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Abstract

Kernel methods have been popular over the last decade
to solve many computer vision, statistics and machine
learning problems. An important, both theoretically and
practically, open problem in kernel methods is the pre-
image problem. The pre-image problem consists of find-
ing a vector in the input space whose mapping is known
in the feature space induced by a kernel. To solve the pre-
image problem, this paper proposes a framework that com-
putes an isomorphism between local Gram matrices in the
input and feature space. Unlike existing methods that rely
on analytic properties of kernels, our framework derives
closed-form solutions to the pre-image problem in the case
of non-differentiable and application-specific kernels. Ex-
periments on the pre-image problem for visualizing cluster
centers computed by kernel k-means and denoising high-
dimensional images show that our algorithm outperforms
state-of-the-art methods.

1. Introduction

In recent years, there has been a lot of interest in the
study of kernel methods [1,5,19,20] in the computer vision,
statistics and machine learning communities. In particular,
kernel methods have proven to be useful in many computer
vision problems [14] such as object classification, action
recognition, image segmentation and content based image
retrieval. In kernel methods, a non-linear mapping φ(·) is
used to transform the data X in the input space to a fea-
ture space where linear methods can be applied. Many stan-
dard linear algorithms such as Principal Component Anal-
ysis (PCA) [12], Linear Discriminant Analysis (LDA) [8]
and Canonical Component Analysis (CCA) [11] can be ex-
tended to model the non-linear structure in the data without
local minima using kernel methods.

In kernel methods, the mapping is typically never com-
puted explicitly but implicitly with a kernel function,

Figure 1. The local isomorphism between the Gram matrices from
the feature space to the input space. Our solution to the pre-image
and denoising problem is based on this connection. Specifically,
the pre-image x of a feature vector z = φ(x) can be obtained
by firstly computing the local Gram matrix A at z using training
samples, and then finding the pre-image x so that its own local
Gram matrix G is matched with that of z.

k(x1,x2) = φ(x1)
Tφ(x2) as the inner product in the fea-

ture space. By the Representer Theorem, every symmet-
ric positive definite function defines an inner product in
some Hilbert feature space which can be implicitly mapped
from the input space. An important yet nontrivial problem
in kernel methods called the pre-image problem is to find
the inverse mapping φ−1 from the feature space to the in-
put space. Finding a closed-form solution to the pre-image
problem is both theoretically interesting and useful in many
applications, such as feature space visualization and image
denoising. Several challenges include: (a) the exact pre-
image does not always exist and it might not be unique, and
an approximation needs to be made; (b) there is no closed-
form and smooth solution for complicated and application-
specific kernels. (c) The pre-image of a test sample is
usually biased towards the training data and loses the test-
specific features.

This paper addresses the pre-image problem by building
a local isomorphism between the input and feature space
using local Gram matrices (Fig. 1). The Gram matrices
are respectively computed in both spaces using nearby data
points, modeling important local structural information, i.e.
linear or non-linear correlations between nearby samples.
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By introducing a local metric P(z) in the feature space, the
two local Gram matrices above can be matched. This lo-
cal matching implicitly builds a bidirectional relation be-
tween both spaces, making it possible to solve the pre-
image problem. Specifically, the pre-image x of a feature
vector z = φ(x) can be obtained by firstly computing the
local Gram matrix at z using training samples, and then
finding the pre-image x so that its own local Gram matrix
is matched with that of z. In addition, we can also use this
structural relationship for image denoising. Image denois-
ing can be achieved by matching the local Gram matrices of
a test pair {x, z}.

There are three advantages of our work: (1) The pre-
image problem can be solved in closed-form; (2) any fea-
ture mapping φ(·) can be modeled regardless of whether
its kernel function has closed-form and/or is differentiable,
substantially broadening the range of its usage compared
to [13,16]; (3) The test-specific denoising preserves the sub-
tle visual characteristics of the test images.

