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Abstract
Automatic facial image analysis has been a long standing research problem in com-

puter vision. A key component in facial image analysis, largely conditioning the suc-
cess of subsequent algorithms (e.g. facial expression recognition), is to define a vo-
cabulary of possible dynamic facial events. To date, that vocabulary has come from
the anatomically-based Facial Action Coding System (FACS) or more subjective ap-
proaches (i.e. emotion-specified expressions). The aim of this paper is to discover
facial events directly from video of naturally occurring facial behavior, without re-
course to FACS or other labeling schemes. To discover facial events, we propose a
temporal clustering algorithm, Aligned Cluster Analysis (ACA), and a multi-subject
correspondence algorithm for matching expressions. We use a variety of video sources:
posed facial behavior (Cohn-Kanade database), unscripted facial behavior (RU-FACS
database) and some video in infants. Accuracy of (unsupervised) ACA approached
that of a supervised version, achieved moderate intersystem agreement with FACS,
and proved informative as a visualization/summarization tool.
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Figure 1: Selected video frames of unposed facial behavior from three participants.
Different colors and shapes represent dynamic events discovered by unsupervised
learning: smile (green circle) and lip compressor (blue hexagons). Dashed lines in-
dicate correspondences between persons.

1 Introduction

The face is one of the most powerful channels of nonverbal communication. Facial ex-
pression provides cues about emotional response, regulates interpersonal behavior, and
communicates aspects of psychopathology. While people have believed for centuries
that facial expressions can reveal what people are thinking and feeling, it is relatively
recently that the face has been studied scientifically for what it can tell us about internal
states, social behavior, and psychopathology.

Faces possess their own language. To represent the elemental units of this lan-
guage, Ekman and Friesen [13] in the 70’s proposed the Facial Action Coding System
(FACS). FACS segments the visible effects of facial muscle activation into “action
units”. Each action unit is related to one or more facial muscles. The FACS taxonomy
was develop by manually observing graylevel variation between expressions in images
and to a lesser extent by recording the electrical activity of underlying facial muscles
[5]. Because of its descriptive power, FACS has become the state of the art in manual
measurement of facial expression and is widely used in studies of spontaneous facial
behavior. In part for these reasons, much effort in automatic facial image analysis seeks
to automatically recognize FACS action units [2, 36, 31, 35].

In this paper, we ask whether unsupervised learning can discover useful facial units
in video sequences of one or more persons, and whether the discovered facial events
correspond to manual coding of FACS action units. We propose extensions of an un-
supervised temporal clustering algorithm, Aligned Cluster Analysis (ACA) [45]. ACA
is an extension of kernel k-means to cluster multi-dimensional time series. Using this
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unsupervised learning approach it is possible to find meaningful dynamic clusters of
similar facial expressions in one individual and correspondences between facial events
across individuals in an unsupervised manner. Fig. (1) illustrates the main idea of the
paper. In addition, we show how our algorithms for temporal clustering of facial events
can be used for summarization and visualization.

2 Temporal segmentation and clustering of human be-
havior

This section reviews previous work on temporal clustering and segmentation of facial
and human behavior.

With few exceptions, previous work on facial expression or action unit recogni-
tion has been supervised in nature (i.e. event categories are defined in advance in
labeled training data, see [2, 36, 31, 35] for a review of state-of-the-art algorithms).
Little attention has been paid to the problem of unsupervised temporal segmentation
or clustering prior to recognition. Essa and Pentland [14] proposed a probabilistic
flow-based method to describe facial expressions. Hoey [19] presented a multilevel
Bayesian network to learn in a weakly supervised manner the dynamics of facial ex-
pression. Bettinger et al. [4] used AAM to learn the dynamics of person-specific facial
expression models. Zelnik-Manor and Irani [42] proposed a modification of structure-
from-motion factorization to temporally segment rigid and non-rigid facial motion. De
la Torre et al. [10] proposed a geometric-invariant clustering algorithm to decompose
a stream of one person’s facial behavior into facial gestures. Their approach suggested
that unusual facial expressions might be detected through temporal outlier patterns. In
summary, previous work in facial expression addresses temporal segmentation of fa-
cial expression in a single person. The current work extends previous approaches to
unsupervised temporal clustering across individuals.

