigenvalues close to zero. A
common method to solve ill-conditioning is to regularize the solution by factorizing
Σ = DT D as the sum of the outer products plus a scaled identity matrix, i.e. Σ ≈
VΛVT + σ2Id . V ∈ ℜn×k, Λ ∈ ℜk×k is a diagonal matrix. The parameters σ2, V
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and Λ are estimated by minimizing:

Ec(V,Λ ,σ2) = ||Σ −VΛVT −σ
2In||F (1.12)

After optimizing over V,Λ ,σ2, it can be shown (?) that: σ2 = tr(Σ−VΛ̂VT )/d−k,
Λ = Λ̂−σ2Id , where Λ̂ is a matrix containing the eigenvalues of the covariance ma-
trix Σ and V the eigenvectors. This expression is equivalent to probabilistic PCA (?;
?; ?). After the factorization, the matrix inversion lemma (?) (A−1 +VC−1VT )−1 =
A−AV(C+VT AV)−1VT A is applied to invert (VΛVT +σ2In)−1, which results in:

(VΛVT +σ
2In)−1 =

1
σ2 (In−

1
σ2 V(Λ−1 +

In

σ2 )−1VT )

Now, solving (In− 1
σ2 V(Λ−1 + In

σ2 )−1VT )RDT Dα = αΛ becomes a better condi-
tioned problem.

The number of bases (k) are bounded by the number of classes (c), because the
rank(DRDT ) = c. We typically choose c−1 to be consistent with LDA. Moreover,
the best clustering results are achieved by projecting the data into a space of c− 1
dimensions. Also, observe that there is an ambiguity in the result, because for any
invertible matrix T1 ∈ Rk×k, E5(B) = E5(BT1).

1.3.3 Optimizing G

Let A = CT (CCT )−1C ∈ ℜn×n, where C = BT D, then eq. (1.10) can be rewritten
as:

E5(G) ∝ tr((GT G)−1GT AG) (1.13)

Optimizing eq. (1.13) subject to gi j ∈ {0,1} and G1c = 1n is an NP complete prob-
lem. To make it tractable, we relax the discrete constraint on gi j allowing to take
values in the range (0,1). To use a gradient descent search mechanism, we param-
eterize G as the Hadamard (pointwise) product of two matrices G = V◦V (?), and
use the following updating scheme:

Vn+1 = Vn−η
∂E5(G)

∂V (1.14)
∂E5(G)

∂V = (Ic−G(GT G)−1GT )AG(GT G)−1 ◦V

The increment of the gradient, η , in eq. (1.14) is determined with a line search
strategy (?). To impose G1c = 1n in each iteration, V is normalized to satisfy the
constraint. Because eq. (1.14) is prone to local minima, this method starts from
several random initial points and selects the solution with smallest error.

This optimization problem is similar in spirit to recent work on clustering with
non-negative matrix factorization (?; ?; ?). However, we optimize a discriminative
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criterion rather than a generative one. Moreover, we simultaneously compute di-
mensionality reduction and clustering, using a different optimization technique.

1.3.4 Initialization

At the beginning, neither G nor B are known, but the matrix G(GT G)−1GT can be
estimated from the available data. Similar to previous work (?), we compute a local
similarity matrix, G(GT G)−1GT ∈ℜn×n, from data. We assume that (GT G)≈ sIc,
so that all classes are equally distributed and s is the number of samples per class.
R = 1

s GGT is a hard-affinity matrix, where ri j will be 1 if di and d j are considered
neighbors (i.e. belong to the same class). R can be estimated by simply computing
the k nearest neighbors for each data point using the Euclidian distance. To make
R symmetric, if di is within the k-neighborhood of d j, but not the contrary, then
its similarity is set to zero. Figure 1.5.b shows an estimate of R for 15 subjects
in the ORL database. Each subject (class) has ten samples and for each sample
the nearest nine neighbors are selected. The samples are ordered by class. After
factorizing R = UΣUT , we normalize R as R̂ ≈ UcUT

c , where Uc ∈ Rn×c are the
first c eigenvectors of R. R̂ is the initial neighbor matrix.