The rest of the paper is organized as follows: Section 2
reviews previous works on the pre-image problem. Sec-
tion 3 introduces the main formulation of our work, and
Section 4 describes the applications of our method to solve
the pre-image and denoising problems. Section 5 shows ex-
perimental results and Section 6 concludes the paper.

2. Previous Work
This section reviews previous methods to solve the pre-

image problem according to their optimization criteria.
The first set of algorithms that solve the pre-image prob-

lem minimize the distance between the image of the pre-
image and the test data point in feature space. Mika et
al. [16] found an approximate pre-image for a Gaussian ker-
nel using a fixed-point iteration. This method is sensitive
to initialization and susceptible to local minima. Rathi et
al. [18] added a preprocessing step [16] by projecting the
test sample onto the subspace of the training set. Both meth-
ods above assume the kernel function is normalized, differ-
entiable and with explicit derivatives. Kowk and Tsang [13]
applied multidimensional scaling (MDS) and reconstructed
the pre-image using the local tangent space of the training
samples. This method requires a closed-form relationship
between the distances in the feature space and the Euclidean
distances in the input space.

The second set of algorithms regularize the feature space
distance with some prior information. Nguyen and De la
Torre [17] proposed a robust kernel PCA method that han-
dles missing data and intra-sample outliers. They derived an
error function where the image of the pre-image is close to
both the image of the noisy data point and its own projection
in the kernel principal subspace. Zheng et al. [21] computed
the pre-image regularized by a weakly supervised prior that
weights positive training samples over negative ones.

The third set of algorithms directly model the inverse
transformation from the feature space to the input space.
Honeine and Richard [10] proposed a direct method to learn
a global linear transformation between the input space and
the feature space. Thus, the pre-image of the test point can
be solved analytically. Bakir et al. [3] proposed to learn a
global transformation for the pre-image in a regression fash-
ion. However, learning global parameters inevitably results
in biased pre-images.

Other extensions include Arias et al. [2], which connects
the pre-image problem with the out-of-sample extension us-
ing the Nyström method [4]. A new feature space vector for
the test data point is computed after normalizing the train-
ing data in the feature space onto the unit sphere. Then the
pre-image can be computed by [16] or [13] using the new
feature space vector.

3. The Local Gram Matrix Isomorphism
This section describes the isomorphism between the in-

put and the feature space using the local Gram matrix.

3.1. Notation

Let X = [x1, · · · ,xn] ∈ ℜd×n (see the footnote for no-
tations1 ) be a matrix containing n d-dimensional input data
points. K ∈ ℜn×n denotes the kernel matrix such that each
element kij = φ(xi)

Tφ(xj) (i, j = 1, · · · , n) measures the
similarity between two points using a kernel function. φ(·)
is typically a nonlinear function that transforms X into a
(usually) higher dimensional feature space.

3.2. The Gram Matrix

Given a set of data points in the input space, the weighted
Gram matrix G(x;P) centered at some point x is defined
as follows:

G(x;P) = (X− x1T )TP(X− x1T ). (1)

Each element gij(x;P) = (xi − x)TP(xj − x) of G rep-
resents the inner product between the data sample xi and
xj centered at x, weighted by a positive semi-definite ma-
trix P which is dependent on particular choice of x. This
Gram matrix G(x;P) represents the first and second-order
information of the data distribution centered at x in the in-
put space. By only selecting neighbors of x in the training
set X, we can define a local Gram matrix that encodes the
local structure of the data at x.

1 Bold capital letters denote matrices X, bold lower-case letters a col-
umn vector x. xj represents the jth column of the matrix X. All non-bold
letters represent scalar variables. xij denotes the scalar in the row i and
column j of the matrix X and the scalar ith element of a column vec-
tor xj . ∥x∥2 denotes the norm of the vector x. tr(A) =

∑
i aii is

the trace of A, det(A) is the determinant of A and diag(x) denotes a
operator that generates a diagonal matrix with the elements of the vector
x. ∥A∥2F = tr(ATA) = tr(AAT ) designates the Frobenius norm of
matrix A. 1 is a vector with all elements 1.
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Intuitively, if a smooth surface is represented by discrete
training samples and the local Gram matrix is computed
from a point on the surface, then G(x;P) represents not
only the tangent directions on the surface but also the cur-
vature at x. In fact, one can regard G(x;P) as an empirical
Hessian matrix computed at x from the training samples.