Outside of the facial expression literature, unsupervised temporal segmentation and
clustering of human and animal behavior has been addressed by several groups. Zelnik-
Manor and Irani [43] extracted spatio-temporal features at multiple temporal scales to
isolate and cluster events. Guerra-Filho and Aloimonos [17] presented a linguistic
framework to learn human activity representations. The low level representation of
their framework, motion primitives, referred to as kinetemes, were proposed as the
foundation for a kinetic language. Yin et al. [40] proposed a discriminative feature
selection method to discover a set of temporal segments, or units, in American Sign
Language. These units could be distinguished with sufficient reliability to improve
accuracy in ASL recognition. Wang et al. [39] used deformable template matching
of shape and context in static images to discover action classes. Turaga et al. [37]
presented a cascade of dynamical systems to cluster a video sequence into activities.
Niebles et al. [29] proposed an unsupervised method to learn human action categories.
They represented video as a bag-of-words model of space-time interest points. Latent
topic models were used to learn their probability distribution, and intermediate topics
corresponded to human action categories. Oh et al. [30] proposed parametric segmental
switching dynamical models to segment honeybees behavior. Related work in tempo-
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ral segmentation has been done, as well, in the area of data mining [21] and change
point detection [18]. Unlike previous approaches, we propose the use of ACA. ACA
generalizes kernel k-means to cluster time series, providing a simple yet effective and
robust method to cluster multi-dimensional time series with few parameters to tune.

3 Facial feature tracking and image features

Over the last decade, appearance models [6, 27] have become increasingly prominent
in computer vision. In the work below, we use AAMs [27] to detect and track facial
features, and extract features. Fig. (2a) shows an example of AAM using image data
from RU-FACS [2].

Sixty-six facial features and the related face texture are tracked throughout an im-
age sequence. To register images to a canonical view and face, a normalization step
registers each image with respect to an average face. After the normalization step, we
build shape and appearance features for the upper and lower face regions. Shape fea-
tures include, xU1 the distance between inner brow and eye, xU2 the distance between
outer brow and eye, xU3 the height of eye, xL1 the height of lip, xL2 the height of teeth,
and xL3 the angle of mouth corners. Appearance features are composed of SIFT de-
scriptors computed at points around the outer outline of the mouth (at 11 locations)
and on the eyebrows (5 points). The dimensionality of the resulting feature vector is
reduced using PCA to retain 95% of the energy, yielding appearance features for the
upper (xU4 ) and lower (xL4 ) face. For the task of clustering emotions, features from both
face parts were used to obtain a holistic representation of the face. For more precise
facial action segmentation, each face part was considered individually. See Fig. (2b)
for an illustration of the feature extraction process.

4 Aligned Cluster Analysis (ACA)

This section describes Aligned Cluster Analysis (ACA), an extension of kernel k-
means to cluster time series. ACA combines kernel k-means with Dynamic Time
Alignment Kernel (DTAK). A preliminary version of ACA was presented at [45].

4.1 Dynamic time alignment kernel (DTAK)

To align time series, a frequent approach is Dynamic Time Warping (DTW). A known
drawback of using DTW as a distance is that it fails to satisfy the triangle inequality.
To address this issue, Shimodaira et al. [34] proposed Dynamic Time Alignment Ker-
nel (DTAK). The DTAK between two sequences, X .= [x1, · · · ,xnx

] ∈ Rd×nx (see
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Figure 2: Facial features used for temporal clustering. (a) AAM fitting across different
subjects. (b) Eight different features extracted from distance between tracked points,
height of facial parts, angles for mouth corners, and appearance patches.

notation1) and Y .= [y1, · · · ,yny
] ∈ Rd×ny , is defined as:

τ = max
Q

l∑
c=1

1
nx + ny

(q1c − q1c−1 + q2c − q2c−1)κq1cq2c ,

where κij(xi,yj) = φ(xi)Tφ(yj) represents the kernel similarity between frame xi
and yj . Through the paper we used the RBF kernel κij(xi,yj) = exp( 1

2σ2 ||xi−yj ||22),
where σ2 is the average distance to the 10% nearest neighbors. Q ∈ R2×l is an integer
matrix that contains indexes to the alignment path between X and Y. For instance, if
the cth column of Q is [q1c q2c]T , the q1c frame in X corresponds to the q2c frame in
Y. l is the number of steps needed to align both signals.