Fig. 1.1 Two class toy problem. PCA, WPCA, and DCA projections in one dimensional space.

1.3.5 Interpreting the weighted covariance matrix

A key aspect to understand DCA is the interpretation of the weighted covariance ma-
trix DRDT = ∑

n
i=1 ∑

n
j=1 ri jdidT

j . Principal Component Analysis (PCA) (?) computes



1 Discriminative Cluster Analysis 9

a basis B that maximizes the variance of the projected samples, i.e. PCA finds an or-
thonormal basis that maximizes tr(BT DDT B) = ∑

n
i=1 ||BT di||22. The PCA solution

B is given by the eigenvectors of DDT . Finding the leading eigenvectors of DRDT

is equivalent to maximizing tr(BT DRDT B) = ∑
n
i=1 ∑

n
i=1 ri jdT

i BBT d j. If R = I, it
is equivalent to standard PCA. However, if R is G(GT G)−1GT , where G is the in-
dicator matrix (or an approximation), the weighted covariance only maximizes the
covariance within each cluster. This effectively maximizes the correlation between
each pair of points in the same class. Figure 1.1 shows a toy problem with two ori-
ented Gaussian classes. The first eigenvector in PCA finds a direction of maximum
variance that does not necessarily correspond to maximum discrimination. In fact,
by projecting the data into the first principal component, the clusters overlap. If R is
the initial matrix of neighbors, the first step of DCA finds a more suitable projection
that maximizes class separability (see fig. 1.1) .

1.4 Experiments

This section describes three experiments using synthetic and real data that demon-
strate the effectiveness of DCA for clustering.

1.4.1 Clustering with DCA

In the first experiment, we show how the DCA error function is able to correctly
cluster oriented clusters.

a) b) c)

Fig. 1.2 Three examples of three two-dimensional Gaussian clusters.

Consider the DCA optimization expression, eq. (1.10), when B = Id (i.e. no pro-
jection); in this case, eq. (1.10) becomes tr((GT G)−1GT DT (DDT )−1DG). This er-
ror function, due to the term (DDT )−1, provides affine invariance to clustering. To
illustrate this property, we have generated three examples of three two-dimensional
random Gaussian clusters. Figure 1.2.a shows three clusters of 300 samples each,
generated from three two-dimensional Gaussians: N2(x; [−4;3],0.25I2), N2(x;−[4;2],0.25I2)
and N2(x; [7;3],0.25I2). Similarly, fig. 1.2.b illustrates 300 samples generated from
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three two-dimensional Gaussians N2(x; [−10;−10],0.25I2) , N2(x; [−10;−5],0.25I2)
and N2(x; [30;15],0.25I2). Analogously, fig. 1.2.c shows N2(x;−[4;3],2[1 0.8;0.1 1])
, N2(x;−[4;2],0.25[1 0.8;0.1 1]) and N2(x; [3;3],0.25[1 0.8;0.1 1]).

We run DCA and k-means with the same random initialization and let both al-
gorithms converge. To compute the accuracy of the results for a c cluster case, we
compute a c-by-c confusion matrix C, where each entry ci j is the number of data
points in cluster i that belong to class j. It is difficult to compute the accuracy by
strictly using the confusion matrix C, because it is unknown which cluster matches
with which class. An optimal way to solve it is to compute the following maximiza-
tion problem (?; ?):

max tr(CP) | P is a permutation matrix (1.15)

To solve eq. (1.15), we use the classical Hungarian algorithm (?). Table (1.2) shows
the clustering accuracy for the three examples described above. We run the al-
gorithms 1000 times from different random initializations (same for k-means and
DCA).

k-means DCA
Fig. 1.2.a 0.713±0.23% 0.990±0.05%
Fig. 1.2.b 0.526±0.07% 0.959±0.09%
Fig. 1.2.c 0.594±0.13% 0.974±0.06%

Table 1.1 Comparison of clustering accuracy for DCA and k-means.

As we can see from the results in table 1.1, DCA is able to achieve better cluster-
ing results starting from the same initial condition as k-means. Moreover, DCA re-
sults in a more stable (less variance) clustering. k-means clustering accuracy largely
degrades when two clusters are closer together or the clusters are not spherical. DCA
is able to keep the accuracy even with oriented clusters (fig. 1.2.c).