Similarly, we can apply the Gram matrix definition from
Eqn. 1 to the feature space where the local metric P is de-
pendent on centering the point in the feature space. Ob-
serve that the possible infinite dimensional feature space
is sampled by a finite number of training data. To smooth
the data in the feature space, we apply the Nyström method
[4] to obtain a low-dimension representation Y of the fea-
ture space, by eigen-decomposing the kernel matrix K =
VΛVT , where Λ ∈ ℜm×m is the diagonal matrix of m
largest eigenvalues, and the columns of V ∈ ℜn×m are the
m eigenvectors (m ≡ rank(K) ≤ n). Then the feature
data φ(X) can be represented by

Y = Λ−1/2VTK, (2)

where Y = [y1, · · · ,yn] ∈ ℜm×n contains m-dimensional
representations of the data points in the feature space such
that K = YTY, i.e., the inner product is preserved. Thus
the definition of the local Gram matrix (Eqn. 1) can be ap-
plied in this low-dimensional representation of the feature
space.

3.3. The Criterion for Establishing Isomorphism

Given a test sample xt in the input space, its kernel im-
age φ(xt) can be represented as

yt = Λ−1/2VTk(·,xt), (3)

in the low-dimensional space, where k(·,xt) =
[k(x1,xt), k(x2,xt), . . . , k(xn,xt)]

T ∈ ℜn×1 con-
tains the inner-products in the feature space between the
test sample xt and the training set X. In this work, we aim
to match the input space Gram matrices Gt ≡ G(xt; I)
and the feature space Gram matrix At(Pt) ≡ G(yt;Pt)
by a proper choice of a positive-definite local metric
Pt ∈ ℜm×m. The matrix Pt essentially parameterizes the
local isomorphism between the two spaces with different
ambient dimensions (but the same intrinsic dimension), as
shown geometrically in Fig. 1.

We emphasize that this isomorphism leads to a locally-
defined connection between the two spaces, which is used
in the rest of the paper. The local neighborhood of a data
point is defined by the data points around it, and it can cap-
ture complex nonlinear structure. Our main assumption is
that the neighborhood structure defined in the feature space
is similar to the one in the input space. Observe that the
kernel-induced feature mapping connecting the two spaces
is continuous and preserves the (topological) neighborhood

structure. Moreover, the data point in the input space is of-
ten unknown and the associated neighborhood structure has
to be inherited from the feature space.

Note that alternatively, it is also possible to build the
mapping reversely from the input space to the feature space
by matching G(xt;Pt) and G(φ(xt); I), which seems to
be better since the Nyström method is no longer needed.
However, the dimension of the input space is typically
high(e.g., several ten thousands for raw image pixels). As a
result, Pt contains many free parameters and typically there
is very little training data to constrain them.

Following previous work on the Gaussian Processes La-
tent Variable Model [15], the matching between two Gram
matrices Gt and At, is defined by the solution that maxi-
mizes the following criterion parameterized by Pt:

J(Pt;X,Y,xt,yt) =
(2π)n/2 exp

(
− 1

2 tr
[
A−1

t Gt

])
det(At)1/2

. (4)

where

At = G(yt;Pt) = (Y(t) − yt1
T )TPt(Y

(t) − yt1
T )

is a function of Pt, and

Gt = G(xt; I) = (X(t) − xt1
T )T (X(t) − xt1

T ),

where Y(t) contains the nearest neighbors of yt in the fea-
ture space and X(t) is the subset in X corresponding to
Y(t). Observe that this is a measure of normalized correla-
tion between two covariances. In practice, when the Gram
matrix At in the feature space is rank deficient, we can add
a regularization term as At ← At + βI (where β > 0).