DTAK finds the path that maximizes the weighted sum of the similarity between
sequences. A more revealing mathematical expression can be achieved by considering
a new normalized correspondence matrix W ∈ Rnx×ny , where wij = 1

nx+ny
(q1c −

q1c−1 + q2c − q2c−1) if there exist q1c = i and q2c = j for some c, otherwise wij = 0.
Then DTAK can be rewritten:

τ(X,Y) = tr(KTW) = ψ(X)Tψ(Y), (1)

1Bold capital letters denote a matrix X, bold lower-case letters a column vector x, and all non-bold letters
denote scalar variables. xj represents the jth column of the matrix X. xij denotes the scalar in the row
i and column j of the matrix X. Ik ∈ Rk×k denotes the identity matrix. ||x||22 denotes the norm of the
vector x. tr(X) =

P
i xii is the trace of the matrix X. ||X||2F = tr(XT X) = tr(XXT ) designates the

Frobenius norm of a matrix. ◦ denotes the Hadamard or point-wise product.
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where ψ(·) denotes a mapping of the sequence into a feature space, and K ∈ Rnx×ny .

4.2 k-means and kernel k-means
Clustering refers to the partition of n data points into k disjoint clusters. Among various
approaches to unsupervised clustering, k-means [26, 44] and kernel k-means (KKM)
[12, 41] are among the simplest and most popular. k-means and KKM clustering split
a set of n objects into k groups by minimizing the within cluster variation. KKM finds
the partition of the data that is a local optimum of the following energy function [44, 9]:

Jkkm(M,G) = ||φ(X)−MG||2F , (2)

where X ∈ Rd×n, G ∈ Rk×n and M ∈ Rd×k. G is an indicator matrix, such that∑
c gci = 1, gci ∈ {0, 1} and gci is 1 if xi belongs to class c, n denotes the number

of samples. The columns of X contain the original data points, and the columns of M
represent the cluster centroids; d is the dimension of the kernel mapping. In the case
of KKM, d can be infinite dimensional and typically M cannot be computed explicitly.
Substituting the optimal M = φ(X)GT (GGT )−1 value, eq. (2) results in:

Jkkm(G) = tr
(
LK

)
L = In −GT (GGT )−1G. (3)

The KKM method typically uses a local search [12] to find a matrix G that makes
GT (GGT )−1G maximally correlated with the sample kernel matrix K = φ(X)Tφ(X).

4.3 ACA objective function
Given a sequence X .= [x1, · · · ,xn] ∈ Rd×n with n samples, ACA decomposes X
into m disjointed segments, each of which corresponds to one of k classes. The ith

segment, Zi
.= [xsi

, · · · ,xsi+1−1]
.= X[si,si+1) ∈ Rd×ni , is composed of samples that

begin at position si and end at si+1 − 1. The length of the segment is constrained as
ni = si+1 − si ≤ nmax. nmax is the maximum length of the segment that controls the
temporal granularity of the factorization. An indicator matrix G ∈ {0, 1}k×m assigns
each segment to a class; gci = 1 if Zi belongs to class c.

ACA combines kernel k-means with the DTAK to achieve temporal clustering by
minimizing:

Jaca(G,M, s) = ||[ψ(Z1) · · · ψ(Zm)]−MG||2F . (4)

The difference between KKM and ACA is the introduction of the variable s that de-
termines the start and end of each segment Zi(s). ψ(·) is a mapping such that, τij =
ψ(Zi)Tψ(Zj) = tr(KT

ijWij) is the DTAK. Observe that there are two kernel ma-
trices, T ∈ Rm×m is the kernel segment matrix and K ∈ Rn×n is the kernel sample
matrix (kernel between samples). T ∈ Rm×m can be expressed re-arranging them×m
blocks of Wij ∈ Rni×nj into a global correspondence matrix W ∈ Rn×n, that is:

T =[τij ]m×m = [tr(KT
ijWij)]m×m = H(K ◦W)HT ,

where H ∈ {0, 1}m×n is the segment-sample indicator matrix; hij = 1 if jth sample
belong to ith segment. Unfortunately, DTAK is not a strictly positive definite kernel
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Figure 3: Example of temporal clustering. (a) 1-D sequence. (b) Results of temporal
clustering. (c) Self-similarity matrix (K). (d) Correspondence matrix (W). (e) Frame-
segment indicator matrix (H). (f) Segment-class indicator matrix (G).

[8]. Thus, we add a scaled identity matrix to K; that is, K ← K + σIn, were σ
is chosen to be the absolute value of the smallest eigenvalue of T if it has negative
eigenvalues.

After substituting the optimal value of M in eq. (4), a more enlightened form of
Jaca can be rewritten as:

Jaca(G, s) = tr
(
(L ◦W)K

)
, (5)

where L = In −HTGT (GGT )−1GH. Recall H depends on s. Fig. (3) illustrates
the matrices K, H, W and G in a synthetic example of temporal clustering. Consider
the special case when, m = n and H = In; that is, each frame is treated as a segment.
In this case, DTAK would be a kernel between two frames, i.e., W = 1n1Tn and ACA
is equivalent to kernel k-means, eq. (3).