1.4.2 Removing undesirable dimensions

The second experiment demonstrates the ability of DCA to deal with undesired
dimensions not relevant for clustering. A synthetic problem is created as follows:
200 samples from a two-dimensional Gaussian distribution with mean [−5,−5] and
another 200 samples from another Gaussian distribution with mean [5,5] are gener-
ated (x and y dimensions). We add a third dimension generated with uniform noise
between [0,35] (z dimension). Figure 1.3 shows 200 samples of each class in the
original space (fig. 1.3.a), as well as the projection (fig. 1.3.b) onto x and y. The
k-means algorithm is biased by the noise (fig. 1.4.a). Similarly, projecting the data
into the first two principal components also produces the wrong clustering because
PCA preserves the energy of the uniform noise, which is not relevant for clustering.
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Fig. 1.3 a) 2 classes of 3 dimensional data. b) Projection onto XY space.

Fig. 1.4 a) k-means clustering. b) DCA clustering.

However, DCA is able to remove the noise and achieve the correct clustering as ev-
idenced in fig. 1.4.b. In this particular example 15 neighbors were initially selected
and B ∈ℜ3×2.

1.4.3 Clustering faces

The final experiment shows results on clustering faces from the ORL face database
(?). The ORL face database is composed of 40 subjects and 10 images per subject.
We randomly select c subjects from the database and add the 10 images of the
subject to D ∈ ℜd×10c (e.g. fig. 1.5.a). Afterwards, we compute PCA, weighted
PCA (WPCA), PCA+LDA (preserving 95% of the energy in PCA), and DCA. After
computing PCA, WPCA (with the initial matrix R), and PCA+LDA, we run the
k-means algorithm 10 times and the solution with smallest error is chosen. This
procedure is repeated 40 times for different number of classes (between 4 and 40
subjects). To perform a fair comparison, we project the data into the number of
classes minus ones (c−1) dimensions for all methods.

Fig. 1.6 shows the accuracy in clustering for PCA+k-means versus DCA. For a
given number of clusters, we show the mean and variance over 40 realizations. DCA
always outperforms PCA+k-means. Table 1.2 shows some numerical values for the
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Fig. 1.5 a) Some faces of the ORL data base. b) Estimate of R for 15 clusters (people), each cluster
has 10 samples. The samples are ordered by clusters.

c PCA WPCA DCA PCA+LDA
4 73±0% 1±0% 87±2% 1±0%
10 88±6% 95±6% 97±4% 88±8%
15 86±5% 88±4% 96±1% 82±6%
20 80±4% 84±4% 87±2% 83±4%
25 77±3% 80±4% 87±2% 80±4%
30 75±3% 79±3% 81±3% 81±4%
35 73±4% 77±3% 78±4% 81±3%
40 71±2% 74±3% 73±3% 80±4%

Table 1.2 Comparison of the clustering accuracy for several projection methods (same number of
bases).

clustering accuracy. DCA outperforms most of the methods when there are between
5 and 30 classes. For more classes, PCA + LDA performs marginally better. In ad-
dition, the accuracy of the PCA+k-means method drops as the number of classes
increases (as expected).

1.5 Discussion and future work

In this paper, we have proposed DCA, a technique that jointly performs dimension-
ality reduction and clustering. In synthetic and real examples, DCA outperforms
standard k-means and PCA+k-means, for clustering high dimensional data. DCA
provides a discriminative embedding that maximize cluster separation and is less
prone to local minima. Additionally, we have proposed an unbiased least-squares
formulation for LDA.

Although DCA has shown promising preliminary results, several issues still need
to be addressed. It remains unclear how to select the optimal number of clusters.
Several model order selection (e.g. Minimum Description Length or Akaike in-
formation criterion) could be applied towards this end. On the other hand, DCA
assumes that all the clusters have the same orientation (not necessarily spherical).
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Fig. 1.6 Accuracy of clustering versus the number of classes. Blue PCA and red DCA (dotted
line).

This limitation could be easily address by using kernel extensions of eq. (1.10) to
deal with non-Gaussian clusters.
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