Eqn. (4) serves as the key component of our method.
Multiple tasks are successfully unified using Eqn. (4). For
instance, we can build the local connection between two
spaces by optimizing Pt, analytically solve the pre-image
problem by optimizing xt in Gt given the image yt and
Pt; we can also perform data denoising by alternatively op-
timizing the denoised version of xt and yt. Note originally
Eqn. (4) comes from Gaussian Processes Latent Variable
Model [15], where the variance of a set of latent variables in
the low-dimensional space to be learned fit with the variance
of the observation. However, we use it here for a different
purpose: to calibrate the Gram matrices in two spaces.

Computing the partial derivative of
log[J(Pt;X,Y,xt,yt)] with respect to Pt, we obtain:

∂ log[J(Pt;X,Y,xt,yt)]

∂Pt

= A−1
t GtA

−1
t (Y(t) − yt1

T )T (Y(t) − yt1
T )

−A−1
t (Y(t) − yt1

T )T (Y(t) − yt1
T ). (5)

where Pt has a closed-form solution:

Pt =
[
(Y(t) − yt1

T )T
]†

(X(t) − xt1
T )T

(X(t) − xt1
T )(Y(t) − yt1

T )†, (6)
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Figure 2. The workflow of pre-image and denoising in the framework of local Gram matrix isomorphism. Pre-image(left column): (a)
Given the feature vector yt, firstly the local metric Pt is estimated from its neighboring training samples (Eqn. (7)); (b) then the feature
space Gram matrix At is matched with the input space Gram matrix Gt = Gt(xt) and the optimal xt, as the pre-image of yt, is obtained
(Eqn. (8)). Denoising(right column): (c) Given a noisy vector xt in the input space, its Gram matrix Gt is matched with the Gram matrix
At = At(ỹt) in the feature space (Eqn. (9)), where ỹt is expected to be a denoised version of the image of xt; (d) The Gram matrix
Gt(x̃t) is again matched with At(ỹt) by optimizing x̃t (Eqn. (11)), which is the final denoised version of xt.

where M† is the pseudo-inverse of a matrix M.

4. Applications
This section describes two applications, closed-form pre-

image and image denoising, that make use the local isomor-
phism defined in Eqn. (4).

4.1. Local Gram Preserving Preimage

Given yt in the feature space, finding its pre-image x̃t

using Eqn. (4) requires the knowledge of the local metric
Pt. A joint optimization over both x̃t and Pt is not feasible
because for any x̃t in the input space there would always
be one Pt that matches the local structure near yt in the
feature space. Instead, we first estimate Pt and then solve
x̃t, as shown in Fig. 2.

Consider Nt be the subset containing the neighbors of
yt in Y. We assume that the local metric changes smoothly
due to the continuity of local metric structure and com-
pute the local metric at yt as a weighted combination of
the neighboring metrics, that is:

Pt =
1∑|Nt|

i=1 αi

|Nt|∑
i=1

αiPi, (7)

where the local metric Pi for a particular neighboring train-
ing sample yi ∈ Nt is computed using Eqn. (6) and the
weight coefficient is typically set as αi = exp{−(yt −
yi)

TPi(yt − yi)/δ
2}, with δ controlling the smoothness

in the neighborhood. Then given Pt, Eqn. (4) can be op-
timized with respect to xt in Gt, and the solution can be
found analytically as:

x̃t =
X(t)A−1

t 1

1TA−1
t 1

, (8)

where At = (Y(t) − yt1
T )TPt(Y

(t) − yt1
T ). The com-

plexity for solving Eqn. (8) is fairly low considering that we
only used neighboring data points (|Nt| ≪ n). We empha-
size that our proposed approach is purely data-driven and
does not put any special requirements on the kernel func-
tion, such as being invertible and differentiable as in previ-
ous works (e.g. [16] [13] [17]).