Optimizing ACA is a non-convex problem. We use a coordinate descent strategy
that alternates between optimizing G and s while implicitly computing M. Given a
sequence X of length n, the number of possible segmentations is exponential, which
typically renders a brute-force search infeasible. We adopt a dynamic programming
(DP) based algorithm that has a complexity O(n2nmax) to exhaustively examine all
the possible segmentations.

We rewrite eq. (4) as a sum of the following distances:

Jaca(G, s) =
k∑
c=1

m∑
i=1

gcidist
2
ψ(Zi,mc) =

m∑
i=1

dist2ψ(Zi,mc∗i
) (6)

where c∗i denotes the label of the closest cluster for segment Zi, i.e., gc∗i i = 1. Observe
that the solution G is determined once s is known. To further leverage this relationship
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between G and s, we introduce an auxiliary function, J : [1, n]→ R,

J(v) = min
G,s

Jaca(G, s)|X[1,v] (7)

to relate the minimum energy directly with the tail position v of the subsequence
[x1,x2, · · · ,xv]. We can further justify that J satisfies the principle of optimality
[3], i.e.,

J(v) = min
1<i≤v

(
J(i− 1) + min

G,s
Jaca(G, s)|X[i,v]

)
(8)

which implies that the optimal decomposition of the subsequence X[1,v] is achieved
only when the segmentations on both sides X[1,i−1] and X[i,v] are optimal and their
sum is minimal. Although the number of possible ways to decompose sequence X is
exponential in n, dynamic programming [3] offers an efficient approach to minimize J
by using Bellman’s equation,

J(v) = min
v−nmax<i≤v

(
J(i− 1) + min

g

k∑
c=1

gcdist
2
ψ(X[i,v], ṁc)

)
(9)

where dist2ψ(X[i,v], ṁc) is the squared distance between the segment X[i,v] and the
center of class c:

dist2ψ(X[i,v], ṁc) = τ(X[i,v],X[i,v])−
2
ṁc

ṁ∑
j=1

ġcjτ(X[i,v], Żj) +
1
ṁ2
c

ṁ∑
j1,j2=1

ġcj1 ġcj2τ(Żj1 , Żj2)

When v = n, J(n) is the optimal cost of the segmentation that we seek. The inner
values, i∗v,g

∗
v = arg mini,g J(v), are the head position and label for the last segment

respectively that lead to the minima. Equation (9) unifies kernel k-means and segment-
based ACA clustering based on the length constraint nmax. If nmax = 1, each segment
consists of one single frame, and (9) is equivalent to kernel k-means.

Fig. 4 illustrates the procedure for optimizing ACA. Given a n-length sequence X
with an initial segmentation (Fig. 4a), ACA applies the following forward-backward
algorithm temporally cluster the sequence (Fig. 4b-c):

• Forward step. Scan from the beginning (v = 1) of the sequence to its end
(v = n). For each v, J(v) is computed according to (9), as well as the optimal
head position i∗v and label g∗v .

• Backward step. Trace back from the end of sequence (v = n). Cut off the
segment whose head s = i∗v and indicator vector g = g∗v could be indexed
from the stored records. Repeat this operation on the left part of the sequence
(v = i∗v − 1).

These steps are repeated until J(n) converges (Fig. 4d).
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Figure 4: Coordinate-descent optimization for ACA. (a) Optimization of 1-D sequence
converged in 4 steps. (b) DP-based search of segmentation between 1st step and 2nd

step. (c) Data structure used in DP-based search. (d) Objective of ACA in each step.

5 Supervised ACA (SACA)

Clustering algorithms are generally used in an unsupervised fashion. In real application
domains, it is often the case that the experimenter possesses some background knowl-
edge (about the domain or the data set) that could be useful in clustering the data. This
sections shows two extensions supervised extensions of ACA one at frame-level and
one at a segment-level.

5.1 Frame-based supervised ACA

The success of kernel machines largely depends on the choice of the kernel parameters
and the functional form of the kernel. As in previous work on multiple kernel learning
[11, 7, 25, 24, 23, 1, 15], we consider the frame kernel as a positive combination of
multiple kernels, that is:

K(a) =
d∑
l=1

alKl, s.t. a ≥ 0d (10)

where the set {K1, · · · ,Kd} is given and the al’s are to be optimized. We call this
frame based supervised ACA and through the paper will be referred as supervised
ACA.