4.2. Joint Denoising in the Input and Feature Space

Using Eqn. (4) we can also solve the denoising problem
by jointly working in the input and feature space. Given a
noisy input space vector xt, its feature space representation
yt will inherent the noise from the input space. Therefore,
yt should be denoised before estimating the noise free pre-
image x̃t. In this case, we formulate a two-step process
for joint denoising. In the first step we obtain a denoised
feature vector ỹt (note this is different from the direct kernel
mapping) from yt. In the second step we obtain the final
denoised input space vector x̃t from ỹt, as shown in Fig. 2.

However, denoising this way typically leads to the over-
smoothing problem, i.e., the denoising algorithm not only
removes the noise but also eliminates the specific charac-
teristics of the test sample, especially when such charac-
teristics are not present in the training set (e.g., pimples or
glasses on a face). Essentially, this problem is due to the
lack of training samples and is ill-posed. Since the test-
specific information not present in the training set cannot be
modeled, it is difficult to factorize this information from the
noise. But practically, a regularization term can be added
to keep a trade-off between denoising and preserving test-
specific characteristics. Our idea of using the trade-off pa-
rameter follows previous methods such as [17].

Specifically, given a noisy test sample xt in the input
space, we first compute its Gram matrix Gt and its image
yt, then obtain Pt using Eqn. (6), and finally optimize the
following objective (Eqn. (9)) with respect to ỹt, the de-
noised feature vector. In fact, the objective for denoising
the feature space is Eqn. (4) plus a regularization that com-
bines ỹt with the noisy yt:

max
ỹt

EF (ỹt) =

exp

{
− 1

2 tr

[(
Ãt + λRF

t

)−1

Gt

]}
(2π)n/2det

(
Ãt + λRF

t

)1/2
(9)

where λ ∈ [0, 1] is the regularization parameter, Ãt =
(Y(t) − yt1

T )TPt(Y
(t) − yt1

T ) and RF
t = 1(ỹt −

yt)
TPt(ỹt − yt)1

T . The regularization matrix RF
t is nec-

essary in practice to avoid rank-deficiency of At.
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Computing the derivative of EF with respect to ỹt and
setting it to zero, we obtain the closed-form solution of ỹt:

ỹt =
(Y(t)G−1

t 1+ λyt1
TG−1

t 1)

(1 + λ)1TG−1
t 1

. (10)

Similarly, in the second step, we estimate the pre-image x̃t

of ỹt in the input space by the following optimization:

max
x̃t

EI(x̃t) =
exp

{
− 1

2 tr
[
Ã−1

t

(
G̃t + λRI

t

)]}
(2π)n/2det

(
Ãt

)1/2
,

where G̃t = (X(t)−x̃t1
T )T (X(t)−x̃t1

T ) and RI
t = (x̃t−

xt)
T (x̃t − xt)11

T . Computing the derivative of EI with
respect to x̃t and set it to zero, we have the final denoising
result of xt:

x̃t =
X(t)Ã−1

t 1+ λxt1
T Ã−1

t 1

(1 + λ)1T Ã−1
t 1

. (11)

5. Experimental Results
This section provides qualitative (visual) and quantita-

tive comparisons between our method and previous works
in two problems: finding pre-images of cluster centers af-
ter clustering with kernel k-means using non-differentiable
kernels and images denoising, both using the CMU Multi-
PIE database [9].

Figure 3. Example of normalized face images under different
poses and illuminations.

5.1. Preimage for Visualizing Cluster Centers

This section describes how to compute the pre-image of
cluster centers after using kernel k-means [7] for clustering.
In this case, we used two types of kernels: differentiable and
not differentiable. The aim of this experiment is to show
our method can visualize the cluster centers using a non-
differentiable kernel, while it is unclear how other methods
can do it.