In the ideal case [11, 7], if two samples belong to the same class, the kernel function
outputs a similarity of 1 and 0 otherwise. In the case of temporal segmentation, the
label of the ith frame is given by Ghi. Assuming that all labels (G,H,W) are known,
we minimize the distance between the ideal kernel matrix and the parameterized one,
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Figure 5: Learning the kernel for ACA. (a) Original 2-D sequence. (b) Feature re-
reweighting after learning. (c) K1. (d) K2. (e) Objective function Jlearn(a).

that is:

Jlearn(a) = ‖W ◦
(
F−K(a)

)
‖2F , (11)

where F = HTGTGH, and the correspondence matrix (W) weights individually the
pair of frames that have been used in the calculation of DTAK.

To optimize Jlearn with respect to a, we rewrite eq. (11) as a quadratic program-
ming problem: Jlearn(a) = aTZa−2fTa+c, where zij = Tr((W◦Ki)T (W◦Kj)),
fi = tr((W ◦ F)T (W ◦Ki)) and c is a constant. We use the CVX toolbox [16] to
solve this problem.

Fig. 5 shows a synthetic example for learning the kernels in temporal segmentation.
Suppose that a 2-D sequence X ∈ R2×n has been generated with meaningful segments
in the first dimension and with random noisy feature in the second dimension. After
minimizing Jlearn with respect to the weights for the two kernel matrix computed
from each dimension, we obtain a∗ = [.9979, .0096]T which assigns lower weight to
the second dimension than to the first one.

5.2 Segment-based supervised ACA
This sections shows a supervised extension of ACA at a segment level.

We will denote with a dot the variables that are known. Given ṁ segments, Ż1, · · · , Żṁ,
with known labels, Ġ ∈ {0, 1}k×ṁ, the original objective function of ACA can be re-
formulated as

Jsaca(G, s) = ‖[ψ(Z1) · · · ψ(Zm)]− ṀG‖2F . (12)

where the cluster center, Ṁ, is defined by the given segments. Observe that unlike
ACA that optimizes over M, now Ṁ is known. Given a new sequence Z, supervised
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Figure 6: Example of segment-based supervised ACA. (a) Predefined clusters. (b) 1-D
sequence. (c) Results of temporal segmentation.

ACA finds the segmentation of the signal Z that minimizes Eq. 12. The globally
optimal segmentation can be found by optimizing the Bellman’s equation (eq. 9).

Fig. 6 shows an example of segmenting a time series with known cluster centers.
In Fig. 6(a), four instances of three clusters are depicted. Given a sequence with 23
frames (Fig. 6(b)), SACA returns a segmentation with 5 segments (Fig. 6(c)). Notice
that the 3rd cluster found by SACA and shown in green in Fig. 6(c) is different from
the previous ones in Fig. 3(b) found by unsupervised ACA. This is because SACA
optimizes Eq. 12 with respect to the predefined clusters shown in Fig. 6(a).

6 Experiments
This section reports experimental results for unsupervised temporal segmentation of
facial behavior and compares them with emotion and FACS labels in two scenarios:
first for individual subjects and then for sets of subjects. The ACA code is available
online at http://humansensing.cs.cmu.edu/projects/acaCode.html.

6.1 Data sources
We use a variety of video sources: posed facial behavior from the Cohn-Kanade database
[20], unscripted facial behavior from the RU-FACS database [2], and infants observed
with their mothers [28]. The databases are:

• Cohn-Kanade (CK) database: The database contains a recording of posed fa-
cial behavior for 100 adults. With a few exceptions, all are between 18 and 30
years of age. There are small changes in pose and illumination, all expressions
are brief (about 20 frames on average), begin at neutral, proceed to a target ex-
pression, and are well differentiated relative to unposed facial behavior in a nat-
uralistic context (e.g., RU-FACS). Peak expressions for each sequences are AU-
and emotion-labeled. The latter were used in the experiment reported below. The
emotion labels were surprise, sadness, anger, fear and joy.

• RU-FACS database: The RU-FACS database [2] consists of digitized video and
manual FACS of 34 young adults. They were recorded during an interview of
approximately 2 minutes duration in which they lied or told the truth in response

10



to an interviewer’s questions. Pose orientation was mostly frontal with small to
moderate out-of-plane head motion. Image data from five subjects could not be
analyzed due to image artifacts. Thus, image data from 29 subjects was used.

• Infant social behavior: Image data were from a three-minute face-to-face in-
teraction of a 6-month-old infant with her mother [28]. The infant was seated
across from her mother. Mean head orientation was frontal but large changes in
head orientation were common.

6.2 Facial event discovery for individual subjects
This section describes two experiments in facial event discovery on one individual. The
first experiment compares the clustering of ACA with that of a baseline unsupervised
approach (KKM), a supervised version of ACA (ACA+learn), and FACS labeling. The
second experiment uses ACA to summarize the facial behavior of an infant.

6.2.1 Individual subjects in RU-FACS

We compared performance of ACA, supervised ACA (ACA+learn), and KKM. Fea-
tures were 8, as described in section 3. For ACA+learn, 10 sets of 19 subjects were
randomly selected to learn ACA weights (a). For unsupervised ACA and KKM 10 sets
of 10 subjects were used.

Ten subjects were randomly selected for each realization of unsupervised ACA,
ACA+learn, and KKM. The initial clustering is provided k-means (best of 20 random
initializations). Because the number and frequency of action units varied among sub-
jects, and to investigate the stability of the clustering w.r.t. the number of clusters,
between 7 ∼ 10 clusters were selected for the lower face and 4 ∼ 7 for the upper face.
The clustering results are the average over all clusters. The length constraint was set to
be nmax = 80. Accuracy is computed using the confusion matrix:

C(c1, c2) =
malg∑
i=1

mtruth∑
j=1

galgc1i g
truth
c2j |Z

alg
i ∩ Ztruthj | (13)

where Zalgi is the ith segment returned by ACA (or KKM), and Ztruthj is the jth seg-
ment of the ground-truth data. C(c1, c2) represents the total number of frames on
the segment c1 that are shared by the segment c2 in ground truth. galgc1i is a binary
value that indicates whether the ith segment is classified as the c1 temporal clus-
ter of ACA. |Zalgi ∩ Ztruthj | denotes the number of frames that the segment Zalgi
and Ztruthj share. The Hungarian algorithm is applied to find the optimum solution
for the cluster correspondence problem. Empty rows or columns are inserted if the
number of clusters is different from the ground truth. The accuracy is computed as:

1
tr(C1k×k) maxP tr(CP) where P is the permutation matrix computed by the Hun-
garian algorithm. Due to the possible occurrence of multiple AUs in the same frame,
we consider AU combinations as distinct temporal clusters. We consider AUs with a
minimum duration of 10 video frames. Any frames for which no AUs occurred were
omitted.
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Figure 7: Clustering performance on RU-FACS database. (a) Mean and standard devi-
ation for the feature weights. (b) Temporal clustering accuracy. (b) Confusion matrix
for subject S014.
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Figure 8: Temporal clustering of infant facial behavior. Each color denotes a unique
cluster. Each facial gesture is coded with a different color. Observe how the frames of
the same cluster correspond to similar facial expressions.

Fig. (7b) shows the mean accuracy and variance of the temporal clustering for un-
supervised and supervised (learned weights) versions of ACA and KKM. ACA, KKM,
and ACA+learn. ACA was substantially more accurate than KKM and approached the
accuracy of ACA+learn. The mean and variance for the weights for all the features in
the lower and upper face are shown in Fig. (7a). The weights gave more importance to
the appearance features. Fig. (7c) shows a representative lower-face confusion matrix
for subject 14.

6.2.2 Infant subject

This experiment shows an application of the proposed techniques to summarize the
facial expression of an infant. Infant facial behavior is known to be more temporally
complex than that of adults. Fig. (8) shows the results of running unsupervised ACA
with 10 clusters on 1000 frames. We used the appearance and shape features for the
eyes and mouth. These 10 clusters provide a summarization of the infant’s facial events.

6.3 Facial event discovery for sets of subjects
In this section we test the ability of ACA to cluster facial behavior corresponding to
different subjects. We first report results for posed facial actions. We then report results
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Figure 9: Clustering of 5 different facial expressions. (a) ACA embedding. (b) Kernel
PCA embedding. (c) PCA embedding. (d) Clustering accuracy. (e) Temporal cluster-
ing accuracy.

for the more challenging case of unposed, naturally occurring facial behavior in an
interview setting.

6.3.1 Sets of subjects in CK

ACA was evaluated in two ways. One, we compared ACA with KKM in the task of
temporal clustering of facial behavior. Two, we explored its usefulness as a visualiza-
tion tool. For both, emotion-labeled sequences were chosen for 30 randomly selected
subjects. we used the six shape features that were normalized with respect to the initial
frame. A frame kernel was computed as a linear combination of 6 kernels with equal
unit weighting.