We selected a subset of 260 images belonging to the Ses-
sion 1 in the CMU MultiPIE database. This subset contains
images taken from 13 view angles, each with 20 illumina-
tion conditions. Each image was cropped around the face
areas and normalized to the size of 64 × 64. Fig. 3 shows
some examples of the normalized images. With kernel k-
means, the 260 images were clustered in different poses,
and our task is to visualize the cluster centers. Ideally, if we

 Raw Pixel Kernel HOG Kernela) b)

Figure 4. Visualization of kernel matrices using (a) the raw pixel
distance and (b) the HOG distance. The samples are grouped ac-
cording to the facial poses. Note that the HOG kernel shows a
blocky structure, and thus, is better for clustering using kernel k-
means and spectral relaxations. However, its kernel function is not
differentiable.

Mika et.al [16] with raw pixel kernel

Kwok and Tsang [13] with raw pixel kernel

Our Method with raw pixel kernel

Our Method with HOG kernel

a)

b)

c)

d) Honeine and Richard [10] with HOG kernel

e)

Figure 5. Visual comparison of clustering centers obtained by dif-
ferent methods. The first three rows are the pre-images of the clus-
ter centers obtained by raw pixel kernel using (a) Mika et al. [16],
(b) Kwok and Tsang [13] and (c) our method respectively. The
last two rows show the pre-image by (d) Honeine and Richard [10]
and (e) our method using the HOG kernel, which is the only valid
visualization the pose cluster centers.

select illumination-invariant measurement of similarity be-
tween images, each cluster should correspond to one view
angle.

In this application two different kernels were used. One
used the RBF function on the raw pixels (differentiable)
and the other on the Histogram-Of-Gradient (HOG) (non-
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Figure 6. Pre-images of the 4th cluster center in Fig. 5(e) com-
puted using (a) Pt (Eqn. (7)) and using (b) several Pis associated
with yis (the neighbors of yt in the feature space). The weight
coefficient αi on top of each image in (b) measures the similarity
between yt and yi.(see Eqn. (7)).

differentiable) [6]:

kRAW(xi,xj) = exp

{
−∥xi − xj∥22

σ2

}
, (12)

kHOG(xi,xj) = exp

{
−∥h(xi)− h(xj)∥22

σ2

}
,(13)

where h(·) is the function computing HOG. Typically, the
Euclidean distance between raw images may be unreliable
and sensitive to illumination conditions, while the HOG dis-
tance is illumination-invariant (see Fig. 4). We selected the
bandwidth σ for both kernels as the mean of the pairwise
Euclidean distances.

Fig. 5 (a)-(c) visualize the pre-images of the cluster cen-
ters obtained using a raw pixel kernel (Eqn. (12)) [16], [13]
and our method, (d)-(e) show the pre-images by [10] and
our method using the HOG kernel. The neighbor number in
both [13] and our method are selected as the number of data
points within the mean pairwise Euclidean distances of the
training set.

We can see that using the differentiable raw pixel ker-
nel, kernel k-means provides poor clustering results, as in-
dicated by the first three rows in Fig. 5 (a)-(c). Note, there
is no point to compare the sharpness of these images. They
are all supposed to be blurry because each cluster contains
face images with various poses and illuminations. On the
other hand, the HOG kernel provides a similarity that is
more robust to illumination. However, the cluster centers
cannot be visualized with existing methods because the ker-
nel function is non-differentiable. [10] also failed to solve
the pre-image problem because it computes the pre-image
with global linear transformation, see Fig. 5 (d). Unlike ex-
isting work, our method can handle this important case, see
Fig. 5 (e).

A key assumption of Eqn. (7) is the local smoothness of
the metric Pt. To verify this, in Fig. 6, we reconstructed
xt using (a) its associated Pt and (b) using Pi, i.e. the
metric of neighboring points yi of yt. As shown in Fig. 5,
the reconstructed images are similar, especially when using
Pi computed from a close neighbor yi (characterized by
higher αi in Eqn. (7)). The similarity in image appearances
demonstrates Pt is locally smooth over the feature space.