In the first experiment, we tested the ability of unsupervised ACA to temporally
cluster several expressions. First, 30 randomly selected subjects (the number of facial
expressions varies across subjects). The number of clusters was five and nmax = 25.
Unsupervised ACA and KKM were initialized with the best solution of k-means (after
20 random initializations). Fig. (9e) shows the mean (and variance) results for 10
realizations. As above, ACA outperformed KKM. See fig. (10) for an example of the
temporal clustering result.

In the second experiment ACA was evaluated as a visualization tool. Fig. (9a)
shows the ACA embedding of 112 sequences from 30 randomly selected subjects (dif-
ferent expressions). The embedding is done by computing the first three eigenvectors of
the kernel segment matrix (T). In this experiment, the kernel segment matrix is com-
puted using the ground-truth data (expression labels). Each point represents a video
segment of facial expression. Fig. (9b) and Fig. (9c) represent the embedding com-
puted by kernel PCA and PCA using independent frames (the frames are embedded
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Figure 10: (a) Mouth angle. Blue dots correspond to frames. (b) Manual labels, unsu-
pervised ACA and KKM.

using the first three eigenvectors of the kernel sample matrix K). Because each frame
represents a point, visualization of temporal structure is difficult. To test the quality of
the embedding for clustering, we randomly generated 10 sets of the facial expression
for 30 subjects. For each set the ground-truth label is known and the ”optimal” three
dimensional embedding is computed. Then we run KKM to cluster the data into five
clusters. The results (mean and variance) of the clustering are shown in Fig. (9d). As
expected, the segment embedding provided by ACA achieves higher clustering accu-
racy than kernel PCA or PCA.

6.3.2 Sets of subjects in RU-FACS

This section tested the ability of ACA to discover dynamic facial events in a more
challenging database of naturally occurring facial behavior of multiple people. Sev-
eral issues contribute to the challenge of this task in the RU-FACS database. These
include non-frontal pose, moderate out-of-plane head motion, subject variability and
the exponential nature of possible facial action combinations.

To solve this challenging scenarios two strategies are considered: ACA+CAT con-
catenates all videos and runs unsupervised ACA in the concatenated video sequence.
ACA+MDA runs unsupervised ACA independently for each individual and solves for
the correspondence of clusters across people using the Multidimensional Assignment
Algorithm (MDA) [32].

The MDA problem arises in a variety of topics in computer vision such as Multi-
Target (Multi-Sensor) Tracking [33] and Multi-Frame Point Correspondence [38]. A
number of approaches have been proposed in past decades to approximate the solution
of this classical NP-hard problem by taking advantage of specific constraints. In this
paper, we propose a variant based on the well-known Hungarian algorithm [22], which
is a polynomial solution for the weighted bipartite matching problem.

Given k types of segments from n subjects, the optimum assignment among sub-
jects is a set of pairwise permutation matrices, P(ij) ∈ {0, 1}k×k, that maximizes the
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following objective

max
P

n∑
i=1

n∑
j=1

k∑
ci=1

k∑
cj=1

w(ij)
cicj

p(ij)
cicj

(14)

s.t. p(ij)
cicj

= {0, 1} (15)
k∑

ci=1

p(ij)
cicj

= 1 and
k∑

cj=1

p(ij)
cicj

= 1 (16)

n∑
i=1

k∑
ci=1

p(ij)
cicj

= n and
n∑
j=1

k∑
cj=1

p(ij)
cicj

= n (17)

where w(ij)
cicj is the award (or similarity between two temporal segments) received by

assigning the same label to the ci-th segment of i-th subject and cj-th segment of j-th
subject. Notice that we adopt a different objective function (eq. 14) than the general
formulation for MDA [32] because in our problem the cost can be simplified. The first
and second constraints (eq. 15 and eq. 16 respectively) impose that for each pair of
subjects (i and j) is a bipartite matching. Moreover, the label of segments should be
globally consistent across the n subjects (eq. 17). At this point, it is important to notice
that the algorithm can handle matching two subjects with different number of temporal
clusters k1 and k2. This can be done by adding extra columns into the matrix W(ij)

with the lowest matching value.
Our approach to solve the problem consists of a greedy approximation that al-

ways satisfies the constraints. We call this method Pairwise Approximation-MDA (PA-
MDA). We start by solving a sequential bipartite matching for all possible subjects’
order. Suppose that there are three subjects, i1, i2, i3, one of the coherent matchings
can be found in two steps: (1) matching on subjects i1 and i2 and (2) matching subject
i3 with the combination i , i1 ∪ i2. To combine the subjects, the weights in eq.( 14)
need to be adjusted as w(ij)

cicj , w
(i1j)
ci1cj + w

(i2j)
ci2cj . For the case of n subjects, the algo-

rithm terminates at a global matching by repeating such a merging process n times. In
fact, there are n! possible paths for enumerating all n subjects. By taking advantage of
the special path structure, Dynamic Programming is able to complete the enumeration
in 2n steps. The overall complexity is O(n2nk3) instead of the original O((n!)k) that
branch-and-bound searching [32] will incur.

Using the same features described in section 6.2.1, we randomly selected 10 sets of
5 people and report the mean clustering results and variance. For ACA+MDA, we kept
the same parameter setting as in the previous segmentation of one subject. The number
of clusters in ACA+CAT was set to 14 ∼ 17 for the mouth and 8 ∼ 11 for the eye and
the length constraint is the same as before (80). As shown in Fig. (11), ACA+MDA
achieved more accurate segmentation than ACA+CAT. Moreover, ACA+MDA scales
better for clustering many videos. Recall that ACA+CAT scales quadratically in space
and time, which can be a limitation when processing video from many subjects. As
expected, the clustering performance is lower than in the case of clustering facial events
in a single individual.
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Figure 11: Temporal clustering across individuals (RU-FACS).
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Figure 12: (a) Results obtained by ACA for subjects S012, S028 and S049. (b) Corre-
sponding video frames.

Fig. (12a) shows the results for temporal segmentation achieved by ACA+MDA on
subjects S012, S028 and S049. Each color denotes a temporal cluster discovered by
ACA. Fig. (12) shows some of the dynamic vocabularies for facial expression analysis
discovered by ACA+MDA. The algorithm correctly discovered smiling, silent, and
talking as different facial events. Visual inspection of all subjects’ data suggests that
the vocabulary of facial events is moderately consistent with human evaluation.

6.4 Retrieving similar facial behavior

This section shows the ability of SACA to retrieve similar facial events to the ones
defined by the user.

In this experiment the user selected four segments of the video, and the segment-
based ACA is able to automatically segment the rest of the sequence in the facial be-
havior that is similar to the labeled ones. Fig. 13(a) shows the four segments labeled by
a user and the results of the segmentation provided by segment-based ACA. Fig. 13(b)
shows the embedding of facial events found by ACA, as well as the four predefined
events which are denoted with black and bold edges. The 3-D embedding is computed
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Figure 13: Temporal clustering of infant facial behavior with partial labels. (a) Four
instances of different facial events have been provided by humans. Each color denotes
a unique cluster. Each facial gesture is coded with a different color. Observe how the
frames of the same cluster correspond to similar facial expressions. (b) Embedding of
facial events.

by computing the leading eigenvectors of the similarity matrix T. Notice that this is a
meaningful semantic embedding, where similar facial events are closer in this embed-
ding. With this embedding, we are able to select those facial events which are most
similar to those defined by the user.

7 Conclusions and future work
At present, taxonomies of facial expression are based on FACS or other observer-based
schemes. Consequently, approaches to automatic facial expression recognition are de-
pendent on access to corpuses of FACS or similarly labeled video. This is a significant
concern, in that recent work suggests that extremely large corpuses of labeled data may
be needed to train robust classifiers. This paper raises the question of whether facial
actions can be learned directly from video in an unsupervised manner.

We developed a method for temporal clustering of facial behavior that solves for
correspondences between dynamic events and has shown promising concurrent valid-
ity with manual FACS. In experimental tests using the RU-FACS database, agreement
between facial actions identified by unsupervised analysis of face dynamics and FACS
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approached the level of agreement that has been found between independent FACS
coders. These findings suggest that unsupervised learning of facial expression is a
promising alternative to supervised learning of FACS-based actions. At least three
benefits follow. One is the prospect that automatic facial expression analysis may be
freed from its dependence on observer-based labeling. Second, because the current ap-
proach is fully empirical, it potentially can identify regularities in video that have not
been anticipated by the top-down approaches such as FACS. New discoveries become
possible. This becomes especially important as automatic facial expression analysis
increasingly develops new metrics, such as system dynamics, not easily captured by
observer-based labeling. Three, similar benefits may accrue in other areas of image
understanding of human behavior. Recent efforts to develop vocabularies and gram-
mars of human actions [17] depend on advances in unsupervised learning. The current
work may contribute to this effort. Current challenges include how best to scale ACA
for very large databases and increase accuracy for subtle facial actions. We are espe-
cially interested in applications of ACA to detection of anomalous actions and efficient
image indexing and retrieval.
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