5.2. Testdataspecific Denoising

This experiment compares the performance of our al-
gorithm with Mika et al.’s fixed point method [16], Kwok
and Tsang [13], Robust KPCA by Nguyen and De la
Torre [17] and the direct global linear method by Honeine
and Richard [10] on the image denoising problem. We show
that our method removes the noise of the test image while
preserving information of the original image, and provides
better quantitative and visual results.

We selected a subset of frontal faces with the frontal illu-
mination from the CMU MultiPIE database [9] containing
249 neutral faces, 249 smiling faces from Session 1, 203
surprise faces from Session 2, 203 squint faces from Ses-
sion 2, 228 disgust faces from Session 3 and 239 scream
faces from Session 4 respectively. All selected faces have
been manually labeled with 66 points and warped towards a
standard face. In this experiment, both the iconic variations
(e.g. types of glasses, beards and eyebrows) and the expres-
sion variations (e.g. wrinkles on the cheek) are considered
as the image-specific characteristics that are interesting to
preserve.

We used 50% of the faces for training (i.e. 125 for neu-
tral face, 125 for smile, 102 for surprise, 102 for squint, 114
for disgust and 120 for scream) and the remaining 50% for
testing. All test data points were corrupted by Gaussian ad-
ditive noise with standard deviation of 0.06. For the noisy
and all the denoised images, two measures were used as
performance measure: Average Pixel Error (APE) and the
Signal to Noise Ratio (SNR):

APE =
∥x̃t − x0

t∥1
d

, SNR =
∥x̃t − xt∥22
∥x̃t − x0

t∥22
(14)

where d is the number of pixels and x0
t is the original clean

test image. SNR defined in Eqn. (14) measures the ability to
push the denoised image towards the clean image from the
noisy image. Ideally, a good denoised image should have
low APE, high SNR and be photo-realistic.

All the compared methods used the Gaussian kernel with
the bandwidth parameter selected as the mean pairwise Eu-
clidean distances of the training data. The number neighbor
samples in both [13] and our method is selected as the num-
ber of data points within the mean pairwise Euclidean dis-
tances of the training set. All the methods used Kernel PCA
to model the subspace of image variation, and for denoising,
it kept all the components in the feature space. Both [17]
and our method have a trade-off parameter that balances
noise reduction with test-specific characteristics. We de-
cide to show the results at their highest SNRs respectively,
i.e. c = 3 for [17] and λ = 0.1 for our method.

Examples of the original clean image, noisy image, and
denoised results of all the compared algorithms are shown
in Fig. 7. Because Mika et al.’s [16] and Kwok and Tsang’s
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(10.12, 1.76)

Honeine [10]
(25.97, 1.11)

Our Method
(9.26, 2.24)

Original
Noisy

(12.32, 0)
Mika [16]

(10.96, 2.31)
Kowk [13]

(12.17, 2.04)

Nguyen [17]
(9.51, 2.01)

Honeine [10]
(20.29, 1.29)

Our Method
(7.50, 3.07)

Original
Noisy

(12.05, 0)
Mika [16]

(15.22, 1.71)
Kowk [13]

(18.18, 1.51)

Nguyen [17]
(13.81, 1.55)

Honeine [10]
(54.60, 1.03)

Our Method
(10.95, 2.01)

Original
Noisy

(12.15, 0)

Mika [16]
(10.50, 2.46)

Kowk [13]
(13.93, 1.822)

Nguyen [17]
(9.76, 1.94)

Honeine [10]
(36.12, 1.05)

Our Method
(8.17, 2.75)

Original
Noisy

(12.37, 0)
Mika [16]

(10.20, 2.41)
Kowk [13]

(12.15, 2.01)
Nguyen [17]
(9.38, 1.85)

Honeine [10]
(16.35, 1.38)

Our Method
(7.95, 2.77)

Figure 7. Examples of denoising face images. Columns from left to right: (1) the original test image, (2) image corrupted by Gaussian
noise, (3) the result of Mika et al. [16], (4) Kwok&Tsang [13], (5) Nguyen&De la Torre [17], (6) Honeine&Richard [10] and (7) our
method. In each column, the first number in brackets is the Average Pixel Error (APE) and the second is Signal to Noise Ratio (SNR).

Table 1. Denoising results on Multi-PIE database measured by Average Pixel Error (APE) and Signal to Noise Ratio (SNR).

Noisy Mika et al. [16]
Kwok&

Tsang [13]
Nguyen&

De la Torre [17]
Honeine&

Richard [10]
Our

Method

Neutral
APE:12.14

SNR:0
9.28± 2.77

3.06
10.60± 2.84

2.57
8.53± 2.58

2.30
26.90± 11.83

1.18
7.51± 1.52

3.21

Smile
APE:12.47

SNR:0
9.45± 2.39

3.03
10.83± 2.56

2.57
8.57± 2.11

2.34
23.26± 9.17

1.29
7.70± 1.30

3.16

Surprise
APE:12.29

SNR:0
10.37± 2.04

2.61
11.83± 2.40

2.27
9.38± 1.88

2.08
22.62± 8.41

1.32
8.52± 1.33

2.72

Squint
APE:12.09

SNR:0
9.48± 2.28

2.91
11.01± 3.94

2.50
8.62± 2.04

2.26
23.17± 9.35

1.32
7.77± 1.50

3.05

Disgust
APE:12.34

SNR:0
9.82± 2.45

2.86
11.11± 2.49

2.44
8.96± 2.22

2.21
26.07± 9.02

1.20
7.95± 1.53

2.97

Scream
APE:12.57

SNR:0
10.98± 2.70

2.54
12.49± 2.70

2.19
9.88± 2.40

2.04
25.40± 9.61

1.22
8.77± 1.43

2.69

methods reconstruct the test image purely as a combination
of a training set, the noisy test image is over-smoothed (in-
dicated by a higher SNR) and the person-specific character-

istics such as glasses, beard, teeth and wrinkles on the faces,
are typically lost. Nguyen and De la Torre [17] did a better
job in preserving the subtle visual features on face and re-
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sults in lower APE. But it added some noise which lowered
the SNR compared to Mika et al., Kwok and Tsang’s and
our methods. Honeine and Richard’s method showed poor
performances in terms of both APE and SNR. This is be-
cause it assumes a global linear structure between the input
space and the feature space, which does not hold in prac-
tice. Finally, our method has significantly lower pixel error,
higher SNR, and keeps photo-realistic features of the clean
image. On the other hand, our method removes the noise
while preserving the subtle person-specific (or test-specific)
characteristics. Table 1 summarizes the quantitative perfor-
mance of all methods. Our method outperforms the others
in both the APE and SNR criterion.

6. Conclusion
This paper proposes a novel framework to solve the pre-

image problem by formulating a local isomorphism be-
tween local Gram matrices in the input space and the fea-
ture space induced by a kernel. This local isomorphism al-
lows us to establish a bi-directional mapping between the
two spaces using second-order statistics. We illustrate the
benefit of our approach with two problems: finding the
pre-image using non-differentiable kernels and test-data-
specific image denoising. More importantly, our framework
elegantly overcomes the limitations of previous methods to
handle the non-differentiable and application-specific ker-
nels, and there is a closed-form solution. It is important to
notice that most of the existing state-of-the-art visual fea-
tures such as HOG, DAISY or SIFT are non-linear and non-
differential operators in the images, that will induce non-
differentiable kernels. Both qualitative and qualitative eval-
uations illustrate that our algorithm outperforms state-of-
the-art methods for solving the pre-image problem.
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